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Abstract

The design and reanalysis of offshore and coastal structures usually requires the estimation of return values for dominant
metocean variables (such as significant wave height) and associated values for other variables (such as peak spectral
period or wind speed) from a finite sample of data; these are typically estimated using extreme value analysis. Yet
the parameters of extreme value models can only be estimated with error from finite data. Different choices available
to summarise uncertain information about the characteristics of the tail of a multivariate distribution in a small
number of summary statistics (such as return values and associated values) complicates their estimation, especially for
small sample sizes: choices regarding the ordering of mathematical operations lead to estimators of return values and
associated values with different finite sample bias and variance characteristics. The current work extends a previous
study (Jonathan et al. 2021) into the performance of estimators for marginal return values in the presence of sampling
uncertainty, to estimators of associated values based on the bivariate conditional extremes model (Heffernan and Tawn
2004) and competitors. Using a large designed simulation experiment, we explore the performance of combinations of
12 different estimators and three bivariate model candidates. The rich set of results from the simulation experiment
are reported and explained in detail. Briefly: (a) calculation of associated values is only always feasible from small
samples using two of the 12 estimators, which should be preferred; (b) estimators exploiting the median rather than
the mean to summarise a distribution are more robust, and should also be preferred, especially for small sample sizes;
(c) extreme value models incorporating appropriate descriptions of marginal and dependence provide better estimation
of associated values for larger sample size; and (d) summarising the joint tail of metocean variables (in terms of return
values and associated values) should be avoided where possible, in favour of probabilistic risk analysis of structural
failure incorporating full uncertainty propagation.
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1. Introduction

Estimating summary statistics to characterise extremes of multivariate distributions is important in environmental
risk analysis. Return values are widely used to quantify the severity of a univariate environmental process, and their
estimation is required by design standards such as NORSOK N-006 (2015) and ISO19901-1 (2015). For a bivariate
process, it is common practice (e.g. Haver 1985, Tromans and Vanderschuren 1995) to estimate a return value
corresponding to some return period of N years for the dominant variable X > 0, and then estimate an associated
value for the other variable Y > 0, given that the dominant variable is equal to its return value.
Return value estimation typically requires the adoption of an extreme value model for large values (such as peaks over

threshold, or block maxima) of X. The quality of inference is influenced by sample size and other effects, including the
action of covariates (such as direction, season and water depth). For very large, representative samples, return values
can be estimated with low bias and uncertainty. However, as shown by Jonathan et al. (2021) for small samples, return
value estimation is problematic; care should be taken in deciding the most appropriate approach to characterising the
distribution of the tail.
Estimating associated values requires the adoption of a model for the joint structure of large X and associated Y .

Historically, the pragmatic engineering approach was to fit a straight line through data for the joint tail of X and Y ,
possibly after marginal transformations to appropriate scale. The statistics literature provides a number of theoretically
well-founded approaches to tackle this problem, and in particular to quantify the quality of models and estimates.
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Given that access to data and statistical tools is now straightforward, statistical approaches should be preferred in
general because of their careful mathematical underpinning. Ewans and Jonathan (2014) gives an introduction for the
ocean engineering community. Typically, as outlined in Section 5, a statistical model for the joint distribution of X and
Y is expressed as the combination of models for the marginal distributions of X and of Y , and a dependence or copula
model for the dependence between the variates on standard marginal scale. There are many types of dependence
model, which impose different characteristics on the joint distribution of X and Y when one or both are large (e.g.
Gudendorf and Segers 2010). Coles et al. (1999) showed that different classes of extremal dependence exist, and
Heffernan (2000) gives a useful directory of tail dependence forms for different bivariate cases. Under asymptotic
dependence, the conditional probability Pr(YS > x|XS > x) converges to a positive constant as x increases to infinity,
where XS ∈ R and YS ∈ R represent X and Y transformed independently to a common standard marginal scale; that
is, large values of XS and YS continue to occur together. The so-called logistic or Gumbel model (see Section 6.1)
provides one example. In contrast, under asymptotic independence, the conditional probability Pr(YS > x|XS > x)
converges to zero with increasing x; now, on standard marginal scale, the probability of seeing large XS and YS tends
to zero. The bivariate Gaussian distribution with standard margins, and correlation ρ ∈ (0, 1) (again see Section 6.1)
is a typical example. Estimating associated values in the presence of uncertainty (e.g. due to a small sample for
inference) is clearly more challenging therefore than estimation of a marginal return value, since it involves inference
for many more models and parameters, and additional model choice.
There is a growing literature on joint and conditional extremes modelling. In the statistics literature, Tawn (1988a),

Tawn (1988b) and Coles and Tawn (1991) provide early guidance. The dependence models used in the current study
are based on the conditional extremes model of Heffernan and Tawn (2004) describing asymptotic independence (and
asymptotic dependence at a corner of the parameter space), on standard copulas (e.g. Joe 2014) and on linear
regression. There is a close correspondence between the underpinning theory of joint and conditional extremes and
that of spatial extremes (e.g. Davison et al. 2012) and temporal extremes (e.g. Chavez-Demoulin and Davison 2012).
A number of extensions of the conditional extremes model of Heffernan and Tawn (2004) relevant to the current
study have been proposed, including Tendijck et al. (2021). In the engineering literature, the work of Haver (1987),
Bitner-Gregersen and Haver (1989) and Mathisen and Bitner-Gregersen (1990) provide motivation. More recent
papers using the conditional extremes model for metocean design include Jonathan et al. (2010) and Jonathan et al.
(2012), and Bitner-Gregersen (2015). The estimation of associated values has features in common with environmental
design contour estimation (e.g. Montes-Iturrizaga and Heredia-Zavoni 2017, Chai and Leira 2018, Ross et al. 2020,
Haselsteiner et al. 2021 and references within).

Motivation, objective and outline of paper

The ocean environment can be viewed as a non-stationary multivariate spatio-temporal process. Characterising
(multivariate) extremes of that environment therefore requires adequate characterisation of (a) the effects of time,
space and multiple covariates (e.g. direction, fetch, water depth; Davison and Smith 1990, Chavez-Demoulin and
Davison 2005, Zanini et al. 2020) on the marginal properties of the process, as well as (b) the extremal temporal
and spatial dependence present (e.g. Chavez-Demoulin and Davison 2012, Davison et al. 2012, Tendijck et al. 2019,
Shooter et al. 2022), and (c) the cross-dependence between different components (e.g. wind, wave, current; Heffernan
and Tawn 2004, Gudendorf and Segers 2010, Rootzen et al. 2018, Tendijck et al. 2021) of the process. Different
model estimation schemes are available (as discussed in Jonathan et al. 2021, including e.g. maximum likelihood,
Smith and Naylor 1987; moment methods, Furrer and Naveau 2007; empirical Bayes, Zhang 2010; maximum entropy,
Petrov et al. 2013, Chen et al. 2021), some of which have been demonstrated to be advantageous in certain settings.
There is a large and growing literature on these topics in statistics and ocean engineering journals. In real-world
applications, all of these issues need to be considered in a careful analysis. However, the purpose of this article is
different: here, we seek to quantify bias (and uncertainty) in estimates of associated values using typical extreme value
models (including the conditional extremes model) and standard likelihood inference, as a function of the size and
characteristics of the sample, and various specific choices of estimator under uncertainty, from samples with known
distributional characteristics. Of course, other characterisations of multivariate extremes (including e.g. environmental
contours) are likely to suffer similar bias effects to those reported here for associated values.
The objective of the current work is to (a) provide a precise description of some estimators for associated values in the

presence of uncertainty; (b) assess the performance of estimators in combination with different statistical models for
joint and conditional extremes, in a simulation study using samples generated from plausible combinations of marginal
and dependence models and parameter values; and (c) provide the practitioner with quantitative guidance regarding
appropriate model and estimator choice for metocen design purposes.
The layout of the article is as follows. To motivate subsequent development, Section 2 provides examples of bivariate

samples for variables (X,Y ), typical of metocean applications, for which estimates of return values (forX) and associate
values (for Y |X) might be required in practice. Section 3 summarises possible estimators for the marginal return value
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of the conditioning variate X, drawing in part on Jonathan et al. (2021). Building on these definitions, Section 4
then introduces the conditional extremes model, and Section 5 introduces a number of plausible estimators for the
associated value. Next, Section 6 describes a large simulation experiment, designed to explore the performance of
different combinations of estimators and statistical models for associated values over a range of conditions of practical
metocean interest. Results of the simulation study are reported in Section 6.3 (for return values) and Section 7 (for
associated values). Section 8 provides discussion and conclusions. The appendix outlines estimation of the distribution
of annual maxima, from the distribution of individual events. The appendix also provides supporting evidence for
estimator performance, referenced from Section 7. Supplementary plots and software for the simulation study are
given at Jonathan (2022).

