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Abstract

The covXtreme software provides functionality for estimation of marginal and conditional extreme value models, non-
stationary with respect to covariates, and environmental design contours. Generalised Pareto (GP) marginal models
of peaks over threshold are estimated, using a piecewise-constant representation for the variation of GP threshold and
scale parameters on the (potentially multidimensional) covariate domain of interest. The conditional variation of one or
more associated variates, given a large value of a single conditioning variate, is described using the conditional extremes
model of Heffernan and Tawn (2004), the slope term of which is also assumed to vary in a piecewise constant manner
with covariates. Optimal smoothness of marginal and conditional extreme value model parameters with respect
to covariates is estimated using cross-validated roughness-penalised maximum likelihood estimation. Uncertainties
in model parameter estimates due to marginal and conditional extreme value threshold choice, and sample size, are
quantified using a bootstrap resampling scheme. Estimates of environmental contours using various schemes, including
the direct sampling approach of Huseby et al. 2013, are calculated by simulation or numerical integration under fitted
models. The software was developed in MATLAB for metocean applications, but is applicable generally to multivariate
samples of peaks over threshold data. The software and case study data can be downloaded from GitHub, with an
accompanying user guide.

1. Introduction

Reasonable estimation of the characteristics of extreme environments is essential to quantify natural hazards, and
assure the reliability and safe operability of man-made infrastructure. For example, the extreme ocean environment
can be thought of as a multivariate random process in space and time, describing interacting wind, wave, current, tide
and surge phenomena. Accurate theoretical modelling of extremes from the ocean environment is problematic, because
of the complexity of the numerical calculations involved. Practical risk assessment for marine and coastal structures
and operations therefore typically requires the development of a statistical model from observational data for the joint
behaviour of multiple meteorological-oceanographic (“metocean”) variables.

Physical intuition and previous work has demonstrated that the marginal distribution of a variable such as ocean
storm severity (quantified in terms of significant wave height, HS) is dependent on covariates such as the direction in
which the storm evolves, and the time of year in which the storm occurs (e.g. Randell et al. 2016). Over the long term,
there is evidence that storm severity also evolves slowly in time due to anthropogenic climate change as well as natural
climate cycles (e.g. Ewans and Jonathan 2023). It is important therefore that any statistical model for the extreme
environment captures covariate non-stationarity. The nature and extent of covariate dependence varies across metocean
variables. Experience also suggests that it is reasonable to assume that typical metocean variables are drawn from
so-called “max-stable” distributions (e.g. Coles 2001). Therefore, typically conditional on covariates, the conditional
distribution of threshold exceedances will be well approximated by the generalised Pareto (GP) distribution, provided
that the threshold level is sufficiently high. This suggests that the marginal characteristics of metocean variables
can be described reasonably using a non-stationary GP model (e.g. Davison and Smith 1990, Chavez-Demoulin and
Davison 2005, Randell et al. 2016).

In addition we require that the statistical model also describes the joint tail of all metocean variables in general.
However the nature of extremal dependence between different metocean variables is generally unknown. The specifica-
tion of the statistical model therefore needs to be sufficiently general to admit different extents of extremal dependence,
the specifics of which are then estimated by fitting the model to data. The conditional extremes model of Heffernan
and Tawn (2004) is an attractive candidate, because it admits different classes of extremal dependence, it has a simple
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form and is relatively easily interpretable. There is also evidence that the nature and extent of extremal dependence
also varies systematically with covariates (e.g. Jonathan et al. 2013, Ross et al. 2018, Shooter et al. 2021).

The sizes of data samples available (e.g. from direct observation of the environment) for modelling are typically small
relative to the time-scales of the inference task. For example, in engineering design we typically need to characterise
events which occur on average once in 1000 or 10000 years based on a sample of at most the order of 100 years of
observation. In these circumstances, our estimate of the joint tail of the distribution of metocean variables is typically
uncertain. It is critical that this uncertainty is captured and incorporated appropriately in our risk assessment.

For individual metocean variables, the size of a rare occurrence is often quantified in terms of a return value
associated with some return period T (=1000 years, say). The return value is defined straightforwardly as the quantile
of the distribution of the annual maximum of the metocean variable with exceedance probability 1/T , or (for large
T , see Jonathan et al. 2021) the quantile of the distribution of the T -year maximum with non-exceedance probability
exp(−1). In engineering design, the joint tail of the distribution of two (or sometimes three) metocean variables is
often quantified in terms of an environmental design contour ; points on the contour are “equally rare” with respect
to some criterion, related to the joint cumulative distribution function or density of the variables (e.g. Ross et al.
2020, Haselsteiner et al. 2021). Therefore estimates for the distribution of the annual maximum or that of the T -year
maximum for individual metocean variables, and environmental contours for pairs or triplets of variables, are key
outputs from the statistical analysis.

There are many software tools available for applied extreme value analysis; Stephenson and Gilleland (2006),
Gilleland et al. (2013), Gilleland (2016) and Belzile et al. (2023) provide reviews. In the statistical software literature,
the R packages texmex (Southworth et al. 2024), evgam (Youngman 2022 and mgcv (Wood 2023) provide useful
functionality for extreme value analysis. The discussion of Belzile et al. (2023) notes the lack of good “off the shelf”
software for practitioners, particularly incorporating more recent advances in methodology. Some software has been
published for environmental contour estimation (e.g. Haselsteiner et al. 2019, Mackay and de Hauteclocque 2023). The
purpose of the covXtreme software introduced here is to provide the environmental practitioner with a straightforward
means to estimate marginal and joint tails of distributions of random variables, and quantify extremes in terms of return
values and environmental design contours. covXtreme accommodates covariate non-stationarity in both marginal and
dependence behaviour, provides flexibility in estimating extremal dependence, and careful uncertainty quantification
in inferences.

The sophistication of the methodology underpinning covXtreme has been set deliberately, based on the authors’
experience of metocean applications, to accommodate necessary effects in a pragmatic manner, whilst avoiding unnec-
essary complexity. Extreme value analysis is in some senses a less mature research area (e.g. Davison and Huser 2015)
with numerous pressing challenges. For example, there are many approaches to modelling non-stationary marginal
extremes; the work of Biller (2000), Wood (2004), Brezger and Lang (2006), Huser and Genton (2016), Wood et al.
(2016), Wood et al. (2017), Youngman (2019), Youngman (2020), Shao et al. (2022) provide examples. With suffi-
ciently rich data, complex extreme value models can be well estimated. However, in practice, typical samples tend
only to support the adoption of relatively simple covariate models; for example, Zanini et al. (2020) show that a simple
piecewise constant covariate representation (used by covXtreme ) provides marginal inferences competitive with those
from more sophisticated P-spline (e.g. Eilers and Marx 2010) and Bayesian adaptive regression spline models (e.g.
Biller 2000) for a metocean application.

Elements of the covXtreme methodology, such as marginal and dependence modelling for extreme values, uncer-
tainty quantification and environmental risk decision support, are reflected in recent developments in the environmental
software and modelling literature. These typically address modelling of extremes of rainfall, river levels, tempera-
tures and heatwaves, but sometimes less common environmental variables such as urban black carbon (Maciejewska
et al. 2015). For example, regarding marginal extreme value analysis, De Luca and Napolitano (2023) introduce the
EXTRASTAR software for modelling of time-series of annual maxima, applied to rainfall. Zhao et al. (2022) use the gen-
eralised extreme value distribution to estimate return values of rainfall. Diez-Sierra and del Jesus (2017) use extreme
value analysis of block maxima within their MENSEI-L software. Souaissi et al. (2023) exploit extreme value analysis
of block maxima in their model for river temperatures. Cobos et al. (2022) offer extreme value functionality within
their MarineTools.temporal package. Minguez et al. (2010) discuss non-stationary extreme value analysis of block
maxima, using the Akaike Information Criterion (AIC) for optimal covariate parameterisation. Zhang et al. (2022)
consider non-stationary extreme value analysis of block maxima for heat wave tracking. Regarding joint modelling,
Cheng et al. (2023) consider both marginal extreme value analysis and dependence modelling using copulas in their
development of a drought index, and Liu et al. (2021) consider vine copulas in their model for water level predic-
tion. Hao et al. (2017) develop the R package drought incorporating marginal and joint extreme value modelling
using copulas, for applications to modelling and assessment. Regarding uncertainty quantification, Villa et al. (2023)
present a stochastic model for future extreme temperatures, for decision support in infrastructure analysis, and the
ValueDecisions software of Haag et al. (2022) considers uncertainty quantification for decision making, including

2



some elements of extreme value analysis. More generally, Čampulová et al. (2022) discuss extreme value analysis in
the context of identifying outliers in environmental time-series, and Vrugt (2016) offers extreme value functionality in
their DREAM software for Bayesian inference using Markov chain Monte Carlo.

