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SUMMARY 

Twenty-two contrasting statistical methods are reviewed for their applicability to QSAR studies and 
similar prediction-oriented fields. Each method is concisely specified prior to  explanatory or critical 
comment. 
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1. INTRODUCTION 

The two parts of this paper form a critique of a variety of statistical techniques of actual or  
potential use in quantitative structure-activity relationship (QSAR) studies as well as in related 
fields. Part  I (henceforth referred to as S&J I )  explored the statistical thinking underpinning 
those techniques. Here in Part  I1 we offer a concise account of the most widely used methods 
- and some that are less well-known or  practised. In the interests of interdisciplinary 
communication we have tried to keep technical mathematics and chemistry to  a minimum 
consistent with the objectives of the paper. Neither this restraint nor the necessarily small 
volume of our unified treatment compared with that of a recently published comprehensive 
volume' should be inimical t o  exposition of the current status of statistical methods in QSARs. 
Conciseness has, however, dictated the exclusion of important but rather diffuse topics such 
as treatment of outliers or  the use of robust alternatives to  least squares.3 Conciseness also 
increases the risk of not giving due weight t o  work whose value we have not yet recognized 
- we apologise in advance to  any authors thus slighted or misrepresented. 

The reader should refer t o  S&J'  for fuller details of the terminology and notation used. 
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2 M. STONE AND P. JONATHAN 

2. MAKING A BED FOR LEAST SQUARES 

Statistical aids for QSARs have to recognize openly that 

(i) most QSAR studies are based on a fixed number of compounds, n, which is rarely in 

(ii) there is often effectively no limit to the value of the number of variables, p .  
excess of 100 and usually less than 50 

Hence the prerequisite for ordinary least squares, i.e. n 2 p + 1, is often unsatisfied. For the 
case n c p + 1 several techniques may be viewed as strenuous efforts to ‘bring the situation 
back to one where MR (multiple regression) is appropriate’ though potentially ‘self- 
de~ept ive’ .~ Either by the selection of a small number of descriptors or by the construction of 
a small number of new variables that are usually linear combinations of x( I ) ,  . . . , x ( p ) ,  a basis 
is prepared for least-squares prediction of y with a reduced complement of variables, 
t ( l ) ,  ..., t ( A )  say, where A < n - 1 (or n - 2 for cross-validation to be applicable). The least- 
squares predictor would then have the form ii+ blt(1) + ... + b,d(A) ,  say. When t ( l ) ,  ..., t ( A )  
are linear combinations of x(l), ..., x(p) ,  this predictor expands to the familiar 
a + b lx ( l )  + ... + b#(p) when the particular forms of t ( l ) ,  ..., [ ( A )  have been inserted. (The 
variables t ( I ) ,  . . . , t ( A  ) may be called component variables Oi repressors. ) 

The potential self-deception of this approach may be greatly reduced by cross-validation of 
the whole procedure, for which a heavy computational cost may be unavoidable. 

2.1. Stepwise regression5 

At any stage of this particular procedure the next descriptor introduced into the current 
selection of components is the one with the highest F-value provided that it exceeds a cut-in 
value Fin. Any descriptor is eliminated from the current selection if its F-value then falls below 
a cut-out value Foul. 

Comments 

(i) To reduce self-deception, the control parameters F i n  and Fout could be chosen by cross- 
validation by the method indicated in Section 6.6 of S&J’ - but this would involve heavy 
computation. Usually Fin and Foul are taken to be equal, in which case the cross-validatory 
choice becomes a feasible one-dimensional optimization. 

(ii) The use of the F-statistic for cross-validatory control is fairly arbitrary. The fact that 
F is justifiably used for hypothesis testing in a fixed normal model has no proven relevance 
to the question of sequential control. The introduction and elimination of descriptors could 
(with equal lack of justification) be based on fixed percentage changes in s or in the statistics 
s’, s++ and RMSPE of Section 6.4 of S&J.’ 

2.2. Principal components6 

The score of a compound for a variable that is a linear combination t = clx(1) + ... + cpx(p )  
is simply the value of the linear combination for that compound. 

The variance of a linear combination is the sample variance of the corresponding n scores 
of the compounds in F7. 

Two linear combinations are uncorrelated if the Peason correlation of the corresponding 
scores is zero, calculated for the compounds in %?. 
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QSAR AND RELATED STUDIES. I 1  3 

The frrst principal component is the linear combination of maximum variance when the 

(1) 

is imposed on the coefficients of the combination. 
The second principal component is defined in the same way, with the extra condition that 

it be uncorrelated with the first. 
The third principal component is required to be uncorrelated with the first two - and so 

on until there are no more linear combinations with non-zero variance. 
With all the principal components in hand, there are two procedures for fixing the set of 

regressors for least-squares prediction. 

(a) In (standard) principal component regression (PCR) the first A principal components are 
the regressors to be used. 

(b) For what might be called reordered principal component regression the components are 
placed in decreasing order of their individual Pearson correlations with y before taking 
the first A .  

condition 

c: + . .- + c; = 1 

For both procedures the single control parameter A may be chosen by cross-validation, 

Comments 

(i) The requirement that the components be mutually uncorrelated is not fundamental but 
does ensure that they express different aspects of the variation between the descriptors for the 
n compounds. 

(ii) The condition (1) is also not fundamental, although it is made to appear so by the routine 
presentation of principal components as directions in p-dimensional vector space. The 
condition is more mathematically and computationally convenient than alternatives such as 
) c I  I + . a * +  I c , ~  = 1 or max(Icj I )  = I .  

(iii) The maximum value of A is the number of linearly independent vectors among 
XI - X, ..., xn - X .  For n < p + 1 this number is usually n - 1. 