2. Motivating application

Figure 1: Illustrative samples of size 10,000, simulated under bivariate models with marginal and dependence characteristics as labelled (for
notation and simulation procedure, see Section 6.1). Green discs indicate the location of the return value (in X, for the same period as the
sample) and the associated value of Y . The marginal distributions of X and Y are assumed to be generalised Pareto, with zero threshold,
unit scale and shapes ξX and ξY . The dependence between X and Y follows either a Gaussian or logistic copula, with dependence strength
κ ∈ [0, 1], with large κ indicating high dependence.

Figure 1 gives plots for pairs of variables, with different marginal and dependence characteristics illustrative of the
kinds of dependence that might be expected in metocean applications. We are interested in estimating the location of
the green disc in each case, corresponding to a marginal return value x of X (with return period equal to the period of
the sample) and the corresponding associated value of Y , namely its conditional mean E[Y |X = x]. Estimating pairs
of return values and associated values in this way is challenging, because it involves establishing an appropriate model
for the bivariate cloud of points, and in particular for the cloud’s characteristics when at least X is large.

3. Estimators of marginal return values

Suppose that random variable AX > 0 represents the maximum value of some physical quantity X (such as storm
peak HS) per annum, and that AX,N > 0 represents for corresponding N -year maximum for N ∈ Z≥1. Suppose that
the distributions of AX and AX,N are known conditional on uncertain real-valued extreme value model parameters Z,
the values of which are estimated by fitting to a sample of data, for example. If the conditional distribution of threshold
exceedances of X is described by a generalised Pareto (GP) distribution, then Z might be the set of threshold, shape
and scale parameters for that distribution. Given Z, the distributions of X, AX and AX,N can be written in closed
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form (if, for example, we assume for AX and AX,N that occurrences of events X are Poisson-distributed with known
annual rate). Then as described in Jonathan et al. (2021), we can consider (at least) four different estimators of the
N -year return value, namely

q1 := F−1
AX |Z(1− 1/N | EZ [Z]) (1)

q2 := EZ [F
−1
AX |Z(1− 1/N | Z)]

q3 := F̃−1
AX

(1− 1/N)

q4 := F̃−1
AX,N

(exp(−1))

where FAX |Z is the distribution function of AX given Z and F−1
AX |Z the corresponding quantile function. F̃AX

and

F̃AX,N
are predictive distribution functions given by

F̃AX
(x) := EZ [FAX |Z(x|Z)] (2)

F̃AX,N
(x) := EZ [FAX,N |Z(x|Z)]

with quantile functions F̃−1
AX

and F̃−1
AX,N

. An outline of the calculation of F̃AX
is given in the appendix. Differences

between estimators q1, q2, q3 and q4 are due entirely to the location of the expectation operator in the definitions (1)
above; taking expectations over uncertain model parameters at different points in the return value calculation, results
in different estimators for the return value in the presence of uncertainty. For example, for q1 we take expectations
over uncertain Z directly, using the mean parameters in the closed form expression for the distribution of AX , and
then find its 1 − 1/N quantile. For q2, expectations are taken over return values, each of which is estimated using a
given uncertain Z. For q3 (and q4), expectations are taken over distributions of the annual (and N -year) maximum,
each of which is estimated using a given uncertain Z. In the absence of parameter uncertainty, the quantities q1, q2
and q3 coincide; q4 also converges to the others with increasing N .
In Section 5, we define estimators of associated values under uncertainty. As will be discussed there, when the

uncertainty in model parameters Z is large (e.g. when model parameters are estimated from fitting using small
samples), it is reasonable to expect that the performance of estimators for associated values might be poor, especially
for those estimators based on expectations as opposed to more robust summary operators such as the median. Hence
in the current work, for comparison, we also consider an estimator based on the median over uncertain Z

q5 := medZ [F
−1
AX |Z(1− 1/N | Z)]. (3)

Estimator q5 is similar to q2, except that we take a median as opposed to a mean over uncertain Z. We expect that
q5 provides a more robust estimate for the return value under uncertainty.

4. The conditional extremes model

We seek to characterise the central features of the conditional distribution of an associated variable Y given extremes
of variable X, using EY [Y |X = x] for x > u > 0, for some high threshold u. Typically the value of x would be set
to a marginal return value of interest for X, estimated using one of the estimators in Section 3. Given knowledge of
the joint distribution of (X,Y ), this task is relatively straightforward. Otherwise, the joint distribution of (X,Y ) for
X > u needs to be estimated from data in some way. In this work, we adopt the conditional extremes methodology of
Heffernan and Tawn (2004) for variates (XL, YL) on standard Laplace marginal scale as the main route to estimation
of associated values.

4.1. Model form

For Laplace-scale variables XL ∈ R, YL ∈ R, and high conditioning Laplace-scale threshold uL > 0, the conditional
extremes model then assumes

YL|(XL = xL) = αxL + xβ
L(µ+ ζW ) for xL > uL (4)

with parameters α ∈ [−1, 1], β ∈ (−∞, 1], µ ∈ R and ζ > 0. Standardised residuals W follow an unknown distribution,
estimated using an empirical sample of standardised residuals from a model fit to data. Marginal transformation
between the physical-scale variables (X,Y ) and their Laplace-scale counterparts (XL, YL) is achieved using functions
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(gLX , gLY ) such that XL = gLX(X) and YL = gLY (Y ). That is, gLX(·) = F−1
L FX(·) and gLY (·) = F−1

L FY (·), where
FL is the cumulative distribution function of the standard Laplace distribution, given by

FL(x) =

{
exp(x)/2 x ≤ 0

1− exp(−x)/2 x > 0.

FX and FY are the marginal distributions of X and Y on physical measurement scale, the right-hand tails of which
are assumed to take GP form. In practice, the pairs of functions (FX , FY ) and hence (gLX , gLY ) are unknown an must
also be estimated from data.

4.2. Sources of sampling uncertainty

Inferences under the conditional extremes model, including associated values, will therefore be subject to sampling
uncertainty from multiple sources, including (a) the estimation of the marginal models for (FX , FY ), (b) estimation
of marginal conditioning return values x of X (using estimated FX and the rate of occurrence of events), and (c)
estimation of the conditional extremes model. We are interested in estimators of associated values with reasonable
bias and variance characteristics given these sources of uncertainty.
In practice, marginal transformation between the physical-scale variables (X,Y ) and their Laplace-scale counterparts

(XL|Z, YL|Z) is achieved using functions (gLX|Z , gLY |Z) estimated from data; hence the dependence of both the
functions and their Laplace-scale outputs on uncertain Z. The marginal distributions FX|Z and FY |Z are estimated
empirically below some thresholds uX , uY , and by fitting a GP distribution above the thresholds. We choose to repeat
the conditional extremes model form as

YL|(XL = xL,Z) = α(Z)(xL|Z) + (xL|Z)β(Z)(µ(Z) + ζ(Z)W ) for (xL|Z) > uL (5)

to emphasise the dependencies on Z.