An early version of the covXtreme software was published alongside Ross et al. (2018) for modelling of storm surge,
and Ross et al. (2020) for estimation of environmental contours. Bore et al. (2019) suggest that covXtreme is useful for
analysis of extreme ocean current profiles with depth. Vanem et al. (2020) use covXtreme to compare different contour
methods with response-based methods for extreme ship response analysis. Guerrero et al. (2023) have used their
enhancement of an earlier version of covXtreme for analysis of electrical signals in the human brain. The software has
motivated the development of analogous prototype software PPL for marginal extreme value modelling with penalised
piecewise-linear covariate representations (Barlow et al. 2023). The software has also been used as a pre-processor for
transformation of data to standard marginal scale, allowing joint and conditional extreme value analysis (e.g. Shooter
et al. 2021; Shooter et al. 2022), and in metocean consultancy work.

Target audience for covXtreme
covXtreme was developed for oceanographic applications, but it can and has been used more widely. We believe

that the reader will find covXtreme potentially useful, if (a) there is interest in quantifying extremes using statistical
analysis of a data set, and possibly estimation of extreme quantiles or “return levels”; (b) the data are not stationary,
and vary with known covariates; (c) there is interest in quantifying extremes of multiple variables at the same time;
and (d) there is a need to quantify uncertainty carefully. Under these conditions, covXtreme offers a pragmatic but
statistically sound analysis.

Objectives and layout of article
The objective of the current article is to provide motivation and description of the covXtreme software, and

illustrations of its use in the development of design conditions for ocean engineering. The layout of the article is as
follows. Section 2 provides an overview of the software and the statistical methodology on which it is based. Sections
3 and 4 present case studies, involving a bivariate response and single covariate (Section 3), and trivariate response
with 2-D covariate (Section 4). An accompanying user guide (available at Towe et al. 2023b) provides a detailed
step-by-step description of developing a covXtreme model for ocean engineering data sets provided with the software.

2. Overview of software and statistical methodology

covXtreme provides simple software for multivariate non-stationary extreme value analysis of peaks over threshold.
The modelling framework of covXtreme (a) is statistically straightforward to understand and use without sacrificing
rigour, (b) is computationally efficient, (c) provides good estimation of key quantities of interest to the extreme value
practitioner, and (d) provides realistic quantification of modelling uncertainties.

Extreme value analysis of peaks over threshold of metocean variables requires the satisfactory completion of a
number of analysis steps. Inference typically involves using a sample of time-series data for a number of variables
(corresponding to some period P years of observation) as the basis for estimating the characteristics of extreme
environments. These might include return values, associated values (e.g. Towe et al. (2023a)) and design contours
(e.g. Haselsteiner et al. 2021) corresponding to a return period of T years, T ≫ P ). For reasonable extreme value
inference of a single variable (such as significant wave height), key features of the data must be accommodated
carefully in the analysis, including the serial correlation of time-series, the dependence of values of metocean variables
on covariates such as direction and season. Appropriate model forms for tails of distributions should also be adopted.
For peaks over threshold analysis of a single variable, choice of threshold level can be source of considerable uncertainty.
Moreover, different metocean variables (such as wind speed and significant wave height) are likely to be intercorrelated,
and the nature of this dependence must be characterised carefully especially for extremes of one or more variables,
using appropriate model forms; in these models, choice of threshold is again not always straightforward. Further, since
samples of peaks over threshold are generally small (e.g. for high thresholds), it is critical to quantify uncertainty in
return values and associated extremal quantities thoroughly using well-understood estimators.

The structure of the covXtreme software is written to reflect the sequential nature of practical extreme value
analysis, as a set of MATLAB functions (see Section 2.6), illustrated in the workflow of Figure 1. For a given
application, the five stages are executed sequentially, leading the user through the inference, addressing important
analysis considerations in order. A typical analysis stage involves the specification of tuning parameters, the appropriate
choice of which is informed by diagnostic information generated at that stage; generally it will therefore be necessary
to repeat the analysis stage until satisfactory diagnostics are achieved, before moving on to the next analysis stage.

Given a sample of multivariate time-series of metocean variables, a typical analysis would proceed as described
below. Note, for ease of reference, that subsection numbering 2.1-2.5 here corresponds to the numbering of stages 1-5
of the analysis procedure, and also to the numbering of sections in the covXtreme user guide.
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Figure 1: Schematic of covXtreme workflow. The five analysis stages are executed in sequence. Generally, at each stage, model tuning based
on refinement of modelling hyper-parameters is necessary, guided by diagnostic information, before the next stage is attempted. Section
numbers in the main article and user guide, providing relevant details for each stage of analysis, are given.

2.1. Data preparation

The main aspect of data preparation is the isolation of storm peak events. Storm peak events correspond to peaks
over threshold for a dominant variable (e.g. significant wave height for a wave-dominated metocean application),
associated values of all other variables of interest (e.g. wind speed) per event, and storm peak covariate values for all
relevant covariates (e.g. direction and season). Storm peak events are isolated using the procedure described by Ewans
and Jonathan (2008), and discussed in Section 1 of the covXtreme user guide. Storm peak events are then assumed
to be conditionally independent given (storm peak) covariates.

Mathematically, consider a sample Ÿ1(ti), Ÿ2(ti), ..., ŸD(ti) of multivariate time-series for D metocean variables
observed at regularly-spaced time points ti, i = 1, 2, 3, ... over some period. Data preparation requires the isolation of a
sample of values {ẏi1, ẏi2, ..., ẏiD}Ni=1 of N storm peak events (by convention for the first variable) and associated events
(for the remaining variables) summarising the peak characteristics of each of N storms observed, and corresponding
storm peak covariate values {xi1, xi2, ..., xiC}Ni=1 for C storm peak covariates X1, X2, ..., XC defined on some domain
X . (Note that the “double dot” notation (e.g. Ÿ ) indicates time-series variables from which storm peak events,
indicated by “single dot” notation (e.g. Ẏ ) must be isolated.) Storm peak events are identified as local maxima
(between successive up- and down-crossings of a given level) of Ÿ1. Associated values for a storm are the values of
the other random variables at the time of occurrence of the storm peak event. Storm peak and associated values are
taken to be conditionally-independent given covariates, in the sense that ẏid can be viewed as an independent draw
from Ẏd|(X1 = xi1, X2 = xi2, ..., XC = xiC), for i = 1, 2, ..., N , d = 1, 2, ..., D.

Note that covXtreme also provides functionality to simulate data with known characteristics for checking of the
performance of the statistical methodology.

2.2. Specification of covariate bins

covXtreme adopts a piecewise-constant parameterisation for the distribution of peaks over threshold on a partition
of the covariate domain comprised of elements referred to as “covariate bins”. Covariate bins are not estimated as
part of the analysis, but must be specified carefully by the user prior to the analysis, for reasonable inference. Briefly,
the user is required to partition the domain of each covariate (independently) into a set of intervals. The resulting
covariate bins over all covariates are then simply Cartesian products of these intervals, and hence a rectangular grid
of covariate bins. covXtreme assumes, within a given covariate bin, that the statistical properties of a storm peak or
associated variable are no longer dependent on covariates. Diagnostic plots illustrating features such as the variation
of storm peak and associated variables with individual covariates, are provided to inform reasonable choice of marginal
partitions. Illustrations of the specification of covariate bins are given in Section 2 of the covXtreme user guide.