(iv) In choosing between (a) and (b), the standard ordering might be preferred if there is 
some confidence that information about y lies in the large-variance components. 

2.3. Partial least squares (PLS)”* 

The covariance between the activity y and a linear combination t of the descriptors 
x(l), .. ., x ( p )  is the sample covariance between the scores 1 1 ,  . .., t n  (say) and y ~ ,  .. .,yn 
respectively : 

The description of PLS closely parallels that just given for PCR. 

condition c: + .-. + c i  = 1 is imposed on the coefficients of the combination. 

be uncorrelated with the first. 

The first PLS Component is the linear combination of maximum covariance when the 

The second PLS component is definable in the same way, with the extra condition that it 

The third PLS component is required to be uncorrelated with the first two - and so on until 
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4 M. STONE AND P. JONATHAN 

there are no more linear combinations with non-zero variance (and hence, it may be supposed, 
non-zero covariance.) 

The cross-validatory PLS predictor is then the least-squares predictor based on the first A 
PLS components, with A chosen by cross-validation. 

Com men ts 

(i) Our description of PLS (which is here specialized for prediction of a single y-variable) 
is non-standard but fully equivalent to  the standard one. For each component the standard 
algorithm constructs instead linear combinations of residuals of descriptors (from their least- 
squares regression on the combinations already constructed). This avoids the requirement for 
the conditions of uncorrelation, because they are then automatically satisfied. 

(ii) Conveniently for the PLS acronym, partial least squares is increasingly referred to as 
‘projection to latent structure’, which is more informative. 

(iii) The power of PLS can be no more and no less than what is suggested by our description: 
it does not have any other magical properties (see the caution in Section 2.4, comment (iv)). 

(iv) A numerical-analytical account of the standard PLS algorithm for the single-y case 
(‘PLSl’, to distinguish it from the multiple-y case, ‘PLS2’, of Section (6 )  is given by Manne.’ 
Another algorithm for PLSl is provided by de Jong: lo it parallels our description of PLS. 

2.4. Continuum regression (CR) 

Specification of CR requires an additional control parameter, but otherwise follows that of 
PCR or PLS precisely. The only change needed is that the criterion to be maximized at each 
stage, which was ‘variance’ for PCR and ‘covariance’ for PLS, is now generalized to 

(2) (covariance)* (variance)*’(’ - a)- I 

where CY is restricted to lie between zero and unity. 

Comments 

(i) For 01 = 1 the criterion (2) is effectively equivalent to ‘variance’ and at CY = 0.5 it is 
equivalent to ‘covariance’. Thus CR generalizes PCR and PLS. 

(ii) For a = 0 the criterion (2) is equivalent to ‘Pearson correlation’, so that CR delivers 
ordinary least squares (OLS) in the non-singular case. For n < p + 1 CR is definable at 01 = 0 
as a limit - which happens to deliver the (unique) shortest least-squarespredictor (SLS) (see 
Section 3.1). 

(iii) Details of the cross-validated implementation of CR with applications are given by Stone 
& Brooks, 

(iv) It has yet to be established that a mixture, such as CR, of two extreme methods is 
predictively superior in practice to a simple cross-validatory choice between them. 

from whom a computer programme is obtainable. 

2.5. Intermediate least squares (ILS)’* 

This generalization of PLS constructs components at each stage that are linear combinations 
of maximal covariance, with the additional constraint that they be combinations of no more 
than CY of x(l), ..., x ( p ) .  As for CR, the control parameters a and A are chosen by 
cross-validation. 
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QSAR AND RELATED ST‘UDIES. 11 5 

Comments 

(i) PLS is given by a = p .  
(ii) If x(l), ..., x(p) are scaled to have unit standard deviations over V, then ILS with a = 1 

(iii) The restriction to  just CY variables is potentially beneficial in cutting out the ‘noise’ from 

(iv) ‘ILS’ has also been usedI3 to acronymize ‘inverse least squares’. 

is stepwise regression without backward elimination of descriptors. 

uninformative variables. 

2.6. Continuum powering *4  

We d o  not have an account of this method of constructing components which is both concise 
and definitive. In broad terms the method is a generalization of its authors’ own PLS 
algorithm, involving 

(a) singular value decomposition of a key n x p matrix at each stage 
(b) replacement of the singular values by their Nth power, where N is a control parameter 

in the continuum (0, a). 

Comments 

(i) N = 1 is PLS and N very large gives PCR.  
(ii) It is claimedI3 that for N = 0 in cases with n 2 p + 1 the method gives the least-squares 

(multiple-regression) predictor. We would also like to know the limiting behaviour as N tends 
to zero in the singular case. 

(iii) The technique was described as ‘unnamed’ in the discussion of Stone and Brooks ‘ I  but 
has since l 3  been christened ‘continuum regression’. We have here suggested ‘continuum 
powering’ to avoid confusion with Section 2.4. 

2.7. Principal covariate regression (PCovR): l 5  univariate y 

Like CR, this is a continuum method mixing least squares and PCR. As formulated by de Jong 
and  Kiers,” the method is equivalent in output to replacement of the construction stage 
criterion (2) by 

I 

P 

AFSS for x ( j )  

C TSS for x ( j )  
TSS for y 

where AFSS is the increment in the fitted sum of squares for the specified variable in its least- 
squares regression on  the so far constructed regressors and TSS is the ordinary total sum of 
squares of the analysis of variance. 