5. Estimators of associated values

The construction of the conditional extremes model above is similar to that of (bivariate) copula models (e.g. Joe
2014, and Section 6.1), in that the dependence between X and Y is stated in terms of transformed variables XS and
YS with a standard marginal distribution. The full joint distribution of X and Y on physical scale then requires
specification of marginal distributions (for each of X and Y , allowing transformation to XS and YS) as well as the
dependence or copula distribution itself. The effects of estimation uncertainty in conditional extremes and copula
models are also similar. Usually the marginal models are estimated first (with error), and then following (conditional)
transformation to standard marginal scale (with error), the (conditional) dependence model is estimated (with error).
For all these models therefore, it is appropriate to consider estimators of associated values that reflect this construction.
We now define estimators qkk′ k = 1, 2, ..., 6, k′ = 1, 2 providing a useful summary of the location of the tail in X,

and the conditional “body” in Y , corresponding to a return period of N years. For example, for any of the five choices
qk, k = 1, 2, ..., 5 from Equations (1) and (3), we define a related estimator for the location of conditional values of Y
to specify qkk′

qk1 := EZ

[
EY |Z [g

−1
SY |Z((YS |XS = gSX|Z(qk|Z),Z)|Z)]

]
(6)

qk2 := medZ

[
EY |Z [g

−1
SY |Z((YS |XS = gSX|Z(qk|Z),Z)|Z)]

]
.

The first of these estimators first identifies the conditional distribution of (YS |XS = gSX|Z(qk|Z),Z), where gSX|Z(qk|Z)
is an estimate of the marginal return value on appropriate “standard scale” (e.g. standard Laplace for conditional
extremes estimation), uncertain since it is defined using an estimated marginal model for X. (We adopt the notation
XS , YS here, rather than specific Laplace-scale XL, YL to emphasise that the definition is applicable to other copula
estimation schemes, as well as the conditional extremes model). This conditional distribution is then transformed to
physical scale using the inverse of function gSY |Z , which is itself dependent on Z through uncertain marginal parame-
ters for Y . Next we take expectation over Y , and finally over uncertain parameters Z. The second estimator is similar
to the first, with the final expectation over Z replaced by the median for robustness.
We also consider estimators q61 and q62 defined by

q61 := EZ

[
EY |Z [g

−1
SY |Z(YS |XS = F−1

AS
(1− 1/N),Z)|Z)]

]
(7)

q62 := medZ

[
EY |Z [g

−1
SY |Z(YS |XS = F−1

AS
(1− 1/N),Z)|Z)]

]
.
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For the estimators in Equation (7), the conditioning value of standard-scale XS is set to F−1
AS

(1 − 1/N), where FAS

is the cumulative distribution function of the annual maximum on standard scale. That is, the value of XS is set to
yield the desired marginal tail probability FAX |Z(1 − 1/N | Z) (see the appendix) such that FAX |Z(1 − 1/N | Z) =

F−1
AS

(1 − 1/N) by definition for the conditioning variate on Laplace scale, but the conditioning value of XS does not
depend on the physical-scale marginal characteristics of X nor on Z. For brevity, we therefore choose to describe
estimators q61, q62 as being conditioned on probability, and all other estimators as conditioned on value. However, the
estimated conditional extremes model for YS |XS ,Z does depend on the marginal X fit, through the function gSX|Z
used for transformation from X to XS . We note the close definitional correspondence between estimators q2·, q5· and
q6·, all of which exploit the conditioning return value FAX |Z(1− 1/N | Z) for given Z.
Perhaps Equations 6 and 7 appear unwieldy in terms of the number of times that Z appears. Nevertheless, these

serve to illustrate that dependence on uncertain Z enters the estimation of associated values at multiple points, and
that the ordering of operations in the expressions should be expected to impact the bias and variance characteristics
of the resulting estimators.

6. Numerical study of estimator performance

In Jonathan et al. (2021), a combination of theoretical arguments and numerical simulation were used to quantify the
relative bias characteristics of return value estimators qk, k = 1, 2, 3, 4. Unfortunately, there is no easy theoretical route
to explore the relative characteristics of estimators for associated values, and we must rely on simulation. Therefore,
in this section we describe bivariate models used for sample simulation (Section 6.1) and estimation (Section 6.2).
We also provide a summary of the characteristics of marginal return value estimator q5 relative to its competitors
qk, k = 1, 2, ..., 4, because this comparison has not been reported in the past. Discussion of the performance of
combinations of estimators and estimation schemes for associated values then follows in Section 7.

6.1. Study set-up

The simulation study used to assess the relative performance of the estimators for return values and associated values
introduced in Sections 3 and 5 is as follows. We simulate samples of size n = 200, 1,000 and 10,000 from bivariate
distributions constructed with GP margins and either Gaussian or logistic dependence D, representing asymptotic
independence and asymptotic dependence respectively. That is, we simulate pairs of values of X,Y with distribution
function

P(X ≤ x, Y ≤ y; ξX , ξY , κ) = FXY (x, y; ξX , ξY , κ) = FX(x; ξX)FY (y; ξY )C(FX(x; ξX), FY (y; ξY );κ) (8)

where cumulative distribution functions FX(·; ξX) and FY (·; ξY ) represent marginal GP distributions for X and Y
with shape parameters ξX and ξY , common scale parameter ς = 1 and threshold η = 0, with functional form

F (x; ξ, ς, η) = 1−
(
1 +

ξ

ς
(x− η)

)−1/ξ

+

. (9)

The study design considers all combinations of cases ξX , ξY ∈ {−0.4,−0.2, 0, 0.2} representing a range of tail heaviness
for X and Y common in environmental applications. C(·, ·;κ) is a bivariate copula parameterised in terms of a scalar
κ ∈ [0, 1]. For the logistic copula (“Lgs”), 1− κ represents the logistic parameter (usually denoted α) ∈ [0, 1], and for
the Gaussian copula (“Gss”), κ represents the correlation ∈ [0.1], such that

C(uX , uY |κ) =

C(uX , uY |κ) = exp

(
−
(
(− log uX)

−1/(1−κ)
+ (− log uY )

−1/(1−κ)
)1−κ

)
Logistic

C(uX , uY |κ) = Φ(Φ−1(uX),Φ−1(uY );Σ) Gaussian
(10)

for κ ∈ (0, 1), with κ = 0 and = 1 corresponding to perfect independence and perfect dependence respectively.
We choose to express the logistic dependence in terms of 1 − κ so that the strength of dependence increases with
κ for both Gaussian and logistic copulas. Φ(·) is the cumulative distribution function of the standard Gaussian
distribution, and Φ(·, ·;Σ) is the cumulative distribution function of a bivariate Gaussian distribution with zero mean
and covariance Σ, a 2 × 2 matrix with unit diagonal elements and κ on the off-diagonal. For the study, we consider
the cases κ ∈ {0.1, 0.5, 0.9} representing low, medium and high strength of dependence respectively. Figure 1 gives an
impression of the effect of ξX , ξY , D and κ on sample characteristics.
A total of m = 1000 sample realisations was generated for each combination of ξX , ξY , dependence copula type D

(“Gss” or “Lgs”) and strength κ, for subsequent estimation of sets (qk, qkk′) of return and associate values. This
corresponds to a total of 96 (4× 4× 2× 3) combinations (or “cases”) of design factors for sample generation.
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6.2. Estimation of return and associated values

For each of m sample realisations, we estimate pairs of return value and associated value (qk, qkk′), k = 1, 2, ..., 6,
k′ = 1, 2 as defined in Section 5 using each of three models types for the joint distribution of (X,Y ). Of primary
interest in the conditional extremes model (Section 4.1); for comparison, we also include a Gaussian or logistic copula
model (i.e. the dependence model under which a sample was generated), and a naive model based on simple linear
regression motivated by historical based practice (e.g. ISO19901-1 2015). These inference schemes are described in
more detail below.
Once these models have been estimated, we calculate summary statistics of interest, including associated values using

Equations 6, by simulation, numerical integration or equivalent under the fitted model. Estimation uncertainty is
quantified using bootstrapping: that is, empirical estimates for EZ and medZ (in Equations 6 and 7) are calculated
as sample means and medians over nB = 100 bootstrap resamples for each sample realisation.