Mathematically, each observation ẏi1, ẏi2, ..., ẏiD is allocated to one of B covariate bins by means of an allocation
vector A, with A(i) = b mapping observation (with index) i to bin (with index B =) b, i = 1, 2, ..., N , b = 1, 2, ..., B.
All observations within a specified covariate bin are assumed to have common extreme value characteristics, specified
in terms of the parameters of the marginal model for peaks over threshold from that bin for each of the D components
of the observation. Hence in particular, all threshold exceedances of storm peak variable Ẏd, d = 1, 2, ..., D from
covariate bin b can be viewed as independent draws from a generalised Pareto distribution with common shape, scale
and threshold parameter values.

2.3. Marginal modelling

A two-stage modelling procedure is used to describe the marginal distribution of storm peak and associated vari-
ables. First a three-parameter gamma distribution is fitted independently to all the data for each covariate bin in
turn, providing a good description of the bulk of the distribution of storm peak and associated variables on the co-
variate domain. The extreme value threshold for each covariate bin is then set to the quantile of the corresponding
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gamma distribution with pre-specified non-exceedance probability. Finally the distribution of threshold exceedances
per covariate bin is estimated using a non-stationary generalised Pareto distribution. Since generalised Pareto shape
parameter is typically more difficult to estimate than scale, its value is assumed fixed but unknown across all covariate
bins. Moreover, variation of the generalised Pareto scale parameter on the covariate domain is regulated using rough-
ness penalisation, set to maximise the predictive performance of the generalised Pareto model on a hold-out sample
within a cross-validation scheme. We judge from prior experience that these assumptions regarding the variation of
generalised Pareto parameters are reasonable, and confirm using diagnostics during analysis that the assumptions give
reasonably well-fitting models. By reducing the number of degrees of freedom for model fitting, the assumptions are
a possible source of estimation bias, but also of a reduction in variance in estimated model parameters and return
values. Further details and illustrations of marginal modelling are given in Section 3 of the covXtreme user guide.

Mathematically, for each variable Ẏd, d = 1, 2, ..., D, and covariate bin B = b, b = 1, 2, ..., B independently, we
estimate a three-parameter gamma distribution using maximum likelihood estimation with sample likelihood

LGmm

(
ωbd, κbd, lbd; {ẏid}Ni=1

)
=

∏
i;A(i)=b

fGmm(ẏid;ωbd, κbd, lbd) (1)

for sample {ẏid}Ni=1, where fGmm is the density of the gamma distribution with shape ωbd ∈ R, scale κbd > 0 and
location lbd ∈ R given by

fGmm (ẏid;ωbd, κbd, lbd) =
(
κ−ωbd

bd /Γ(ωbd)
)
(ẏid − lbd)

ωbd−1 exp ((ẏid − lbd)/ωbd) (2)

where Γ(•) is the gamma function. In practice for fitting the gamma model, the location parameters {lbd} are first
estimated using a low empirical quantile of the sample per variate per covariate bin, and the remaining shape and
scale parameters estimated using maximum likelihood. Next we calculate the extreme value threshold as ψbd =
F−1
Gmm(τd; ω̂bd, κ̂bd, l̂bd) using the estimated gamma parameters, for the pre-specified non-exceedance probability τd,

where FGmm is the cumulative distribution function of the gamma distribution. The marginal sample likelihood for
threshold exceedances of ψbd for variable Ẏd over all covariate bins can therefore be written

LGP

(
ξd, {νbd}Bb=1; {ẏid}Ni=1, {ψbd}Bb=1

)
=

B∏
b=1

∏
i;A(i)=b;ẏid>ψbd(τd)

fGP(ẏid; ξd, νbd, ψbd) (3)

where fGP is the density of the generalised Pareto distribution with shape ξd ∈ R and scale νbd > 0 given by

fGP(ẏid; ξd, νbd, ψbd) = (1/νbd)[1 + (ξd/νbd) (ẏid − ψbd)]
−1/ξd−1
+ (4)

where [A]+ = A when A > 0, and = 0 otherwise. The corresponding cumulative distribution functions of the gamma
and generalised Pareto distributions are

FGmm(ẏid;ωbd, κbd, lbd) = (1/Γ(α)) γ(ωbd, κbd(ẏid − ldb)) (5)

where γ(•, •) is the lower incomplete gamma function, and

FGP(ẏid; ξd, νbd, ψbd) = 1− [1 + (ξd/νbd) (ẏid − ψbd)]
−1/ξd
+ . (6)

Optimal predictive performance for the marginal generalised Pareto model is achieved using roughness-
penalisation for the scale parameters {νbd}Bb=1 across covariate bins. The corresponding penalised negative log likelihood
takes the form

− logL∗
GP(ξd, {νbd}Bb=1; {ẏid}Ni=1, {ψbd}Bb=1)

= − logLGP(ξd, {νbd}Bb=1; {ẏid}Ni=1, {ψbd}Bb=1) + λd

 1

B

B∑
b=1

ν2bd −

[
1

B

B∑
b=1

νbd

]2 . (7)

The smoothness penalty λd controls the extent to which the generalised Pareto scale varies across covariate bins, and
the penalty is proportional to the variance of ν over covariate bins. Parameters can be estimated to minimise the
penalised negative log likelihood for each variable Ẏd, d = 1, 2, ..., D in turn for each of a set of pre-specified values
for λd. The optimal value λ◦d of λd is chosen to maximise predictive likelihood for a hold-out sample within a k-fold
cross-validation procedure. Gamma parameter estimates per covariate bin, and generalised Pareto parameter estimates
evaluated using the full sample for λd = λ◦d are carried forward to subsequent inference.
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Since the numbers of parameters in the various marginal models above are relatively small, a simplex search
procedure provides a straightforward approach to parameter estimation by minimisation of (penalised) negative log
likelihoods.

Threshold selection for extreme value analysis of peaks over threshold is an important consideration (e.g.
Northrop and Jonathan 2011, Scarrott and MacDonald 2012, Wadsworth 2016). Within a covXtreme analysis, mul-
tiple marginal models based on different random choices of threshold non-exceedance probabilities τd ∈ Iτd ⊆ [0, 1)
are constructed, d = 1, 2, ..., D. The user’s task is to specify the interval Iτd for each variable Ẏd. As explained in
Section 3 of the user guide, this choice is aided by numerous diagnostic plots, including examination of the stability of
the estimated value of ξd as a function of τd.

Uncertainty quantification for marginal inference is performed using a non-parametric bootstrap procedure. The
original sample of storm peak and associated values is resampled with replacement. For each variable Ẏd, d = 1, 2, ..., D,
the full marginal extreme value analysis is then repeated using the bootstrap resample together with a new random
selection of τd. The outcome of the complete marginal inference is then quantified in terms of sets of parameter
estimates ( {ξrd, {νrbd, ψrbd, ωrbd, κrbd, lrbd}Bb=1; τ

r
d , λ

◦
d}Dd=1) for each of R (typically = 100 or 250) bootstrap resamples

(where superscript r indicates an estimate from a resample). Typically, the value of λ◦d estimated using the original
sample is adopted for all bootstrap resamples also, although the option to estimate a new optimal roughness coefficient
per bootstrap resample is provided.

The distribution of the T -year maximum event per covariate bin, and over all covariate bins can then be
estimated (or sampled) under the fitted marginal model. From above, the full marginal model for storm peak or
associated variate Ẏd in covariate bin B = b is

FGmmGP(y;ωbd, κbd, lbd, ξd, νbd, ψbd) =

{
FGmm(y;ωbd, κbd, lbd) for A(i) = b, ẏid ≤ ψbd,

τd + (1− τd)FGP(y; ξd, νbd, ψbd) for A(i) = b, y > ψbd.
(8)

Then under the model, the distribution of a random occurrence of Ẏd from any covariate bin is

FẎd
(y; {ωbd, κbd, lbd, νbd, ψbd}Bb=1, ξd) =

B∑
b=1

pbFGmmGP(y;ωbd, κbd, lbd, ξd, νbd, ψbd) (9)

where pb is an empirical estimate of the probability of observing a storm event in covariate bin b. If we further assume
that the number N of storms in T -years is Poisson-distributed with mean Tρ, where ρ is an empirical estimate for
the number of storms per annum, and suppressing parameter dependence for brevity, the distribution of the T -year
maximum is simply

FẎdT -year(y) =

∞∑
k=0

P(N = k)F k
Ẏd
(y) =

∞∑
k=0

(
exp(−Tρ)(Tρ)k/k!