Comments 

(i) For a = 1 PCovR delivers PCR.  
(ii) For (Y = 0 it gives OLS in the non-singular case with n 

(iii) The continuum does not include PLS. 

p + 1 .  For n < p + 1 PCovR (as 
formulated here) is definable as a limit which, as for CR,  is the SLS predictor of Section 3.1. 
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6 M. STONE AND P. JONATHAN 

(iv) The method handles the case of several y-variables ( y ( j ) )  by extending the first term 
of the criterion to match the second term in ( x ( j ) )  (see also Section 6). 

3. AFFILIATED TECHNIQUES 

The following techniques do not depend on an initial selection of descriptors or reduction of 
descriptor dimensionality prior to least-squares application. Instead they are free to involve all 
the available descriptors, perhaps recklessly (as cross-validation might or might not reveal). 

3.1. Shortest least squares (SLS)I6 

With n < p + 1, i.e. with fewer compounds than parameters to  be fitted, the least-squares 
values of a,  b ~ ,  ..., bp for fitting 9 = a + blx(1) + + b p x ( p )  are not unique. There is an 
infinity of solutions and therefore an infinity of contenders for the prediction formula. 

For some new compounds all these predictors may yet agree about the prediction to be 
made: these are the compounds whose vector of descriptors fortuitously lies in the space 
spanned by the vectors of the n measured compounds. There would be uniqueness of 
prediction for any new compound provided that a unique choice could be made from the 
above infinity of solutions for a, bl, ..., bp. The SLS choice is the one that makes the vector 
b = ( b l ,  ..., bp) the shortest, i.e. b: + + b i  a minimum. 

Comments 

(i) The SLS solution is otherwise known as the minimum norm solution. Its algebraic 

(3) 
where S+ is the Moore-Penrose generalized inverse of the sum-of-squares-and-products 
matrix, which is necessarily singular for n < p + 1. (Formula (3) would give the usual OLS 
coefficients if S were non-singular .) 

(ii) As noted in Sections 2.4 and 2.7, the SLS predictor is delivered as the special case of 
CR and PCovR at a = 0. 

(iii) The SLS predictor does not have any control parameters to be determined by cross- 
validation. Provided that the descriptors have not been autoscaled (Section 6.9 of S&J ’), the 
cross-validatory RMSPE criterion (Section 6.4(c) of S&J ’) may be speedily calculated with the 
aid of the following leave-one-out result of Dunne and Stone: l 6  

when the ith compound is omitted, the b of (3) is reduced to its component 
orthogonal to S+(xi - 3). (Marbach and Heise” offer an incorrect version of this 
result: in their equation (44) the denominator 1 - /I,,,+ has to be zero. However, 
they make no essential use of this version in an otherwise interesting paper.) 

expression is 

b = ylS+ (XI - X) + + y,S+ (x, - X) 

(iv) An extremely artificial example reveals why SLS may be rewarding when the descriptors 
are not autoscaled and the predictively useful descriptors are those of high variation in the 
training set. Suppose n = 2, p = 2 and that compound CI  has x(1)  = x(2)  = 0 while C2 has 
x(1)  = 1 and x(2)  = 10. It may be verified that the SLS predictor is 

9 = y1 + [(y2 - y1)/ lOl]  [ x ( l )  + lOX(2)l 

which is dominated by the high-variation descriptor x(2). 
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QSAR AND RELATED STUDIES. I1 7 

(v) SLS is given by any least-squares prediction from n - 1 regressors whose combination 
vectors - the (CI, ..., c ~ ) ~  of Section 2 - span the same space as XI - X, ..., xn - X. C R  does this 
for any a and hence so do PLS and PCR. 

3.2. Ridge regression l 8  

This method produces a unique predictor by moving outside the class of least-squares solutions 
for b (Section 3.1)l at the cost of introducing one control parameter k > 0. The value of b 
for the choice k is b ( k )  = ( S  + kI)-’XTy. 

Comments 

(i) bl (k)’ + ... + bP(k)’ decreases as k increases, shrinking the predictor coefficients towards 

(ii) As k goes to zero, b ( k )  goes to the SLS value. 
(iii) Sundberg” has shown that when S is non-singular, b ( k )  is proportional (with a 

multiplier less than unity) to  the value of b given by least-squares regression on the first CR 
component for a value of the CR control parameter a lying between zero and and increasing 
with k.  Sundberg’s proof may be seen to carry over to  the present case in which S is singular. 

(iv) b ( k )  is derivable as the minimizer of 11 yc - X‘b (1’ + k 1 1  f i  I[’, where y c  is the centred 
vector of y-values and Xc is the centred n x p matrix of x-values. 

(v) Frank and Friedman” highlight ridge regression in a wide-ranging analysis, including 
simulations. 

zero, perhaps beneficially. 

3.3. Regression trees (RT) in CART2’ 

The methods of Sections 2.1-2.6 all have as output a linear predictor 

p = a + b,x(l)  + * . -  + b,x(p) (4) 

whose form is the same at all points in the space of descriptors. This global uniformity means 
that either great care has to be taken in the definition of x(l) ,  ..., x ( p )  (e.g. by the inclusion 
of descriptors for plausible non-linearities or interactions) or else the class % of congeneric 
compounds to which (4) is to be applied must be suitably restricted. Wold2’ has emphasized 
that justification of the use of (4) as a Taylor expansion linearization of a complex function 
of x(l) ,  ..., x @ )  requires that the variables be ‘measured on processes with a limited 
variation’. All of this is an impediment to bold and potentially informative choice of the 
compounds in E?. Admittedly there is the Free-Wilson additivity justification for the use of 
indicator variables (x(  j )  = 0 or 1)’ but the use of such regressors as a formal device for putting 
several regressions into the same formula requires the questionable supposition that the 
individual regressions are parallel. The flexibility in (4), given by quadratic and interaction 
terms and the like, has to be built in prior to analysis, when knowledge of how to do it may 
not be available. What is needed is a method that builds in flexibility as required in the analysis 
of the actual data and that maintains control over the potential excesses of adaptivity. 