6.2.1. Estimation schemes

Estimation of the three models is now described.
The conditional extremes scheme (“CntExt” for brevity) requires (a) estimation of marginal extreme value

models for X and Y , (b) marginal transformation to standard Laplace scale, and (c) estimation of the conditional
extremes model. For marginal modelling (a), we assume we know that the full sample follows a GP distribution, so that
an extreme value threshold = 0 is always appropriate; however, in general, we assume that marginal parameters must
be estimated. Since the conditional extremes model (c) is motivated asymptotically, we estimate it for a sequence
of Laplace scale thresholds with non-exceedance probabilities τ ∈ {0.5, 0.8, 0.9}. We expect to see a bias-variance
trade-off as a result: as the value of τ increases, estimated parameter bias might be expected to reduce because the
asymptotic model form is more appropriate, but estimated parameter variance increases due to reduced sample size.
The copula scheme (“CplEst” for brevity) involves (a) marginal extreme value estimation, followed by (b) marginal

transformation to the uniform scale (see Equation 10), and (c) estimation of copula parameter κ. In this work, for each
sample realisation, we assume that the copula type D is known, and hence we do not consider copula misspecification.
Further, we assume we know that the copula model can be applied to the full sample, which is appropriate since the
whole sample was generated under the copula.
The “naive” simple linear estimation scheme (“RgrEst” for brevity) estimates the dependence between X and

Y by fitting a linear regression (with intercept and slope terms) to all data exceeding a marginal threshold in X with
given non-exceedance probability τ . The marginal X return value is estimated by fitting a GP model to the full X
sample, as for other schemes. This estimation scheme is included as a pragmatic benchmark approach for comparison
only.
As a result, for each sample realisation, there are 8 (3× 3− 1) combinations of model type and dependence threshold

to be considered. In total therefore, the design consists of nC = 768 (= 96×8) different inferences cases, and nB = 100
bootstrap resamples per case to evaluate return values and associated values for a given sample realisation. We consider
m = 1000 sample realisations per case to estimate the sampling distributions of return values and associated values.

6.2.2. Estimation of fractional bias

The performance of the estimators (qk, qkk′), k = 1, 2, ..., 6, k′ = 1, 2 is quantified by comparison with the known
underlying values of marginal return values and associated values, in terms of fractional bias. For quantity θ with
estimated value θ̂ij for sample realisation i, i = 1, 2, ...,m and case j, j = 1, 2, ..., nC from the experimental design,

fractional bias is given by (θ̂ij/θ) − 1. We then use the sample {(θ̂ij/θ) − 1}mi=1 to quantify the performance of the
return value or associated value estimators for case j.
Given either known underlying parameter values, or estimates for these, return values can be estimated in closed

form. Associated values for Gaussian dependence are estimated either by simulation or numerical integration; numerical
integration is used in the case of logistic dependence. Carefully constructed algorithms are necessary to ensure that
associated values are estimated reliably even for values of dependence κ near the limits of its [0, 1] domain. Similarly,
transformation between different marginal scales needs to be performed reliably regardless of the estimated values of
GP shape and scale parameters ξ, ς. MATLAB code for the simulation is available at Jonathan (2022).

6.3. Return values

The main focus of the current work is the estimation of associated values, but it is interesting also to consider the
performance of the new estimator q5 for return value, relative to competitors qk, k = 1, 2, ..., 4 examined previously
in Jonathan et al. (2021). Figure 2 shows the fractional bias of all return value estimators as a function of GP
shape parameter ξX for different sample sizes. A similar plot is shown in Jonathan et al. (2021) (Figure 3), except
that the new estimator q5 has been added. Interestingly, the new estimator q5, the bootstrap median of the return
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value estimated per bootstrap resample, performs similarly to estimator q1, namely the return value calculated using
bootstrap mean parameter estimates. We note further that estimator q3, namely the 1−1/N quantile of the predictive
distribution of the annual maximum, has a relatively large positive bias: it overestimates the return value, especially
for ξX > −0.1. As sample size increases, fractional bias reduces in magnitude for all estimators, highlighting that
differences in estimators are of most concern for small samples.

Figure 2: Fractional bias of return value estimators qk, k = 1, 2, ..., 5 as a function of GP shape parameter ξX for sample sizes n = 200, 1, 000
and 10, 000. Estimators are defined in Section 3, and have line styles black solid (q1), black dashed (q2), black dotted (q3), black dash-dotted
(q4) and grey solid (q5).

7. Performance of models and estimators for associated values over the design

In this section, we perform an analysis of the fractional bias results for associated values from the computer exper-
iment. Our main objective is to determine whether any of the estimators for associated values is to be preferred in
general for metocean design. Estimators of associated value are more complex to calculate that those of return values,
and in particular require the estimation of a larger number of parameters. We would expect therefore that, for a
given sample size, the uncertainty of associated values might be greater than that of return values. In this section, we
start (in Section 7.1) by considering the feasibility of calculation of the estimators qkk′ , k = 1, 2, ..., 6, k′ = 1, 2 over
the design. We find that for estimators conditioned on value (namely qkk′ , k = 1, 2, ..., 5, k′ = 1, 2) it is not always
possible to perform the associated value calculation; this issue is particularly problematic for small sample size n and
corresponding estimators qk for return values which are biased high. Indeed, for n < 10, 000, we show and explain
that only estimators q6· conditioned on probability can be guaranteed to provide feasible computations under bootstrap
resampling. For estimators conditioned on value, we are forced to reject a proportion of bootstrap resamples, since
these do not yield feasible calculations of associated values.
In Section 7.2, we illustrate the distributions of fractional bias for different design cases over sample realisations to

give an initial impression of fractional bias data. Given that there are nC = 768 different design cases to be considered,
visual assessment alone of fractional bias is not realistic. We also estimate the Spearman rank correlation between
estimates from all pairs of estimators qkk′ for different sample sizes n. We also report plots of the median and inter-
quartile range (IQR) for all estimators over the full design. Further, in Section 7.3 and Jonathan (2022), we seek to
explore the characteristics of fractional bias for estimators as a function of design variables, and further quantify this
using a non-homogeneous Gaussian regression (e.g. Williams et al. 2014). This regression model helps us understand
how underlying sample characteristics affect the fractional bias of associated values.
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7.1. Infeasible calculations