)
F k
Ẏd
(y)

= exp
(
−Tρ (1− FẎd

(y))
)
. (10)

We can use a similar approach to estimate and sample from the distribution of the T -year maximum of Ẏd for any
combination of covariate bins, by restricting the set of covariate bins over which the summation is performed in
Equation 9 (and linearly scaling the values of {pb} so that they sum to unity).

2.4. Extremal dependence modelling

Given non-stationary marginal models for storm peak and associated variables, we next seek to describe the nature
of the dependence between them for large values of the storm peak variable. This is achieved using the conditional
extremes model of Heffernan and Tawn (2004). Under the fitted conditional extremes model, we can then estimate the
characteristics of the joint distribution of all associated variables given a large storm peak, and thereby estimate joint
environmental design conditions and design contours. The conditional extremes model is specified for sets of variables
on a common standard Laplace marginal scale, rather than their original physical scales. For this reason, a necessary
first step is to transform the sample of storm peak and associated values to this scale, using the fitted marginal
models. Incorporation of covariate effects is generally important for extremal dependence modelling, and these can be
accommodated using conditional extremes models of different complexities with respect to covariates. The covXtreme
software allows any number of the parameters of the conditional extremes model to vary with covariates. Nevertheless,
experience suggests that the data indicate the need for covariate non-stationarity of just one model parameter (the
“slope” parameter, see below) for typical metocean applications. We therefore describe this specific model form as a
recommended “default” approach here. Further details and illustrations of extremal dependence modelling are given
in Section 4 of the covXtreme user guide.
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Mathematically, covXtreme provides a model for the joint conditional tail (Ẏ2, Ẏ3 . . . ẎD|Ẏ1 = ẏ) for large ẏ, using
an extension of the conditional extremes model of Heffernan and Tawn (2004) on standard Laplace (and option-
ally, as originally, on standard Gumbel) scale. Inference therefore requires that we transform the storm peak and
associated value sample {ẏi1, ẏi2, ..., ẏiD}Ni=1 of variables {Ẏi, Ẏ2, ..., ẎD} to the corresponding Laplace scale sample
{yi1, yi2, ..., yiD}Ni=1 for variables {Y1, Y2, ..., YD}.

2.4.1. Marginal transformation to standard Laplace scale

The marginal transformation to standard Laplace scale is achieved using the probability integral transform such
that for i = 1, 2, ..., N , d = 1, 2, ..., D, b = 1, 2, ..., B

FGmmGP(ẏid;ωbd, κbd, lbd, ξd, νbd, ψbd) = FLpl(yid) for A(i) = b (11)

where FGmmGP is the marginal cumulative distribution function of storm peak variable Ẏd, for sets of parameters of
marginal gamma and generalised Pareto models from Equation 8, and FLpl is the cumulative distribution function of
the standard Laplace distribution given by FLpl(y) = 0.5 exp(−|y|) for y ≤ 0 and = 1− 0.5 exp(−|y|) otherwise.

2.4.2. Conditional extremes modelling

The Laplace-scale sample {yi1, yi2, ..., yiD}Ni=1 from random variables {Y1, Y2, ..., YD} is next characterised using the
conditional extremes model, for values y of the conditioning variate Y1 above a dependence threshold ϕ(τ̃) = F−1

Lpl(τ̃),
for which the conditional extremes model is assumed to hold, for carefully specified non-exceedance probability τ̃ . For
y > ϕ(τ̃), in covariate bin indexed B = b, the recommended non-stationary model takes the form

(Y2, Y3 . . . YD)|(Y1 = y,B = b) = (αb2, αb3, . . . , αbD)y + y(β2,β3,...,βD)Z (12)

with linear slope parameters αbd′ ∈ [−1, 1], d′ = 2, 3, ..., D varying across covariate bins, scalar exponent parameters
βd′ ∈ [−∞, 1] common to all covariate bins, and residual random variable Z = (Z2, Z3, ..., ZD) ∈ RD−1 whose
distribution is unknown.

For estimation of slope and exponent parameters only, we assume that each component Zd′ of Z is independently
distributed according to

Zd′ = µd′ + σd′Wd′ (13)

for mean µd′ ∈ R, scale σd′ > 0 and random variable Wd′ ∈ R following a generalised Gaussian (or delta-Laplace)
distribution with zero mean, unit variance and shape δd′ . µd′ and scale σd′ are treated as nuisance parameters in the
estimation, and are not needed for subsequent inferences under the fitted model. For general mean m and variance
s2, the corresponding density fGG of the generalised Gaussian distribution is

fGG(w;m, s
2, δd′) =

δd′

2κ(δd′)sΓ(1/δd′)
exp

{
−
∣∣∣∣w −m

κ(δd′)s

∣∣∣∣δd′
}
, (14)

where κ(δd′)
2 = Γ(1/δd′)/Γ(3/δd′). The value of exponent δd′ ∈ {1, 2} is user-specified in covXtreme . δd′ = 1 imposes

a Laplace distribution (with zero mean and unit variance) on Wd′ , appropriate when the dependence between Yd′ and
Y1 is low. δd′ = 2 imposes a standard Gaussian distribution on Wd′ , the original assumption of Heffernan and Tawn
(2004), appropriate otherwise. For estimation purposes therefore, from the properties of the generalised Gaussian
distribution, Yd′ |(Y1 = y) is assumed to follow a generalised Gaussian distribution with mean mbd′ = αbd′y + µd′y

βd′

and standard deviation ζd′ = yβd′σd′ .
The conditional dependence likelihood L̃d′ for the model Yd′ |(Y1 = y) and y > ϕ(τ̃) can then be written

L̃d′
(
{αbd′}Bb=1, βd, µd′ , σd′ ; {yid}

N,D
i=1,d=1, δd′ , τ̃

)
=

B∏
b=1

∏
i:b=A(i)

yi1>ϕ(τ̃)

fGG

(
yid;αbd′yi1 + µd′y

βd′
i1 , (y

βd′
i1 σd′)

2, δd′
)
. (15)

As for marginal models, we regulate the smoothness of {αbd′}Bb=1 optimally on the covariate domain using a cross-

validation procedure, selecting a value λ̃◦d′ for roughness coefficient λ̃d′ in roughness-penalised negative log likelihood

− log L̃∗
d′

(
{αbd′}Bb=1, βd′ , µd′ , σd′ ; {yid}

N,D
i=1,d=1, δd′ , τ̃

)
= − log L̃d′

(
{αbd′}Bb=1, βd′ , µd′ , σd′ ; {yid}

N,D
i=1,d=1, δd′ , τ̃

)
+ λ̃d′

 1

B

B∑
b=1

α2
bd′ −

[
1

B

B∑
b=1

αbd′

]2 . (16)
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to maximise predictive performance on cross-validation hold-out samples. Further, it is important to confirm reasonable
choice of the dependence threshold τ̃ by inspection of diagnostic plots, for example of stability of estimated parameters
as a function of threshold.

Two algorithms are provided to minimise the penalised negative log likelihood in Equation 16. The default is a
Newton-Raphson approach exploiting gradients; the alternative is a simplex search procedure.