‘Regression trees’ (RT), as refined and controlled in CART, provide such flexibility. The 
output of an RT analysis is simply a partitioning of the space of x = (x(l), ..., ~ ( p ) ) ~  into 
generalized rectangles of the type 

S= ( x : u ~  < ~ ( j )  < bj, j =  1, . . . ,p )  
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8 M. STONE AND P. JONATHAN 

Figure 1 .  Illustration of regression tree rectangles 

and an associated predictorj. The value of 9 for a new compound at xc is taken to be the 
average of the values of y for compounds in Q whose x-values are in the same rectangle as 
xc. Typically, when p is large compared with n, the RT analysis will give aj = - a and bj = a 
for all but a few values of j ,  while for those few, usually aj = - 00 or bj = a. Thus, for 
example, we may find that the basis of the output predictor is defined by x(45) and x(73) with 
five rectangles as in Figure 1. (It is the calculation of the averages of the yi-values in each of 
the rectangles to define 9 that puts the term ‘regression’ into RT.) 

The RT procedure is a combination of sequential splitting on individual descriptors until 
further splitting is impossible (producing a ‘regression tree’ with many fine terminal branches 
beyond scientific justification) and pruning of the tree back to a point usually chosen by cross- 
validation. At each stage of the tree-growing procedure the split in CART is made on the 
variable and associated (a,, b,) that give the maximal reduction in the splitting criterion, taken 
to be the residual sum of squares of the predictor at that stage. 

Comments 

(i) The ‘AID’ method of Sonquist et aLZ3 was defective as a precursor of CART because 

(ii) CART permits splits to be made using linear combinations of descriptors. 
(iii) The partitioning shown in our five-rectangle illustration must have been produced as the 

(iv) The method is flexible enough to  produce modal partitions of the sort illustrated in 

it lacked cross-validatory control of its tree growing. 

pruned tree in Figure 2. 

Figure 3 .  These would be useful in applications calling for Wold et al.’s ‘a~ymrnetry’.~ 

3.4. Nearest neighbours’ 

There is a plausible simplicity in the following approach to the problem of finding a predictor 
of the form 9 = f ( Y ) ,  where Ydenotes chemical structure, on the basis of the information 
( y l ,  M), ..., ( y n ,  %) in the construction set. 

Fixing .Y: i.e. thinking of a totally specified new compound C ,  select those compounds in 
%’ whose structures are close in some sense to 9. Then take to be a reasonable function of 
the y-values of the selected compounds, for instance their average (as in RT). The selection 
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QSAR AND RELATED STUDIES. 11 9 

n 

x(45) >9 

x(73) 42.1 A X(73) r2.1 X(73) <I .9 A x173) >i .9 
I I 

I I 
I 

I 
I 

I 

- -, . .  

-4 -% 4 ; A  ~ ( 4 5 )  414 N45)  
21 4 

I I 
I I 
I I 
I I 

-4 .k 
Figure 2. The regression tree for Figure I 

I 
I 
I 
I 
I 

I 
I 
I 
I I x( l )  

Figure 3. Modal regression tree output 

could be done in two ways, given that we can acquire by prior insight a function d(.X .X) 
whose smallness is thought to encapsulate the ‘closeness’ of structures .Yand ?% for i = 1, ..., n. 

(a) For fixed k select the k nearest neighbours of C ,  i.e. the k compounds with the smallest 

(b) Fix A > 0 so that for all structures Yfo r  which 9 is required there are to-be-selected 
values of d. 

compounds in %with d ( g  g) < A. 

Comments 

(i) The high dimensionality of descriptors of Sreduces the feasibility of arriving at  a prior 
choice of d that will be predictively informative. The automatic adoption of Euclidean distance 
defined for all the available (autoscaled?) descriptors cuts the Gordian knot, of course. 

(ii) In comparison with the choice of d, the choice of the control parameter, either k or A ,  
may be a relatively straightforward but computationally heavy exercise in cross-validation. 

(iii) The usual applications of nearest neighbours have been for n B p .  
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10 M. STONE AND P. JONATHAN 

4. CLASSIFICATION: TWO CLASSES 

So far in this account of different techniques, no conditions have been put on the character 
of y .  It can be either a smoothly variable measure of activity or, as we now suppose, a measure 
of maximal discreteness taking only two values corresponding to  ‘active’ and ‘inactive’. 

4.1. Linear discriminant analysis (LDA) 

It may be shown that the square of the correlation coefficient, calculated over %7 between y 
and a potential predictor 9, is an increasing function of Student’s t-statistic comparing the two 
sets of values of 9 for active and inactive compounds. At the same time the objective of least- 
squares regression may be stated as the maximization of the correlation coefficient, while the 
square of Student’s t is the criterion that is maximized in Fisher’s LDA.24 Thus we see that 
when the predictor 9 is constructed by linear least-squares regression on component variables 
t( l) ,  ..., t ( A ) ,  there is equivalence between the regression approach and the LDA approach 
using those variables. The use of 9 to classify a new compound according to whether or not 
9 exceeds some chosen value is the same as using the linear discriminant in LDA. 

Comments 

(i) The variables t (  l ) ,  . . . , t ( A  ) may, for example, be principal components constructed as 
in Section 2.2 - but, whatever it is, their provenance must be taken to be part of the whole 
procedure when it comes to assessment. 

(ii) Wold et aL4 curiously describe the regression formulation as an ‘inefficient’ variant of 
LDA. 