Inspection of the expressions (Equation 6) for associated values qkk′ , k = 1, 2, ..., 5, k′ = 1, 2 conditioned on value
indicates that conditioning is made on Laplace scale per bootstrap resample, using an estimate qk of the N -year
return value obtained independently beforehand on physical scale. Therefore, the actual Laplace-scale conditioning
value gLX|Z(qk|Z) is uncertain, due to the transformation function gLX|Z estimated (with error) from the sample.
When the estimated GP shape parameter ξX is negative, the marginal X distribution has a finite upper end point.
When the marginal fit (and hence the estimate of gLX|Z) is particularly poor (e.g. when the sample size n is small),
then it is possible that the value of qk (estimated beforehand) lies beyond the upper end point of the fitted marginal
distribution, so that gLX|Z(qk|Z) is undefined; this outcome is also possible for a particularly poor estimate of qk.
Figure 3 explores this effect for all estimators, for different “corner” choices of pairs ξX , ξY from the design, and for
different sample sizes n, over all combinations of dependence design factors (i.e. dependence type D, strength κ and
threshold non-exceedance probability τ), for conditional extremes estimation. The figure summarises the distribution
of the proportion of rejected bootstrap resamples in the form of box-whisker plots. For example, estimators q3· incur
a rejection rate of around 70% on average for sample size n = 200 with ξX = −0.4 and ξY = −0.4: that is, 70% of
bootstrap resamples yield infeasible calculations of associated value. As might be expected, as sample size increases
(green to orange to grey), the proportion of rejected bootstrap resamples reduces to zero; there are no rejections for
any estimators with n = 10, 000. Further the rejection rate is highest per estimator for strongly negative ξX , as a
direct consequence of the marginal return value estimator q3 (the quantile of the predictive distribution of the annual
maximum with non-exceedance probability 1− 1/N) exhibiting more positive bias than other return value estimators.
Plots for fitting under copula models exhibit analogous features.
Estimators q6· (conditioned on probability, Equation 7) never incur rejections by construction. For these estimators,

for any bootstrap resample, we condition on the N -year return value estimated using exactly the same resample for
marginal fitting, with a fixed probability 1 − 1/N for annual exceedance. This value can be estimated without error
provided that the rate of occurrence of events is assumed known; even if the rate of occurrence was only known
approximately, this uncertainty could never lead to a Laplace-scale conditioning value exceeding the upper end point
of the distribution, by definition. We conclude that estimators conditioned on probability are inherently preferable
under a bootstrap procedure for uncertainty quantification. The source of the infeasibility issue is the fact that an

Figure 3: Box-whisker plots showing the proportion of bootstrap estimates rejected due to the conditioning value exceeding the upper
end-point of the estimated marginal GP distribution for the tail of X, for the conditional extremes estimation scheme, encompassing
all choices of dependence type D, strength κ and threshold with non-exceedance probability τ . Panels correspond to different “corner”
combinations of GP shapes ξX and ξY from the design, and colours indicate sample size n = 200 (green), 1,000 (orange) and 10,000 (grey).
The abscissa variable indicates the estimator for associated values. For the final abscissa value q6·, conditioning is performed per bootstrap
resample based on the appropriate Laplace-scale probability.
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external estimate of the conditioning return value is used, rather than an estimate using the bootstrap resampling
scheme adopted for uncertainty quantification. In passing we note that same difficulty would arise under a Bayesian
inference, unless suitable prior distributional assumptions were imposed on marginal X tail models to prevent gLX|Z
being undefined at the conditioning value qk. Of course, modification of estimation schemes and estimators is possible
to mitigate infeasible calculations; but in this situation, the performance characteristics of estimators of associated
values would then be dependent on the details of the mitigation used. In the following sections, we adopt a naive
mitigation strategy: estimates for qkk′ , k = 1, 2, ..., 5, k′ = 1, 2 conditioned on value are based on the subset of
bootstrap resamples corresponding to feasible calculations.

7.2. Visual summaries of estimator performance

Figure 4 illustrates the empirical density of fractional bias for estimator q62 under the conditional extremes scheme,
over all choices of dependence type D, strength κ and threshold (with non-exceedance probability τ), for the same
“corner” combinations of ξX and ξY as in Figure 3. In each panel, colour again indicates sample size. We observe
that distributional width reduces with increasing sample size as would be expected. Further, the general size of bias
increases dramatically with increasing ξY . For ξY = 0.2 and n = 200, the empirical density shows a long right-hand
tail (positive skewness), but skewness reduces with increasing n. The mean fractional bias is also apparently influenced
by sample size, as can be more easily seen for the approximately symmetric densities for ξY = −0.4. For sample size
n = 200, we should not be surprised to encounter fractional biases of −100% to +500% occasionally, depending on
sample characteristics. For n = 10, 000, fractional biases of ±20% are still possible for large ξY . The characteristics of
plots analogous to Figure 4 for other estimators are similar, notwithstanding rejection of infeasible bootstraps where
necessary.

Figure 4: Empirical densities of fractional bias for q62 estimated using the conditional extremes model. Sample realisations exhibit Gaussian
dependence and κ = 0.9. Panels correspond to different “corner” combinations of marginal GP shape parameters ξX and ξY . Empirical
densities in each panel correspond to n = 200 (green), n = 1, 000 (orange) and n = 10, 000 (grey). For panels corresponding to ξY = 0.2,
the abscissa is truncated at 3.0 for clarity. The maximum values observed for n = 200 are 4.36 (for ξX = −0.4) and 7.70 (for ξX = 0.2).

Figure 5 provides further evidence for the likely spread of fractional bias for different sample characteristics. Each
panel shows the estimated inter-quartile range (IQR) of the distribution of fractional bias across all estimators qkk′ ,
k = 1, 2, ..., 6, k′ = 1, 2, for a given combination of sample size n and dependence threshold with non-exceedance
probability τ . Colours represent different estimation schemes: solid green lines correspond to conditional extremes
estimation, including marginal estimation; dashed green lines correspond to conditional extremes estimation with
the marginal distributions assumed known. Orange lines represent copula estimation, assuming that the correct
dependence type D is known, with estimated margins (solid) and assumed known margins (dashed). Comparison of
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solid and dashed curves therefore quantifies the extent to which uncertainty in associated values can be attributed to
marginal uncertainty. The grey line corresponds to simple linear regression estimation. The value of IQR does not

Figure 5: Inter-quartile range of fractional bias for all estimators, over all design combinations, for different sample sizes (n, columns) and
dependence modelling thresholds (with non-exceedance probabilities τ , rows): simple regression estimation (RgrEst, grey) and conditional
extremes estimation (CndExt, green) with unknown (solid) and known margins (dashed). Also shown as a benchmark, are corresponding
estimates under the correct dependence copula D form (but unknown parameter κ, orange) with unknown (solid) and known margins
(dashed), using the full sample for κ estimation. Note that for estimators qkk′ , k = 1, 2, ..., 5, k′ = 1, 2, only feasible bootstrap resample
calculations are used.

vary substantially across estimators, which is surprising because of the large bootstrap rejection rate for estimators
conditioned on value; but this finding in turn may suggest that the naive mitigation strategy adopted (i.e. rejection of
infeasible calculations) has its merits. There is evidence of increased IQR for q31 and q32, reflecting the relative positive
bias of the corresponding marginal estimator q3. Knowledge of marginal characteristics reduces IQR, dramatically so
for n = 200; in contrast for n = 10, 000, the sample is large enough to provide good marginal estimation, so that
there is little benefit of knowing marginal characteristics. Knowledge of the true copula type reduces IQR always;
conditional extremes estimation provides higher IQR given τ and n, because it requires estimation of a larger parameter
set (encoding multiple forms and extents of extremal dependence). Further, IQR reduces with increasing sample size in
all cases. Figure 6 is similar to Figure 5, but provides median fractional bias. The simple linear regression estimation
scheme yields negative bias over the design; otherwise all estimators have relatively low median fraction bias. Again,
q31 and q32 perform differently to other estimators because of the marginal bias of q3. Median fractional bias reduces
in size with increasing n and τ .
Note that estimates of fractional bias mean and standard deviation (given in Figures 12 and 13 of the Appendix),