Once parameter estimates are available, we represent the distribution of the (D − 1)-dimensional residual random
variable Z using the set Eb = {ei′bd′}, for all d′ = 2, 3, ..., D, and all i′ = 1, 2, ..., N such that yi′1 > ϕ(τ̃), b = A(i′), of
residuals from the fit per covariate bin, with elements

ei′bd′ =
(
yi′d′ − α̂bd′yi′1 − µ̂d′y

β̂d′
i′1

)
/
(
σ̂d′y

β̂d′
i′1

)
. (17)

During subsequent simulation under the fitted conditional extremes model, these residuals are resampled jointly as
{ei′b2, ei′b3, ..., ei′bD}, thereby preserving the dependence between them, and hence the dependence between variables
Y2, Y3, ..., YD|(Y1 = y, y > ϕ(τ̃),B = b) per covariate bin. Similarly, simulation below threshold ϕ(τ̃) is achieved simply
by resampling from the original Laplace-scale storm peak sample. We note that covXtreme also facilitates estimation
of variants of this dependence model, for which any number of conditional extremes model parameters α, β, µ and σ
are allowed to vary between covariate bins, and their overall roughness penalised for good performance by extending
the penalty term in Equation 16 to include all “non-stationary” parameters; see Section 4.2 of the covXtreme user
guide. It is also possible to pool estimates of residuals across covariate bins, useful when covariate bins with low
occupancy are present.

Uncertainty quantification for extremal dependence inference is performed by extending the bootstrap proce-
dure described in Section 2.3. Conditional extremes models are estimated for each of the bootstrap resamples based
on which marginal models were estimated. The combined marginal and conditional extremes analysis therefore pro-
duces the set {{ξrd, {νrbd, ψrbd, ωrbd, κrbd, lrbd}Bb=1}Dd=1, {{αrbd′}Bb=1, β

r
d′ , µ

r
d′ , σ

r
d′ , }Dd′=2, {Erb }Bb=1; {τ rd , λ◦d}Dd=1, {τ̃ rd′ , λ̃◦d′}Dd′=2} of

parameter estimates and residuals for each of R bootstrap resamples indexed by superscript r. As for marginal mod-
elling, the value of roughness coefficient λ̃◦d′ is typically estimated using the original sample only, and adopted for all
bootstrap resamples also, although the option to estimate a new optimal roughness coefficient per bootstrap resample
is provided.

A sampling procedure is used to estimate the conditional return value distribution of the associated value
for Ẏd′ given a T -year maximum event for Ẏ1 per covariate bin, and over unions of covariate bins. The approach
combines importance sampling from the marginal T -year maximum distribution of Ẏ1 (exploiting Equation 10) with
Monte Carlo sampling under the fitted conditional extremes model, managing transformations between marginal and
standard Laplace scales. Further discussion of conditional return values can be found in Towe et al. (2023a).

2.5. Estimation of design contours

Using the estimated marginal and conditional extremes models, covXtreme allows estimation of quantities such
as return values for the dominant variable, conditional return values for associated variables, and environmental
design contours. Haselsteiner et al. (2017), Ross et al. (2020) and Haselsteiner et al. (2021) provide recent reviews
of contour estimation, encompassing a range of approaches. Algorithms to estimate three types of design contour
are implemented in covXtreme . These are (a) constant exceedance contours; (b) direct sampling contours; and (c)
conditional extremes (or “HT”, in acknowledgement of the authors of the conditional extremes model, Heffernan and
Tawn) constant density contours. Each of the three contour methods estimates a line (in 2-D) or surface (in 3-D) on
which certain characteristics of the distributions of Ẏ2|(Ẏ1 = y) (in 2-D, or (Ẏ2, Ẏ3)|(Ẏ1 = y) in 3-D) for large y are
preserved. For example, the constant exceedance contour in 2-D is a line on which the probability of exceedance in
an “outward” sense (e.g. P(Ẏ1 > ζ1, Ẏ2 > ζ2) in the first quadrant) is constant, for points (ζ1, ζ2) on the contour; see
Jonathan et al. (2014) for details. The direct sampling contour of Huseby et al. (2015) is similar, except that now the
probability in the half plane defined by the tangent to the contour at any point of interest is constant, and the contour
itself must be convex. In 2-D, the conditional extremes constant density contour defines a line on which the joint
density of the pair (Ẏ1, Ẏ2) is constant. By construction, all contours pass through a so-called “lock point”, defined as
an extreme quantile (e.g. the T -year return value) of dominant variable Y1 and the corresponding conditional median
of associated variate Y2|(Y1 = T -year value). The lock point defines the value of the distributional characteristic
preserved on the contour. Further discussion and illustrations are provided in Section 5 of the covXtreme user guide.
The contour methods discussed in this section are intended to illustrate the kinds of inferences which can be made
routinely using simulation under a fitted covXtreme model. All the approaches discussed provide means to quantify
the extent of some or all of a cloud of realisations. No claims are made regarding their usefulness in any particular
field of application (e.g. Mackay and Haselsteiner 2021, Hafver et al. 2022). The user interested in making specific
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inferences for particular structure variables, or choices of design contour, is free to implement these as alternatives or
extensions to the existing Stage 5 of the analysis procedure

Mathematically, in 2-D, the constant exceedance contour ζ(θ) = (ζ1(θ), ζ2(θ)) for θ ∈ Θ ⊆ [0, 360) can be defined
by the equation

P

(
2⋂
d=1

(
rd(θ)Ẏd > rd(θ)ζd(θ)

))
= p (18)

where r◦ = (r◦1 , r
◦
2) is a reference location (see e.g. Jonathan et al. 2014), and rd(θ) = ζd(θ) − r◦d, d = 1, 2, for some

small probability p > 0. We set the value of ro2 equal to the conditional mean Ẏ2|(Ẏ1 =T-year value), and the value of
ro1 to the minimum value of Ẏ1 in the sample, to ensure continuity of the T -year contour when Ẏ1 exceeds the sample
minimum.

To estimate the direct sampling contour in two-dimensions for probability level α, following Huseby et al. (2015),
we first find the function C(θ), the (1− α)-quantile of the distribution of the projection Ẏ1 cos(θ) + Ẏ2 sin(θ) for each
value of θ ∈ [0, 2π)

C(θ) = inf
{
c : P

([
Ẏ1 cos(θ) + Ẏ2 sin(θ)

]
> c
)
= α

}
. (19)

Then we estimate the contour C = {(ζ1(θ), ζ2(θ)) : θ ∈ [0, 2π)} using

ζ1(θ) = C(θ) cos(θ)− dC

dθ
sin(θ), (20)

ζ2(θ) = C(θ) sin(θ) +
dC

dθ
cos(θ), (21)

and potentially further smooth C as a function of θ. Following Winterstein et al. (1993), for at T -year return period,
it is recommended that the value of α be set to 1/T .

The conditional extremes constant density contour consists of the set of points ζ ∈ R2 for which the joint density
fẎ (ζ) = c for some small value c > 0. Algorithms for estimation of the three contour types exploit importance
sampling (e.g. Section 3.4 of Towe et al. 2021) for computational efficiency where possible. Contours can be estimated
per covariate bin (e.g. as “directional” or “seasonal” contours), or integrated over covariate bins (e.g. to provide
“omni” estimates over all bins).

The direct sampling contour is convex by definition, in the sense that it encloses a convex region (of R2 for 2-D
contours), possibly with the help of the coordinate axes. Depending on the nature of the joint density, the conditional
extremes constant density “contour” could exist in the form of a set of disjoint curves, some of which may be closed.
The constant exceedance and direct sampling contours are invariant to transformations of variables, whereas the
conditional extremes constant density contour is not (e.g. Ross et al. 2020).

2.6. Accessing the software, and performing a typical analysis

The covXtreme is available for download from GitHub at Towe et al. (2023b). Software is written using MAT-
LAB object-oriented programming. Full specifications of classes, properties and methods are therefore provided, and
available for user inspection.

A typical analysis involves executing each of the MATLAB scripts Stage1 PeakPicking, Stage2 SetBinEdges,
Stage3 FitMargin (for each variable marginally), Stage4 FitHeffernanTawn and Stage5 Contour in sequence, as
illustrated by the workflow in Figure 1. As explained in detail in the covXtreme user guide, each stage of the analysis
involves the specification of control parameters for that stage. Default values for control parameters are provided, but
it is necessary for the user at each stage to assess whether values are appropriate by confirming that diagnostic plots
generated have reasonable characteristics. It may be necessary to repeat a given stage multiple times until acceptable
diagnostic characteristics are found, before proceeding to the next stage.

Sections 3 and 4 below provide brief descriptions of the application of covXtreme to a pair of random variables
(specifically significant wave height and spectral peak period) varying with directional covariate (Section 3) and to
four random variables (significant wave height, spectral peak period, wind speed and overturning momemt) varying
with 2-D directional-seasonal covariate.