(iii) LDA is often presented as though it were peculiarly dependent on a very specific 
probability model, namely that 

(a) for each set of compounds (active or inactive) the A-component variables have a 

(b) the two covariance matrices are equal. 
multivariate normal distribution 

For QSARs these are off-putting requirements unlikely to be satisfied and therefore LDA is 
dismissed as a ‘parametric’ method in contrast to the more flexible, less assumption-ridden, 
‘non-parametric’ methods. (The term ‘parametric’ refers to all those parameters in the 
multivariate normal distributions.) The distinction is far-fetched, since, as the regression 
connection shows, LDA is no less ‘non-parametric’ than many other methods where linearity 
is accepted without question. LDA does, however, inherit one specific feature from part (b) 
of its multivariate normal pedigree: the equality in (b) expresses itself as the pooling of the 
two within-class sums of squares in the denominator of Student’s t. (The corresponding feature 
in the regression formulation is the use of the total-sum-of-squares and-products matrix in the 
‘normal’ equations.) Unless the numbers of active and inactive are appreciably unequal, this 
pooling does not strongly implicate any assumption of equality of variance, since the 
denominator of t still robustly serves to standardize the unequal variance case. 

(iv) ‘Quadratic discriminant analysis’ (QDA), although derivable as a ‘parametric’ 
method,*’ may be regarded as a restriction of the special case of LDA in which the regressors 
t( l) ,  ..., t ( A )  are specified as a set of s selected variables together with their s squares and 
s(s - 1)/2 cross-products, whence A = s(s + 3)/2. The quadratic variables allow classification 
boundaries that are curved in the space of the selected variables and may therefore be 
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QSAR AND RELATED STUDIES. I1 11 

particularly applicable in the ‘asymmetric case’4 where the active compounds occupy a roughly 
ellipsoidal subregion. 

(v) Procedures intermediate between LDA and QDA are 

(a) ‘proportional covariances’ in which, with multivariate normal modelling, the 

(b) ‘common principal components’ in which the two classes share predictively 
covariance matrices are supposed proportional rather than equal 

important principal components. 

The book by F1ury26 contains a full account of the necessary technicalities. 

4.2. Logistic regression (LR)27 

As a predictor, the LDA discriminant is of unbounded magnitude, whereas the quantity it is 
predicting takes only two finite values, which, without loss of generality, may be taken to be 
unity for active compounds and zero for inactives. There is then something to be said for 
logistic regression, which uses a predictor of the form 

since for all values of the constants 8, bl,  ..., h~ the value of 9 lies between zero and unity. 
In fitting the linear LDA predictor by least squares, the use of squared error is a 

mathematical convenience. There is no analogous simplification in fitting the logistic 
regression. The standard choice (inspired by the statistical theory of maximum likelihood in 
a model in which 9 is interpreted as a probability) is the logarithmic error function: log(l/ j)  
for an active compound and log [ I/( 1 - 9) ]  for an inactive. The criterion to be minimized to 
determine 8,&, . . . , 6 ~  is then 

Commen ts 

(i) Performed iteratively in computer packages, minimization of (6) has non-trivial 
complications. 

(ii) The criterion gives great weight to the avoidance of values of 9 near zero for actives or 
near unity for inactives. This feature reflects the maximum likelihood pedigree but is hardly 
justifiable for prediction. 

(iii) In place of (6) ,  the modulus error criterion 

C ( l - j i ) +  C Pi 
y.= 1 y,=o 

would avoid complications arising from the logarithms. 
(iv) Putting (ii, 61, ..., 6 ~ )  = X(a, PI,  ..., P A )  in ( 5 )  and letting X -+ w makes 9 go to unity or 

zero according to whether (Y + P l t ( 1 )  + -.. + p ~ f ( A )  is positive or negative. Thus LR will 
respond to  the ‘linear separability’ of Section 4.3 and is therefore subject to the associated 
comments. 

4.3. The linear learning machine (LLM)28 

The active and inactive compounds in % are said to  be linearly separable for the variables 
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12 M. STONE AND P. JONATHAN 

t( l) ,  -..., t ( A )  if there are constants 6 ,  bl, ..., b~ such that the value of the linear separator 
5 + blt ( l )  + + &At(A)  is positive for all active compounds in ‘33 and negative for the 
inactives. If there is linear separability, LLM theory” provides an iterative algorithm that will 
find such constants. The idea is that 9 = ii+ dlt(1) + --. + bA(A)  would then be useful to 
predict the activity class of a new compound. 

Comments 

(i) Linear separability may be a more useful concept for deterministic pattern recognition 
by A1 than for QSARs. Consider the case of n = 12 and A = 2 in Figure 4, where ‘ x ’ and ‘0’ 
denote active and inactive compounds respectively. 

(ii) Non-uniqueness of the LLM separator is typical, which may leave appreciable ambiguity 
in the prediction for a new compound. 

4.4. The Ho-Kashyap algorithm29 

A feature of the LLM algorithm almost fatal to its applicability in QSARs is that when the 
compounds in W are not separable, the algorithm does not terminate. The alternative 
algorithm of Ho and K a ~ h y a p ~ ~  is therefore, on this count, preferable. 

1. Construct (i) the n x ( A  + 1) matrix A whose ith row is 2 ( l , t i ( l ) ,  ..., t ; ( A ) )  with ? 
according to whether y ;  = 1 or 0, (ii) the n-vector B(0) = (1, ..., l)T and (iii) the ( A  + 1)- 
vector a(0) = (ATA)-’AT/3(0) = A+/3(O). 