sensitive to a small number of exceptional values of fractional bias, are considerably less well behaved that their more
robust analogues visualised in Figures 5 and Figure 6. Here, we define an exceptional value as an estimate of fractional
bias which exceeds 10. Exceptional values occur because of relatively poor estimation of marginal and dependence
models, unavoidable for small sample sizes (unless constraints on values of parameter estimates are imposed, or different
estimation schemes more suitable for small samples are adopted). Over the complete design, 0.16% of the total number
of sample realisations resulted in estimates of fractional bias exceeding 10 for n = 200, reducing to 3.4 × 10−3% for
n = 1, 000. No exceptional values were encountered at all for n = 10, 000. The presence of exceptional values of
fractional bias is to be expected, especially when the marginal Y tail is estimated to be long, and estimated ξY ≥ 0;
this in turn is to be expected when the sample size is small. The proportions of exceptional values by design variables is
illustrated in Figure 7, where the green (orange) histograms shows proportions of exceptional values across all sample
sizes n (and n = 1, 000, 10,000 only) by design variable. Over all sample sizes (green), exceptional values predominantly
correspond to n = 200 and ξY = 0.2. For n > 200, exceptional values occur exclusively at n = 1, 000 and ξY =0.2.
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Figure 6: Median fractional bias for all estimators, over all design combinations, for different sample sizes (n, columns) and dependence
modelling thresholds (ψ, with non-exceedance probability τ , rows). For details, see caption of Figure 5. Note that for estimators qkk′ ,
k = 1, 2, ..., 5, k′ = 1, 2, only feasible bootstrap resample calculations are used.

It is also noteworthy that occurrences of exceptional values for estimators q61, q62 (conditioned on probability) and
qk2, k = 1, 2, ..., 5 (conditioned on value, but using the median rather than mean to summarise over estimates for
different bootstrap resamples, see Equation 6) are rare, even for n = 200. This suggests that these estimators are more
appropriate for general use, especially for small sample sizes.
Figure 8 shows Spearman rank correlations for all pairs of estimates as a function of sample size, over all other

design variables. Again, for estimators qkk′ , k = 1, 2, ..., 5, k′ = 1, 2, only those bootstrap resamples admitting feasible
calculation of associated values are considered. Estimated values for all estimators are highly correlated for all sample
sizes, and the general features of the correlation maps reflect the different constructions of return and associated values.
For n = 10, 000 all rank correlations are close to unity. For n = 200, we observe that estimators qk1, k = 1, 2, ..., 5 are
generally more highly inter-correlated, as are qk2, k = 1, 2, ..., 5. However, estimators q31 and to a lesser extent q32 are
exceptions to this trend, due to the fact that return value estimator q3 tends to be positively biased. Estimators q61
and q62 are in general more correlated with qk2, k = 1, 2, ..., 5 than qk1, k = 1, 2, ..., 5.

7.3. Quantifying sources of fractional bias

Results in Section 7.2 suggest that the fractional bias of estimators of associated values varies systematically over
the design. In this sub-section, we build regression models to explore this effect further, with the intention of under-
standing whether fractional bias from some estimators and estimation schemes is more sensitive to underlying sample
characteristics: we would prefer that the performance of estimates of associated values was consistently good across
the design. As a result, associated values could be estimated from samples with unknown characteristics with a level
of confidence.
Figure 9 shows fractional bias “main effects” for estimator q62 on all design variables, as box-whisker plots, for

sample size n = 200. The first (second) row of panels illustrates results for conditional extremes estimation, given a
true Gaussian (logistic) dependence. The third and fourth rows follow a similar pattern, for the simple linear regression
estimation scheme. Figure 10 shows the analogous plots for n = 10, 000. The range of fractional bias is very large for
n = 200, but reduces considerably for n = 10, 000 under the conditional extremes estimation scheme only. For n = 200
and conditional extremes estimation, the distribution of fractional bias for different values of ξX appears relatively
stable, with a wider spread and positive skewness under Gaussian dependence. The spread of fractional bias increases
with increasing ξY ; mean fractional bias increases with ξY under Gaussian dependence, but reduces with ξY under
logistic dependence. The mean and median fractional bias both tend to zero with increasing strength κ of dependence
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Figure 7: Occurrences of exceptional associate values with magnitudes > 10. Proportions (green) with respect to the design variables ξX ,
ξY , dependence type D, strength κ, threshold ψ, sample size n and estimation scheme, and associated value estimator. Proportions in
orange correspond to sample sizes n = 1000 and 10,000 only. Note that for estimators qkk′ , k = 1, 2, ..., 5, k′ = 1, 2, only feasible bootstrap
resample calculations are used.

Figure 8: Spearman rank correlation coefficients between all pairs of estimators, for different sample sizes. Colour legend is given on the
right-hand side of the left panel. Note that for estimators qkk′ , k = 1, 2, ..., 5, k′ = 1, 2, only feasible bootstrap resample calculations are
used.

under conditional extremes estimation, and there is evidence under Gaussian dependence that the spread of fractional
bias also reduces with increasing κ. Further for n = 200 and conditional extremes estimation, there is little evidence
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Figure 9: Box-whisker plots of fractional bias in associate value estimator q62 as a function of sample covariates for conditional extremes
(CndExt) and simple linear regression (RgrEst) estimation schemes, and Gaussian (Gss) and logistic (Lgs) dependence. Sample size
n = 200. In the box-whisker structure, thin horizontal lines in the box represent sample 25%, 50% and 75% quantiles, and whiskers 2.5%
and 97.5% quantiles. The thick horizontal line corresponds to the sample mean.

that the mean and median fractional bias trend with threshold non-exceedance probability τ . In contrast, the simple
regression estimation scheme shows sensitivity to both ξX and ξY . At n = 10, 000, Figure 10 indicates that many of
the trends already mentioned persist. For simple regression estimation, sensitivity of fractional bias to both ξX and
ξY is clear, as is the considerably larger general spread of fractional bias. Additionally there is evidence that the mean
and median fraction bias under conditional extremes estimation reduce towards zero with increasing τ .
Plots analogous to Figures 9 and 10 for all combinations of estimators and sample sizes are given at Jonathan (2022).

Again, we emphasise that for associated value estimators (qkk′ , k = 1, 2, ..., 5, k′ = 1, 2) conditioned on value, only
estimates from feasible calculations can possibly be considered. Trends present in the plots are consistent with the
discussion here and in Sections 7.2.
The trends with design variables in Figures 9 and 10 and at Jonathan (2022) suggest we consider estimating a

statistical model for the distribution of fractional bias as a function of design variables. The figures indicate that
the spread of fractional bias also varies systematically over the design. For this reason, we adopt a non-homogeneous
Gaussian regression form

(B|C = c) = φ′
µc+φ′

σc×N(0, 1) (11)

for response B and a vector c of covariates, where N(0, 1) indicates a standard Gaussian-distributed random variable.
Vectors of mean and error parameters φµ and φσ are to be estimated jointly. In our case, B is the fractional bias
for each of the combinations of estimators and estimation schemes under consideration, in turn, and C is a vector
containing the full “response surface” in design variables (that is, the intercept, linear terms and all squared and cross-
terms in design variables) as listed in the x-axis label of Figure 11. The regression was estimated using non-linear
optimisation.
We emphasise that the purpose of the regression is not to produce a perfect predictive model for fractional bias to be

used in practical application, since in practice we will rarely if ever know the values of design variables for an application;
rather, we estimate the regression model to identify whether combinations of associated value estimators and estimation
schemes exist which are relatively insensitive to the design, and hence useful across a range of applications. Further,
since the sample size for the regression (> 350, 000 observations per dependence type) is huge, there is little purpose
to considering parameter estimate “significance” in the usual sense. Figure 11 gives parameter estimates for vectors
φµ (odd rows) and φσ (even rows) by dependence type (columns) for conditional extremes estimation (first two rows)
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Figure 10: Box-whisker plots of fractional bias in associate value estimator q62 as a function of sample covariates for conditional extremes
(CndExt) and simple linear regression (RgrEst) estimation schemes, and Gaussian (Gss) and logistic (Lgs) dependence. Sample size
n = 10, 000.