3. Case study : Single covariate, bivariate response

This section outlines to application of covXtreme to estimation of design contours for extreme storm peak significant
wave height and associated spectral peak period, both varying with storm direction. The analysis follows the five stages
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discussed in Section 2. The data correspond to approximately 35 years of time-series output from a hindcast simulator
for a location in the northern North Sea.

Following isolation of storm peak significant wave height HS , associated spectral peak period TP and storm peak
direction using Stage 1, Figure 2 illustrates the output of Stage 2 of the analysis, showing storm peak HS and
associated TP as a function of the direction from which storms emanate, in degrees clockwise from north. The figure
also shows the user-input bin edges at 0◦, 20◦, 60◦, 225◦, 270◦ and 315◦, specified so that the variation of HS and
TP is approximately independent of direction within each bin, but different between bins. Thus, for example, the bin
including 45◦ corresponds to the land shadow of Norway, with resulting low values of storm peak HS , whereas the bins
including 250◦ and 340◦ contain large storms from the Atlantic Ocean and Norwegian Sea. Figure 3 provides scatter

Figure 2: Directional variation of storm peak significant wave height (HS in metres, top) and associated spectral peak period (TP in
seconds, bottom). Directions (in degrees) indicate the angle from which a storm emanates, defined clockwise from North. Also shown are
directional bin edges (red) for 6 bins. The variation of HS and TP is approximately independent of direction within each bin, but different
between bins.

plots of associated TP on storm peak HS for each of the six directional bins. The rates of occurrence of storms, and the
marginal characteristics of HS and TP are clearly different between bins. In directional bin [225, 270), the dependence
between TP and HS appears to be particularly strong.

Figure 4 illustrates marginal extreme value models for storm peak HS , the panels describing the variation of the
estimates of generalised Pareto scale ν, gamma shape ω and scale κ with direction, in terms of means (solid) and
95% uncertainty bands (dashed) over bootstrap resamples and random choices of marginal threshold non-exceedance
probabilities drawn from the interval [0.7, 0.9]. The empirical density of corresponding (stationary) estimates of
generalised Pareto shape ξ is shown in Figure 9 of the user guide to be Gaussian-like with mean at approximately -0.2.
The variation of ν and κ with direction appears consistent with expectations given Figures 2 and 3. In particular,
given estimated ν, the largest return values for storm peak HS would be expected to emanate from the Atlantic and
Norwegian Sea. Indeed, inspection of directional maxima for storm peak HS for return periods of 10 and 100 years
in Figure 5 confirms this: the largest contributors to the omni-directional maximum (in black) are the covariate bins
corresponding to the Norwegian Sea ([315, 0), magenta) and Atlantic ([225, 270), cyan).

It is critical to assess the diagnostic plots generated by covXtreme to confirm that model fit is adequate. A number
of illustrative diagnostic plots corresponding to this case study are shown in the user guide. For the current application,
a plot of the predictive negative log likelihood from the cross-validation procedure (see Equation 7) suggests that the
optimal choice λ◦ of roughness penalty lies at around three. The goodness of fit of the marginal model is assessed
by examining the stability of the estimate for generalised Pareto shape parameter ξ as a function of extreme value
threshold τ . Comparison of empirical tails directly from the sample, with corresponding tails (and their uncertainty)
estimates under the extreme value model, per covariate bin and omni-directionally, also suggests the marginal model
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Figure 3: Associated spectral peak period (s) on storm peak significant wave height (m) per directional bin. Panel titles indicate that the
covariate is direction “D”, and give the angular interval corresponding to the bin. It is apparent that the dependence between HS and TP

varies between bins.

Figure 4: Marginal directional extreme value model for storm peak significant wave height (m). Variation of parameter estimates for GP
scale ν, gamma shape ω and scale κ with direction. Mean estimates in solid black, and bootstrap 95% uncertainty bands in dashed black.
Also shown are directional bin edges (red). Directional dependence in particularly clear for ν and κ. See Equations 2 and 4 for model forms
and parameter definition.
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Figure 5: Cumulative distribution functions for the 10-year (left) and 100-year (right) maximum of storm peak significant wave height (m)
per directional bin and over all bins (“omni”, black). Horizontal dashed lines drawn at the exp(−1) quantile and median.

is reasonable. The corresponding full marginal analysis must also be performed for associated TP with direction.
Using the marginal models, Figure 6 illustrates parameter estimates for the conditional extremes model for asso-

ciated TP given storm peak HS on standard Laplace margins. The non-stationary estimate for slope parameter α
suggests that dependence between the variables is high (near the maximum possible of unity), especially in the covari-
ate bin corresponding to Atlantic storms. The uncertainty band for the slope parameter included unity, admissible at
sub-asymptotic levels (Tendijck et al. 2023). The value of exponent parameter β is slightly larger than zero, indicating
that the sizes of residuals “yβZ” from the conditional extremes model fit (Equation 12) grow very slowly with the
conditioning value y on Laplace scale. The empirical densities for residual parameters µ and σ are typical in our
experience; unimodal densities, with approximately Gaussian shape.

Diagnostic plots are again assessed to confirm reasonable goodness of fit for the conditional extremes model. For
the current application, parameter estimates from α per covariate bin are reasonably stable as a function of dependence
threshold τ̃ on the interval [0.7, 0.85] (see Figure 20 of the user guide). Further, the distribution of residuals E from
the model fit do not appear to be obviously dependent on the directional covariate (see Figure 18 of the user guide).
The overall distribution of residuals from the model fit (see Figure 17 of the user guide) is typical; a Gaussian-like
density with positive skew.

We simulate under the fitted models to generate the environmental design contours (see Section 2.5) shown in
Figure 7 omni-directionally and Figure 8 per directional bin. The constant exceedance, direct sampling and HT
density contours are labelled as “Exc”, “Hus” and “HTDns” in the figures. The three different contour methods
produce estimates which have similar characteristics in terms of describing the “extent” of the data cloud, reflecting
the positive dependence between HS and TP , and passing through the appropriate lock points (shown in green in the
figures). However the methods also use different definitions of the environmental contour; it is not surprising therefore
that the contours estimates do not agree fully. The HTDns contour in particular produces a more variable estimate,
especially when sample size is small (e.g. in the [20,60) directional bin in Figure 8). For engineering design, points
on the contour with large values of HS would typically be adopted to test the integrity of models for the offshore or
coastal structure of interest.
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Figure 6: Parameter estimates from the conditional extreme value mode for associated peak period given storm peak significant wave height
(m). Top left: directional variation of estimated linear slope parameter α summarised as mean and 95% bootstrap uncertainty band; top
right: histogram of estimated exponent parameter β; bottom left: histogram of estimated residual mean µ; bottom right: histogram of
estimated residual standard deviation σ. See Equations 12 and 13 for model form and parameter definition.

Figure 7: Omni-directional environmental contours of associated peak period (s) and storm peak significant wave height (m), for 10-
and 100-year maximum values of storm peak significant wave height shown as solid and dashed lines respectively, corresponding to the
Exceedance (Exc, blue), Heffernan-Tawn density (HTDns, orange) and Huseby (Hus, yellow) contours. Lock points for the respective
return periods are shown in green.
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Figure 8: Environmental contours of associated peak period (s) and storm peak significant wave height (m), for individual directional bins.
Contours shows for 10- and 100-year maximum values of storm peak significant wave height, shown as solid and dashed lines respectively,
corresponding to the Exceedance (Exc, blue), Heffernan-Tawn density (HTDns, orange) and Huseby (Hus, yellow) contours. Lock points
for the respective return periods are shown in green.
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4. Case study : 2-D covariate, multivariate response

The second case study is an extension of that reported in Section 3, which incorporates the over-turning moment
(OTM) experienced by an offshore structure subjected to wind and wave loading. Specifically, we seek to characterise
the joint distribution of (storm peak) HS and wind speed (WS) conditional on extreme values of OTM, subject to
directional and seasonal covariate effects. The analysis again follows the 5 stages described in Section 2.