2. Iterate on k = 0, 1,2, ... : e (k )  = Aa(k)  - B(k), a ( k  + 1) = a ( k )  + A+ [ e ( k )  + 1 e(k)1]/2, 
B(k + 1)  = B(k)  + [ e (k )  + 1 e(k) 1112, where I e ( k )  I is the vector whose components are 
the absolute values of those of e (k ) .  

3 .  Terminate iteration when either e(k) = 0 or else all ej(k) < 0 with some inequality. 
4. Interpret a ( k )  as ( a , b ( l ) ,  . . . , ~ J ( A ) ) ~ .  In the case e(k) = 0, a ( k )  defines a linear 

separator of actives and inactives; otherwise the compounds are not separable. 

Comments 

(i) a(0)  gives the coefficients of the LDA discriminant. 

t \ 
\ 

x x  
\ X 

0 LDA 

- ..\., 
Figure 4. Comparison of LLM with LDA 
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QSAR AND RELATED STUDIES. I1  13 

(ii) The algorithm terminates in a finite number of iterations, but that number may be large 
and has no specifiable bound. 

4.5. Neural networks3’ 

Neural network predictors that take x(l), . . . ,x (p)  as their ‘input’ have ‘outputs’ 9 whose 
forms have been thought of as models of activity of networks of neurons. A general example3’ 
is 

(7) 

where $ is some sigmoidal function. The estimation of (pi) and {y;,) (‘connection strengths’) 
from the training set has usually been designed with real-time applications in mind, with 
sequential updating (‘back propagation’) as new training items come on stream. Although the 
applications do admit large values of p ,  they do not have the limitation on n that is a feature 
of QSARs. Formula (7) may be seen as a generalization of logistic regression: indeed, by choice 
of $ and q, it can approximate practically any function of x ( l ) ,  ..., x ( p ) .  In particular, for the 
case of y = 0 or 1 and a very large training set which is a random sample from a population 
of ( y , x )  values, (7) may the Bayes posterior probabilities that would be 
calculable if the underlying probability distribution of ( y ,  x )  were known. 

P = P l ~ [ Y l l x ( l )  + *.* + YlPX(P)I  + . * *  + Pq$[YqlX(l) + ..’ + Y q p X ( P ) I  

Comment 

For QSARs the hard statistical problems of exploiting the attractive generality of formulae 
such as (7) cannot be bypassed. The current high excitement of the neural network literature 
may not be particularly relevant to the problems of QSARs. 

4.6. Classification trees (CT) in CART2’ 

The method of Section 3.3 is applicable without modification to the case of two-valued y .  

Comments 

(i) Take y = 1 and 0 for active and inactive compounds respectively and suppose a split is 
made at some stage of the tree-growing procedure that divides a node with r active and s 
inactive compounds (r  + s = t )  into two nodes with the frequencies rl ,  SI and r2, s2. The 
reduction in the residual sum-of squares splitting criterion is rs/t2 multiplied by the chi-squared 
statistic for the 2 x 2 table 

rl r2 

s1 s2 

(ii) The simple case where all descriptors are also two-valued (corresponding to the presence 
or absence of medical symptoms) was independently developed with full cross-validation by 
Mabbett et ~ 1 . ~ ~  using the chi-squared statistic itself for choice of split in an example with 
n = 237 and p = 28. For QSARs we would be more interested in the possibility n = 28 and 
p = 237! 

(iii) The book by Breiman et ~ 1 . ~ ~  gives an excellent account of this promising flexible 
technique. 
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14 M. STONE AND P. JONATHAN 

4.7. Nearest neighbours (NN) again 

The application of NN to classification for two classes follows Section 3.4, classifying by 
‘majority vote’ among the k nearest neighbours. 

Comments (additional to those of Section 3.4) 

(i) A pioneering application of NN to QSARs was that of Kowalski and Bender, 34 in which 
n was 200 and p was 20 (after some selection) and in which the choice of the function d was 
allowed to depend on the between-class differences of the individual descriptors. The 
application was critically reanalysed by Mathews” using a precursor of RT (Section 3.3). 

(ii) The statistical theory, 36 which shows the predictive performance of NN to be agreeably 
comparable with the (unrealizable) optimal Bayes performance, is asymptotic for large n and 
fixed p (which is not the QSAR case at all). 

4.8. SIMCA (soft independent modelling of class analogy)22s37 

In contrast with LDA (which used a single set of regressors ( t ( l ) ,  ..., t ( A ) )  to  discriminate 
between actives and inactives), this pioneering technique of Wold uses two sets, 
( t ’ ( l ) ,  ..., t ’ (A1))  and ( t O ( l ) ,  ..., to (&)) ,  independently fitted to the active and inactive 
compounds respectively. These regressors are the first A I and first A0 principal components 
in the p-dimensional space of predictor variables, defining hyperplanes of dimensions A1 and 
AO respectively. The predictive classifiability of a new compound as, say, active is then assessed 
by the ratio of its distance from the hyperplanes for active to  the root-mean-square distance 
of the actives from the hyperplane (with degrees of freedom for the fitting of the principal 
components); likewise for the classifiability of the new compound as inactive. 

Comments 

(i) The SIMCA approach is flexible, allowing the new compound to  be declared an outlier 
to  both classes or  even classifiable in either. 

(ii) The values of the control parameters A I and Ao are chosen by a sort of cross-validation 
which, as Frank and Friedman2’ note, is not directly related to predictive performance. 

(iii) Frank and fried ma^*^ consider SIMCA in relation to  multivariate normal modelling 
and are critical of the then Ron-Bayesian character of the ratio classification criterion. The case 
for one modification may be apparent in Figure 5 for p = 2 and A1 = A0 = I :  the new 
compound C would be classified as active by SIMCA. 