and simple linear regression (third and fourth rows). For sample size n = 200 (1, 000), green (orange) lines indicate
parameter vectors for q61 (solid) and q62 (dashed). For n = 200 in particular, regression analysis for these and other
estimators is problematic because the empirical distribution of fractional bias has a very long right-hand tail due to the
presence of exceptional values, particularly when employing the mean (for estimators q·1) rather than the median (for
estimators q·2). For this reason, parameter estimates for q·1 with n = 200 are not shown, since they are not reliably
described using the non-homogeneous Gaussian regression. For n = 10, 000, grey lines indicate parameter vectors for
all estimators qkk′ , k = 1, 2, ..., 6, k′ = 1, 2; as might be inferred from the rank correlation matrix for n = 10, 000 in
Figure 8, parameter estimates for different estimators are very similar in this case.
The regression model is estimated using covariates standardised to mean zero and unit standard deviation over the

design, so that the magnitudes of parameter estimates indicate their relative contribution in explaining the variation
of fractional bias. Comparing the first and third rows of the figure, for conditional extremes (CntExt) and regression
estimation (RgrEst) respectively for both n = 1, 000 (orange) and n = 10, 000 (grey), we note that the values of the
largest parameter estimates for µ are much smaller in magnitude for conditional extremes estimation; that is, mean
fractional bias estimated under the conditional extremes model is less sensitive to covariate variation over the design.
Parameter estimates for µ using simple linear regression (RgrEst) for dependence modelling are relatively insensitive to
sample size, but the strong positive effect of increasing ξX and decreasing ξY on µ are clear. For samples with Gaussian
dependence estimated using conditional extremes, fractional bias increases in mean µ and spread σ with increasing
ξY , but decreases with increasing dependence strength κ and threshold (with non-exceedance probability τ). These
effects are present for all sample sizes. For samples with logistic dependence estimated using conditional extremes, the
trends in σ with ξY , κ and τ are the same as for Gaussian dependence, but trends in µ tend to be reversed. All the
fitted models illustrated provide descriptions of the variation of fractional bias over the design which are materially
(and “significantly”) better than a constant model, because of the huge sample size involved. For n = 10, 000, there is
little difference between regression fit for the different estimators (all shown in grey).

8. Discussion and conclusions

We present a computer experiment to assess the relative performance of different estimators and estimation schemes
for associated values. The experimental design is chosen to cover combinations of marginal and dependence char-
acteristics representative of typical metocean samples. The focus is on an appropriate choice of estimator to use in
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Figure 11: Parameter estimates (φµ, φσ , assuming standardised covariates) for non-homogeneous Gaussian regression mean µ and error
standard deviation σ, for conditional extremes (CndExt) and simple linear regression (RgrEst) estimation schemes, and Gaussian and
logistic dependence. Lines in green (orange) correspond to estimators q61 (solid) and q62 (dashed) for n = 200 (n = 1000). Lines in grey
correspond to all estimators for n = 10, 000. Parameter estimates for estimator q61 with n = 200 are not shown, as explained in the main
text.

combination with the conditional extremes model. The effect of uncertainty in model parameters, estimated from finite
samples, on estimates of associated values, is quantified in terms of fractional bias, using a large number of sample
replications.
Estimators can be categorised according the nature of the conditioning performed. One group of estimators, referred

to here as being conditioned on value exploit a previously independently-estimated return value (on physical scale); see
Equation 6. The second group, referred to as being conditioned on probability impose return value conditioning using
the appropriate extreme marginal quantile (with fixed annual non-exceedance probability) per bootstrap resample; see
Equation 7. Calculation of the first group of estimators from a sample is sometimes infeasible, especially when the
sample size is small. The second group of estimators can always be calculated. Of course, the procedure for calculation
of estimators conditioned on value can be modified to mitigate infeasible calculations (e.g. Towe et al. 2017); in this
case however, the properties of resulting estimators will also depend on the specifics of the mitigation strategy. In
this work, bootstrap resamples resulting in infeasible calculations have simply been ignored, and associated values
calculated using the output of feasible calculations only; results of the simulation study suggest that this approach has
some merit.
Estimators defined in Equations 6 and 7 can also be categorised according to the choice of operator used to estimate

the associated value over uncertain model parameters. One group of estimators (qk1, k = 1, 2, ..., 6) uses the mean,
and the second (qk2, k = 1, 2, ..., 6) the median. For small sample sizes, the distribution of estimators q·2 is less skewed
by the occurrence of exceptional values of fractional bias. Of course, the procedure for calculation of estimators can
also be modified to mitigate the occurrence of exceptional values, with the consequence that properties of resulting
estimators will again depend on the specifics of the mitigation strategy.
The conditional extremes (CndExt) and copula (CplEst) estimation schemes require the fitting of both marginal

and dependence models. For small sample sizes, uncertainty in marginal estimation of return values contributes to
approximately half the inter-quartile range of the fractional bias of the estimated associated value. For large sample
size, uncertainty in the fractional bias of estimated associated values is dominated by the quality of dependence model
fit. In the experiments considered, it is assumed for copula modelling that the true underlying dependence type
is known. As a result, CplEst out-performs CndExt estimation. For small sample size, the estimated conditional
extremes model sometimes yields exceptionally large associated values; this is not surprising, given that the number
of observations for conditional extremes model fitting, n(1 − τ) is between 20 and 100 in this case. In comparison,
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the simple regression model (RgrEst) for dependence provides estimates for fractional bias which are biased (away
from zero) over the design, and more variable than those estimated using conditional extremes or copula estimation.
Fractional bias varies systematically over the design, for all combinations of estimators for associated values and
estimation schemes. The size of the effect reduces with increasing sample size. For n = 10, 000, all estimators are
approximately equally sensitive to design variables for a given estimation scheme.
For small sample sizes, specific estimation schemes, including the empirical Bayes approach of Zhang and Stephens

(2009), Zhang (2010), the method of moments and probability-weighted moments (see Jonathan et al. 2021) have
been developed for improved estimation of marginal GP parameters. Jonathan et al. (2021) demonstrates that the
empirical Bayes estimator in particular performs well in estimating the marginal return value, in simulations for a range
of GP shape parameters. It is not inconceivable that specific estimators could be developed for improved estimation
of associated values. However, one major restriction with estimators such as these, not based on generic maximum
likelihood inference, is that the incorporation of important model features (such as covariate effects) within inference
is not straightforward.
The ocean engineering literature contains many examples of bivariate (and higher-dimensional) data sets with char-

acteristics broadly similar to those considered in this work, illustrated in Figure 1, produced using simulation models
described in Section 6. For example, Figures 1-4 of Jonathan et al. (2010) illustrate bivariate samples of significant
wave height HS and spectral peak period TP for locations in the northern North Sea, the Gulf of Mexico and on the
north-west shelf of Australia; sample sizes are 145, 505, 620, 827. It is clear that the analysis of the smallest sample
here would be highly sensitive to arbitrary modelling decisions, including the choice of estimator of associated value.
Jonathan et al. (2014a) considers the construction of environmental design contours using the same date; these too
would be influenced by similar arbitrary choices of estimator for contour location. There is a large literature on the
estimation of engineering design contours; the recent benchmark study of Haselsteiner et al. (2019) and the review of
Ross et al. (2020) provide an introduction. Figure 2 of Jonathan et al. (2013) illustrates a bivariate sample of 1163
pairs of HS and TP from a northern North Sea location, with a directional covariate. It appears from the figure that
the characteristics of the dependence between HS and TP indeed varies with direction. The sample of storm peak HS