Stage 1 of the analysis is isolation of storm peak events from the underlying storm HS time-series data, following the
same procedure as in Section 3. For Stage 2, Figure 9 shows the directional and seasonal variation of the conditioning
variate OTM, and associated variates HS and WS together with the directional and seasonal bin edges specified. Note
that a smaller number of directional bins is used for this case study, to limit the total number of directional-seasonal
bins and hence the number of parameters to be inferred in the analysis. Nevertheless, we are careful to allow for possible
directional effects due to storms from the Atlantic and Norwegian Sea. There are clear directional and seasonal effects
present.

Figure 9: Directional (left) and seasonal (right) variation of overturning moment (OTM, in mega Newton metres, MNm, top), storm peak
significant wave height (HS in m, second row) and associated wind speed (WS in metres per second, ms−1, bottom). Also shown are bin
edges for three directional bins coupled with two seasonal bins (and hence a total of 6 = 4× 2 directional-seasonal bins). The variation of
OTM, HS and WS is approximately independent of covariates within bins, but different between bins. For the directional convention, see
caption of Figure 2. Season (or seasonal degree) is defined by mapping the calendar year linearly into (0,360], with 0 indicating midnight
on the 1st January.

The resulting scatter plots of WS on OTM per covariate bin are shown in Figure 10 (and the corresponding
plot for HS on OTM in Figure 28 of the user guide). Illustrative diagnostic plots for the estimation of marginal
models for each of HS , OTM, and WS with direction and seasonal covariates are given in Figures 30-32 of the user
guide. Marginal model parameters show clear directional and seasonal variation, and comparison of empirical and
model-based tails suggest reasonable model fit. The fitted marginal models are then used to estimate the cumulative
distribution functions for T -year maxima of interest; estimates for the 10- and 100-year maximum of WS are given in
Figure 11. Unsurprisingly, the “omni” distribution (estimated over all directional and seasonal bins) is dominated by
winter storms from the Atlantic sector, and the most probable 100-year maximum WS is approximately 29 ms−1.

Following transformation to standard Laplace scale, a non-stationary conditional extremes model is estimated for
HS and WS jointly, conditional on large OTM, given directional and seasonal covariates. Figure 12 gives parameter
estimates for WS, showing directional and seasonal dependence of the conditional extremes slope parameter α; as
would be expected perhaps, the dependence between WS and OTM is strongest for winter storms emanating from the
North-West. The estimates for index β, common over covariate bins, is somewhat larger than found in Case Study 1.
The empirical densities of nuisance parameters µ and σ are approximately Gaussian-shaped. Supporting diagnostic
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Figure 10: Associated wind speed (ms−1) on storm peak overturning moment (MNm) per directional-seasonal bin. Panel titles indicate
that the angular intervals of direction “D” and season “S” for the bin “D”. It is apparent that the dependence between WS and OTM
varies between bins, with obvious non-linearity in some bins. A similar plot is generated for associated significant wave height (m) on storm
peak overturning moment.

Figure 11: Cumulative distribution functions for the 10-year (left) and 100-year (right) maximum of associated wind speed (ms−1) per
covariate bin and over all bins (“omni”, black). Horizontal dashed lines drawn at the exp(−1) quantile and median.
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plots for the conditional extremes model fit are given in Figures 33-38 of the user guide. In particular, Figure 37
indicates that the value of the α parameter is relatively stable for conditional extremes threshold levels τ̃ ∈ [0.8, 0.9],
and Figure 38 indicates that a minimum roughness penalty for predictive lack of fit is achieved at around 10.

Figure 12: Parameter estimates from the conditional extreme value mode for associated wind speed given storm peak overturning moment.
Top left: directional and seasonal variation of α summarised as mean and 95% bootstrap uncertainty band; top right: histogram of
β; bottom left: histogram of µ; bottom right: histogram of σ. Note the very high directional dependence for α at around 280◦. See
Equations 12 and 13 for model form and parameter definition, and Figure 6 for comparison.

Figure 13 gives estimated conditional return value distributions for HS and WS given 10-year and 100-year maxi-
mum OTM for individual directional-seasonal covariate bins, and “omni” over all covariate bins. For HS , conditional
return values are again largest for Atlantic winter storms. For WS however, we observe an interesting transition in-
volving winter storms from directional sectors [275,315) to [230,275). The most probable conditional value of WS given
a 100-year maximum OTM is approximately 26.5 ms−1, lower than the marginal most probable maximum 100-year
wind speed.

The resulting omni-covariate environmental design contours for HS and WS, given occurrences of the 10-year and
100-year maximum OTM, are shown in Figure 14. The general features of the contours are similar to those of Figure 7.
Corresponding illustrative plots of contours per covariate bin for WS are given in Figure 40 of the user guide.
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Figure 13: Conditional cumulative distribution functions of associated significant wave height (m, top) and associated wind speed (ms−1

bottom) per directional bin and over all bins (“omni”, black), conditional on the 10-year (left) and 100-year (right) maximum of storm
peak overturning moment (MNm). Horizontal dashed lines drawn at the exp(−1) quantile and median.

Figure 14: Omni-directional-seasonal environmental contours of associated significant wave height (m, left) and associated wind speed
(ms−1, right) and storm peak overturning moment (MNm). Contours shows for 10- and 100-year maximum values of storm peak significant
wave height, shown as solid and dashed lines respectively, corresponding to the Exceedance (blue), Heffernan-Tawn density (HTDns, orange)
and Huseby (yellow) contours. Corresponding contours per covariate bin are also generated.
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5. Discussion

This article introduces the covXtreme software for pragmatic multivariate extreme value analysis with covariate
non-stationarity. The MATLAB software provides functionality to isolate temporal peaks from time-series, and to
define an appropriate partition of the covariate domain. Using this partition, marginal generalised Pareto models are
estimated for each variate independently assuming piecewise constant threshold and scale parameterisations within
a penalised likelihood framework; optimal scale parameter roughness is estimated using cross-validation. Marginal
models are then used to transform the sample to standard Laplace margins. A non-stationary conditional extremes
model is then estimated with piecewise constant parameterisation for the slope (“α”) parameter, again using penalised
likelihood estimation with cross-validation to estimate optimal roughness. Simulations and importance sampling are
then used to estimate the distribution of T -year maxima for each variate, and environmental design contours conditional
on a single conditioning variate. Uncertainty due to marginal and dependence threshold selection is quantified by fitting
multiple models with randomly chosen thresholds within user-specified plausible intervals of threshold non-exceedance
probability. Uncertainties in parameter estimates and subsequent inferences from model fitting are estimated using
bootstrap resampling. As noted in Section 1, the software has already been used in a number of studies, mostly but
not exclusively metocean-related.

The covXtreme methodology makes a number of simplifying assumptions, motivated by the authors’ experience of
extreme value analysis applied to the ocean environment using a range of methodologies of difference complexities. For
example, covXtreme relies on sensible user-specified partitioning of the covariate domain into bins within which it is
reasonable to assume common marginal tails and a common dependence structure; this simplifies inference considerably
compared with competitor approaches. Moreover, we believe that inferences using covXtreme with good partitioning
are competitive with alternatives using more sophisticated tools. Specifically, covXtreme marginally is equivalent to
a Voronoi set representation with pre-specified covariate partition, which was demonstrated by Zanini et al. (2020)
to be competitive with P-spline and Bayesian adaptive regression spline covariate representations. covXtreme further
assumes that the generalised Pareto shape parameter ξ in each marginal model is constant with covariate; because of
the relative difficulty of estimating the shape parameter compared with the scale, this would appear reasonable in the
absence of strong evidence to the contrary, especially for small samples of data. Likewise, the β, µ and σ parameters
of the conditional extremes model are assumed stationary. This appears reasonable since β is an exponent, again
difficult to estimate. Moreover, µ and σ are essentially nuisance parameters; any model misspecification caused by
the assumption of stationarity will be accommodated to some extent by the adoption of residuals from model fitting
for inferences under the model. It might be appropriate to relax some of the assumptions for specific applications,
for example (a) when there is strong evidence that generalised Pareto ξ is unlikely to be constant (e.g. due to land
shadow and fetch limitation effects on HS), or (b) since parameter estimates for conditional extremes α and µ are
highly correlated when β is close to unity. We also note that it is not clear whether non-stationary marginal extreme
analysis is necessarily the best approach to estimate marginal return values from non-stationary data. Provided that
sufficient sample is available, so that a sufficiently high threshold for peaks over threshold analysis can be set, often
a stationary marginal analysis is at least competitive if not preferable; see Mackay and Jonathan (2020) for further
discussion.