4.9. DASCO (discriminant analysis with shrunken covariance~)~~ 

This development of SIMCA by Frank 38 uses multivariate normal modelling to modify 
SIMCA in two ways. 

(a) The ratio criterion of Section 4.8 is supplemented to take account of the distances of the 
new compound from the means of the classes in addition to its distance from the class 
hyperplanes. 

(b) The criterion is further adjusted to  take account of the effect on classification inference 
of any difference in the dispersion about their mean for the two classes of compounds. 
This is illustrated for p = 2 and A1 = A0 = 0 in Figure 6, in which compound C has the 

 1099128x, 1994, 1, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.1180080103 by R
ow

an U
niversity, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QSAR AND RELATED STUDIES. 11 15 

- ..\., 

Figure 5 .  A query for SIMCA 

Compound C 

i X U )  

Figure 6. Unequal covariances 

same scaled relationship to actives and inactives but the smaller dispersion of the actives 
enhances the probability that C is an active. 

In a further refinement of SIMCA, DASCO reduces the two control parameters A1 and Ao 
to one by choosing A1 (or Ao) to be the minimum number of principal components that gives 
a fraction F of the total ‘variance’ of the actives (or inactives). The value of the single control 
parameter F is then chosen by standard leave-one-out cross-validation. 

Comments 

(i) Acronyms are rarely reinterpretable - PLS is a notable exception as observed in Section 
2.3, comment (ii) - but we do suggest that the S in DASCO might better expanded as ‘(partly) 
sphericized’ . 

(ii) Frank3’ shows that DASCO outperforms SIMCA on a number of simulated and real 
data examples. However, these do not put the techniques to the test for the singular case with 
n < p .  

4.10. Regularized discriminant analysis (RDA)39 

Like DASCO, RDA is based on approximate multivariate normal modelling: the classification 
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16 M. STONE AND P. JONATHAN 

of a new compound is the class with the higher likelihood approximation, in which the two 
covariance matrices are ‘estimated’ as 

(1 - y)Ck(X) + yttrace CkO)/plI 

where Ck(X) is (1 - X)Ck + XC, the Ck ( k =  1,2) are the standard covariance estimates, C is 
the standard pooled estimate and I is the p x p identity matrix. The control parameters X and 
y are chosen by cross-validation. 

Comments 

(i) For n > p the calculation of X and y is facilitated by leave-one-out matrix algebra. 
(ii) The ‘regularized’ in RDA refers to the regularization of the individual covariance 

matrices Cf and CZ towards C as X approaches unity and further possible regularization 
towards multiples of I as y approaches unity. 

4.11. Miscellaneous techniques 

When y takes the value yl for the nl actives and y2 for the n2 inactives, with yl > y2, the SLS 
predictor of Section 3.1 turns out to  be an increasing function of the linear discriminant 

dTS+x (8 )  

where d = % ‘ I )  - X(’) is the difference between the average X ( ’ )  of the descriptor vectors for 
actives and their average X(*) for inactives. In the terminology of the analysis of variance and 
covariance, S is the total-sum-of-squares-and-products matrix of the descriptors for all n 
compounds. For the non-singular case with n 2 p + 1 the discriminant becomes dTS-’x, which 
for n 2 p + 2 is an increasing function of the Fisher discriminant dTSG1x, where SW is the 
within-sum-of-squares-and-products matrix. (This mathematical equivalence is required by the 
equivalence of LDA and regression, also used in Section 4.1.) For the singular case with 
n < p + 1 there is no such relationship between (8) and the Fisher discriminant analogue 

dTS&x (9) 
Discriminant (8) is partially justified by the argument of Section 3.1,  comment (iv), but use 

of (9) would appear to rest on the hope that predictive information can be extracted from the 
space spanned by the within-group descriptor vector deviations from X(‘) and x‘2), toget her 
with the orthogonal projections of % ( I )  and %(’) on to that space. 

An almost ‘orthogonal’ hope is expressed in the ‘zero-variance discriminant’ aTx, which is 
definable algebraically by the a maximizing [aT(%(’) - x‘~’)]’  subject to a? + 1 . .  + q?j = 1 and 
aTSWa = 0. (This definition is motivated as an attempt to preserve, in  the singular case, the 
sense of Fisher’s derivation of the LDA discriminant .) 

These methods based on either S+ or S& may be regarded as making use (not necessarily 
with advantage) of all the eigenvectors of S or SW for non-zero eigenvalues (in number, n - 1 
for S and n - 2 for SW). Specifically, consider the eigendecomposition S = Xlvlv + -.- 
+ Xn-1vn-lv:- I .  The just non-singular least-squares regression of y on the reduced set of 
variables t (1 )  = v Tx, ..., t ( n  - 1 )  = v t -  I X  delivers the predictor j corresponding to the 
discriminant dTS+x (similarly for SW). 
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QSAR AND RELATED STUDIES. I 1  17 

The final technical twist in this miscellaneous bag is to use only a subset of ( t ( j ) ) .  For S 
this brings us back to (standard) principal components or reordered principal components 
(Section 2.2). The reordering of the latter is here equivalent to selecting the t ( j )  with the larger 
values of 

[V(j)T(X(I) - X ( 2 ) ) ] 2 / X J  

5 .  CLASSIFICATION: MORE THAN TWO CLASSES 

We now briefly indicate how some of the techniques of Section 4 extend to the case where 
‘activity’ is categorized into k > 2 unordered classes. For example, for k = 3 ,  compounds may 
be classed as ‘inactive’, ‘active through biochemical mechanism 1’ or ‘active through 
biochemical mechanism 2’. 