and associated TP values available for extreme value analysis in this case is very small. Within specific directional
sectors, the figure shows that the effective sample size for analysis is of the order of 100 or less. Again, it is clear that
the analysis here is highly sensitive to the choice of estimator for associated value. Jonathan et al. (2014b) presents
a similar analysis; Figure 2 therein is illustrative of sample characteristics. The practical engineering significance of
the current work in the context of these applications is therefore clear: decisions regarding the selection of data, the
inference procedure for marginal and dependence modelling, and in particular the choice of estimator for return value
and associated value (from a set of plausible estimators) will change the values of design criteria developed by the
metocean engineer. This can have considerable implications for the design and re-analysis of offshore and coastal
structures.
The set of estimators of associated values considered here could be extended easily to include other variants. Examples

include

EZ

[
g−1
SY |Z

(
EYS |Z

[
(YS |XS = gSX|Z(qk|Z),Z)|Z

])]
(12)

medZ

[
g−1
SY |Z

(
EYS |Z

[
(YS |XS = gSX|Z(qk|Z),Z)|Z

])]
for which expectation over Y is taken on Laplace scale (as EYS |Z), prior to transformation to physical scale.
In this work, a frequentist (bootstrap resampling) approach is used to quantify the effects of epistemic uncertainty

on estimates of associated values. Adopting a Bayesian approach to inference would produce similar general findings,
since the effects of uncertain models on quantile inference are similar in both cases.
The main recommendations from the experiment can be summarised as follows

1. Estimators of associated values conditioned on probability should be preferred, because their calculation is always
feasible and their characteristics are at least as good as those of competitors. (In the notation of Section 5,
therefore, estimators q6· are preferred.)

2. Estimators of associated values using the median (as opposed to the mean) to summarise the distribution over
uncertain model parameters are more robust, especially for smaller sample sizes. (Therefore, estimator q62 is
preferred to q61.)

3. Sample estimates of associated values reflect the uncertainties of estimates of marginal return values required.
Over-estimation of marginal return values (e.g. using estimators based on predictive distributions for small
samples) leads to over-estimation of associated values when the variables concerned exhibit positive dependence.

17



4. The conditional extremes estimation scheme performs reasonably across the design. However, estimation of
associated values using sample sizes of the order of 200 is generally problematic, and should be avoided; both
marginal and dependence inference results in parameter estimates with large uncertainty, propagating into un-
certain estimates of associated values. For sample size 10, 000, uncertainty in estimated associated values is
dominated by that of dependence model fit.

5. Estimating the tail dependence between two variables using simple linear regression on physical scale yields
estimates of associated values, the fractional bias of which varies systematically with underlying sample marginal
and dependence characteristics. The spread of the fractional bias of associated values is relatively large (see
Figure 5) even for large sample sizes. This approach should therefore be avoided in general. The simple linear
regression model is competitive only for small sample size, for which none of the estimation schemes performs
particularly well.

More generally, the findings of this study reinforce and extend those of Jonathan et al. (2021). We therefore enhance
one conclusion of that article as follows. Summarising multivariate distributions for metocean variables in terms of
return values and associated values has obvious advantages in terms of conciseness of description of an extreme ocean
environment, for communication between different parties involved in offshore structural design. However, in reality,
the accurate estimation of system risk or probability of structural failure should be the clear focus of analysis. From
a predictive perspective, the effects of all sources of modelling uncertainty should be propagated carefully through
the entire sequence of design calculations, expressed probabilistically, so that (a) the estimation of failure probability
reflects these uncertainties as fully and fairly as possible, and (b) resources can hence be devoted to reducing the largest
sources of uncertainty on failure probability in a rational and systematic manner. In this light, the use of summary
statistics such as metocean return values and associated values at intermediate design stages in place of estimates for
full distributions of metocean variables should be avoided (see also e.g. Serinaldi 2015).
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Appendix

Distribution of annual maximum

According to asymptotic statistical theory, under the assumption that the random variableX belongs to the maximum
domain of attraction of a non-degenerate distribution, the distribution of X exceeding threshold η converges (Pickands
1975) to the GP distribution as the threshold increases. We therefore typically assume, for sufficiently large threshold η
that the conditional distribution function FX|X>η,Z for parameters Z follows GP form. Usually, the value of threshold
is set prior to estimation of ξ and ς from the sample of values for X (e.g. by examining a mean residual life plot, Coles
2001), although this is not always the case (Scarrott and MacDonald 2012). Given FX|X>η,Z , the distribution FA|Z
of annual maxima can be derived using FA|Z(x|Z) = Pr(A ≤ x|Z) =

∑∞
k=0 fC(k)F

k
X|Z(x|Z) where C is the number

of occurrences of X per annum, with probability mass function fC and FX|Z(x|Z) = τ +(1− τ)FX|X>η,Z(x|Z) where
τ = Pr(X < η). In practice, fC is unknown and must also be estimated from data. Density fC is often described by a
Poisson distribution such that fC(k) = exp[−λ]λk/k!, k = 0, 1, 2, ..., for annual rate λ > 0 to be estimated. Assuming
for simplicity that λ is known, the expression for FA|Z simplifies (e.g. Ross et al. 2017) to

FA|Z(x|Z) = exp[−λ
(
1− FX|Z(x|Z)

)
].

By setting FA|Z = 1− 1/N in the above, we estimate return value estimators given FX|X>η,Z (with parameters ξ and
ς conditional on Z) for any return period N .

Estimated mean and standard deviation of fractional bias over design

Building on Figures 5 and 6, Figures 12 and 13 give empirical means and standard deviations of fractional bias
for all estimators, for different sample sizes and dependence threshold non-exceedance probabilities τ . Means and
standard deviations for estimators qkk′ , k = 1, 2, ..., 6, k′ = 1, 2 are only reported over bootstrap resamples for which
the associated value calculation is feasible. The y-axis intervals shown have been restricted for visibility, resulting in
summary statistics for some combinations of estimators and estimation schemes not appearing in the figures. This
issue is particularly problematic for n = 200; estimates of the mean and standard deviation are influenced by a small

18



number of exceptionally high values of fractional bias, especially for the conditional extremes estimation. This is
not surprising, given that the number of observations for conditional extremes model fitting, n(1 − τ) is between 20
and 100 in this case. The performance of estimators q61, q62 is relatively good for n = 1, 000 and 10,000, but there
are again some issues with marginal fitting (indicated by missing green crosses in figures, and closer inspection of
detailed results) for n = 200. The simple regression estimation scheme yields considerably larger standard deviations
of fractional bias than other estimation schemes when n = 10, 000, reflecting findings for IQR in Figure 5.

Figure 12: Mean fractional bias for all estimators, over all design combinations, for different sample sizes (n, columns) and dependence
modelling thresholds (with non-exceedance probability τ , rows). Colours and symbols indicate simple regression estimation (RgrEst, grey
crosses) and conditional extremes estimation (CndExt, green) with unknown (crosses) and known margins (circles). Also shown as a
benchmark, are corresponding estimates under the correct dependence copula D form (but unknown parameter κ, orange) with unknown
(crosses) and known margins (circles), using the full sample for κ estimation. For details, see caption of Figure 5. Note further that for
estimators qkk′ , k = 1, 2, ..., 5, k′ = 1, 2, only accepted bootstrap resamples are used (see Section 7.1), and that y-axis limits have been
limited.
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Figure 13: Standard deviation of fractional bias for all estimators, over all design combinations, for different sample sizes (n, columns)
and dependence modelling thresholds (with non-exceedance probabilities τ , rows). For details, see caption of Figure 12. Note that for
estimators qkk′ , k = 1, 2, ..., 5, k′ = 1, 2, only accepted bootstrap resamples are used, and that y-axis limits have been limited.
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