We anticipate that covXtreme might provide a pragmatic starting point to studies of spatial and temporal depen-
dence of extremes, since the underlying methodology of both conditional spatial extremes (e.g. Shooter et al. 2019,
Shooter et al. 2022, Wadsworth and Tawn 2022) and Markov extremal and similar time-series models (e.g. Winter
and Tawn 2017, Tendijck et al. 2019, Tendijck et al. 2024) involves each of Stages 1-4 of the covXtreme approach. We
also hope that covXtreme might be useful generally in estimating joint characteristics of extremes from multivariate
time-series.

Software and data availability

• Name: covXtreme
• Developer: Ross Towe, Emma Ross, David Randell, Philip Jonathan
• Contact: ross.towe@shell.com
• First published: 2023
• Language: MATLAB (only base MATLAB needed)
• GitHub: https://github.com/sede-open/covXtreme
• Program size: 300kB
• Licence: apache 2.0
• Free-to-use software, sample data and user guide available on GitHub.
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Dimitrov, N., Sander, A., Ohlendorf, J.H., Thoben, K.D., de Hauteclocque, G., Mackay, E., Jonathan, P., Qiao, C.,
Myers, A., Rode, A., Hildebrandt, A., Schmidt, B., Vanem, E., Huseby, A.B., 2021. A benchmarking exercise for
environmental contours. Ocean Engineering 236, 109504.

Haselsteiner, A.F., Lehmkuhl, J., Pape, T., Windmeier, K.L., Thoben, K.D., 2019. A software to compute multivariate
extremes using the environmental contour method. SoftwareX 9, 95–101.

Haselsteiner, A.F., Ohlendorf, J.H., Wosniok, W., Thoben, K.D., 2017. Deriving environmental contours from highest
density regions. Coastal Eng. 123, 42–51.

Heffernan, J.E., Tawn, J.A., 2004. A conditional approach for multivariate extreme values. J. R. Statist. Soc. B 66,
497–546.

Huseby, A., Vanem, E., Natvig, B., 2015. Alternative environmental contours for structural reliability analysis. Struct.
Saf. 54, 32–45.

Huser, R., Genton, M.G., 2016. Non-stationary dependence structures for spatial extremes. J. Agric. Biol. Environ.
21, 470–491.

Jonathan, P., Ewans, K., Flynn, J., 2014. On the estimation of ocean engineering design contours. ASME J. Offshore
Mech. Arct. Eng. 136:041101.

Jonathan, P., Ewans, K.C., Randell, D., 2013. Joint modelling of environmental parameters for extreme sea states
incorporating covariate effects. Coastal Eng. 79, 22–31.

Jonathan, P., Randell, D., Wadsworth, J., Tawn, J., 2021. Uncertainties in return values from extreme value analysis
of peaks over threshold using the generalised Pareto distribution. Ocean Eng. 220, 107725.

Liu, Z., Cheng, L., Lin, K., Cai, H., 2021. A hybrid Bayesian vine model for water level prediction. Environ. Model.
Softw. 142, 105075.

Maciejewska, K., Juda-Rezler, K., Reizer, M., Klejnowski, K., 2015. Modelling of black carbon statistical distribution
and return periods of extreme concentrations. Environ. Model. Softw. 74, 212–226.

Mackay, E., de Hauteclocque, G., 2023. Model-free environmental contours in higher dimensions. Ocean Eng. 273,
113959.

Mackay, E., Haselsteiner, A.F., 2021. Marginal and total exceedance probabilities of environmental contours. Marine
Structures 75, 102863.

Mackay, E., Jonathan, P., 2020. Assessment of return value estimates from stationary and non-stationary extreme
value models. Ocean Eng. 207, 107406.

Minguez, R., Mendez, F.J., Izaguirre, C., Menendez, M., Losada, I.J., 2010. Pseudo-optimal parameter selection of
non-stationary generalized extreme value models for environmental variables. Environ. Model. Softw. 25, 1592–1607.

21



Northrop, P., Jonathan, P., 2011. Threshold modelling of spatially-dependent non-stationary extremes with application
to hurricane-induced wave heights. Environmetrics 22, 799–809.

Randell, D., Turnbull, K., Ewans, K., Jonathan, P., 2016. Bayesian inference for non-stationary marginal extremes.
Environmetrics 27, 439–450.

Ross, E., Astrup, O.C., Bitner-Gregersen, E., Bunn, N., Feld, G., Gouldby, B., Huseby, A., Liu, Y., Randell, D.,
Vanem, E., Jonathan, P., 2020. On environmental contours for marine and coastal design. Ocean Eng. 195, 106194.

Ross, E., Sam, S., Randell, D., Feld, G., Jonathan, P., 2018. Estimating surge in extreme North Sea storms. Ocean
Eng. 154, 430–444.

Scarrott, C., MacDonald, A., 2012. A review of extreme value threshold estimation and uncertainty quantification.
Revstat 10, 33–60.

Shao, X., Hazra, A., Richards, J., Huser, R., 2022. Flexible modeling of nonstationary extremal dependence using
spatially-fused LASSO and ridge penalties. URL: https://arxiv.org/abs/2210.057923.

Shooter, R., Ross, E., Ribal, A., Young, I.R., Jonathan, P., 2021. Spatial conditional extremes for significant wave
height from satellite altimetry. Environmetrics 32, e2674.

Shooter, R., Ross, E., Ribal, A., Young, I.R., Jonathan, P., 2022. Multivariate spatial conditional extremes for extreme
ocean environments. Ocean Eng. 247, 110647.

Shooter, R., Ross, E., Tawn, J.A., Jonathan, P., 2019. On spatial conditional extremes for ocean storm severity.
Environmetrics 30, e2562.

Souaissi, Z., Ouarda, T.B.M.J., St-Hilaire, A., 2023. Regional thermal index model for river temperature frequency
analysis in ungauged basins. Environ. Model. Softw. 164, 105709.

Southworth, H., Heffernan, J.E., Metcalfe, P.D., 2024. texmex: statistical sodelling of extreme values. https:

//cran.r-project.org/package=texmex.

Stephenson, A., Gilleland, E., 2006. Software for the analysis of extreme events: The current state and future directions.
Extremes 8, 87–109.

Tendijck, S., Eastoe, E., Tawn, J., Randell, D., Jonathan, P., 2023. Modeling the extremes of bivariate mixture
distributions with application to oceanographic data. J. Am. Statist. Soc. 118, 1373–1384.

Tendijck, S., Jonathan, P., Randell, D., Tawn, J.A., 2024. Temporal evolution of the extreme excursions of multivariate
kth order Markov processes with application to oceanographic data. Environmetrics 35, e2834.

Tendijck, S., Ross, E., Randell, D., Jonathan, P., 2019. A non-stationary statistical model for the evolution of extreme
storm events. Environmetrics 30, e2541.

Towe, R., Randell, D., Kensler, J., Feld, G., Jonathan, P., 2023a. Estimation of associated values from conditional
extreme value models. Ocean Eng. 272, 113808.

Towe, R., Ross, E., Randell, D., Jonathan, P., 2023b. covXtreme: MATLAB software for non-stationary penalised
piecewise constant marginal and conditional extreme value models. https://github.com/sede-open/covXtreme.

Towe, R., Zanini, E., Randell, D., Feld, G., Jonathan, P., 2021. Efficient estimation of distributional properties
of extreme seas from a hierarchical description applied to calculation of un-manning and other weather-related
operational windows. Ocean Eng. 238, 109642.

Vanem, E., Guo, B., Ross, E., Jonathan, P., 2020. Comparing different contour methods with response-based methods
for extreme ship response analysis. Mar. Struct. 69, 102680.
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