Following prior reduction to  t (l), . . ., t ( A )  (via principal components maybe), LDA will now 
typically generate k - 1 linear discriminants for the user. As for k = 2, there is equivalence 
(now of the space spanned by the discriminants) between the multiple-regression (canonical 
variate) approach using dummy y-variates and that of analysis of variance. 

For the canonical variate approach let (y(l), . . . , y ( k ) )  be the multivariate indicator vector 
of class membership, i.e. y ( j )  = 1 if the compound is in class j and y ( j )  = 0 if not. The first 
linear discriminant is the linear combination of t ( l ) ,  . .., t ( A )  of maximal correlation with some 
(unrestricted) linear combination of y(l), ..., y( k). The second discriminant is likewise defined, 
subject to  the side condition that it be uncorrelated (over g) with the first - and so on. 

In analysis of variance the discriminants are likewise sequentially constructed, but the 
criterion to  be maximized is the F-statistic for one-way analysis of variance of the discriminant 
for the k classes, while the side condition requires that the discriminants be uncorrelated with 
respect to within-class variations. 

For k = 2 the user of the single discriminant has to  choose a critical value separating the two 
classes, usually corresponding either to the half-way point between the class means or to the 
value that maximizes the number of compounds in V2 that are (self-)classified correctly. For 
k > 2, however, there are no obvious analogous choices. This ambiguity is resolved (at perhaps 
some cost in feasibility and realism) by the Bayesian approach, which generates posterior 
probabilities of class membership. 

The extension of neural network techniques to k > 2 uses a combination of multivariate 
indicator and an overall Euclidean squared error criterion. Subject to the severe qualifications 
mentioned in Section 4.5, this maintains the Bayesian connection. 

The techniques SIMCA, DASCO and RDA cover the case k > 2 without difficulty, as they 
were designed to do. However, those techniques of Section 4.1 1 that involve S’ or Sf  do raise 
the same ambiguity of application to prediction that was noted for LDA. 

6.  JOINT PREDICTION OF ACTIVITIES 

The question of the possible value of joint prediction was optimistically mooted in Section 4 
of S&J in rather general terms. 

For the special case where two different activity measures y( 1) and y(2) have been recorded 
for each of the compounds CI ,  ..., C, of the congeneric series, the general question takes the 
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18 M. STONE AND P. JONATHAN 

form: 

For an unsynthesized or newly considered compound C for which only the structure 
Yis known, is there any value in using a joint technique for the prediction of y(1) 
and y(2) apart from any gain in computational efficiency? 

(By a ‘joint technique’ we mean one in which the prediction of y(l), say, involves, and 
hopefully benefits from, the use of the values of y (2 )  for CI, ..., C,, even though the value of 
y(2)  is not available for C . )  

The intuitive argument of Section 4 of S&J’ led us to think that there might be such value. 
However, we also believe that its realization may call for more scientific insight than is required 
if we merely adopt some automatic technique that happens to have the jointness property. 

The LDA method of Section 5 with k = 3 is an example of a joint prediction technique. 
(Since y(1) + y(2) + y (3 )  = 1, we may treat y(3) as redundant and concentrate on y(l) and 
y(2).) Prediction of y(l), say, using the LDA discriminants may be influenced by the values 
of y(2) for C1, ..., C,. For the example mentioned in Section 5 ,  this means that the prediction 
of the dichotomy ‘inactive’ versus ‘active by either mechanism’ may be influenced by 
knowledge of what the mechanisms of activity were for the active compounds among 
Cl, ..., c,. 

A more complex example of a joint technique is PLS2, referred to in Section 2.3,comment 
(iv), and widely recommended and adopted for QSAR studies. To appreciate the nature of 
PLS2 more easily, its standard algorithmic specification may be replaced by the following 
simple modification of Section 2.3, stated for the case of q activities: 

The activity y is generalized to a linear combination lly(1) + + & y ( g )  with 
1: + e.4: = 1, while the maximizations that define the sequentially constructed 
components are taken over 11, ..., Iq as well as over cl, ... c,. 

Using this approach, Stone and Brooks4’ have devised an analogous generalization of CR in 
Section 2.4 - ‘joint continuum regression’ (JCR). There are two versions of JCR: JCR, is a 
continuum between PCR and PLS2, extrapolating to a type of least squares; JCRz is a 
continuum between PCR and canonical (shortest) least squares. Comparisons of JCR and CR 
on real data have so far uncovered no examples in which there is any significant gain in 
predictive performance from the introduction of ‘jointness’, although such gain may, with 
difficulty, be artificially simulated. Since this finding embraces the comparison of PLS2 and 
PLS1, we are led to question the adoption of PLS2 instead of the simpler, non-iterative PLSl 
for the prediction of any particular activity. However, we would be delighted to receive 
evidence that our scepticism about jointness for this and related techniques is unjustified. 
Frank and Friedman2’ touch on the same doubts when they compare ridge regression with 
their multiple-y generalization of the technique. 

7 .  DISCUSSION 

We would have liked to end this review, if we could have managed it, with a finely 
discriminatory assessment of the pros and cons of the many techniques we have looked at. 
Instead we have to opine that any such assessment could be both premature and 
presumptuous. There is in QSARs such a plethora of unexplored possibilities that the only 
unifying idea seems to be that of realistic assessment, which we hope we have stressed 
sufficiently. Even in that matter, the question of selection bias in a fitted relationship (end of 
Section 6.5 of S&J’) requires further vigorous study. 
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QSAR AND RELATED STUDIES. 11 19 

What the area may need, above all else, is tolerance and open-mindedness for the new - 
tempered by informed criticism. 
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