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SUMMARY 

The two parts of this paper form a critique of a variety of statistical techniques of actual or potential 
use in quantitative structure-activity relationship (QSAR) studies and related fields. Part I explores the 
statistical thinking that is needed to underpin those techniques. Emphasis is placed on (a) the role of 
‘exchangeability’ as an alternative to unrealistic statistical modelling and (b) the use of cross-validation 
to limit self-deception in the use of any particular technique. The problem of the almost unlimited range 
of molecular descriptors is seriously addressed. (Part I1 provides a concise critical review of methods - 
some well-established and some new.) 
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1 .  INTRODUCTION 

The largely empirical QSAR techniques may be seen as desperate responses to  a pressing need: 
the prediction of activity of new compounds either not yet in existence or ,  if they d o  exist, not 
yet tested in the laboratory or field. The desperation arises for the following reasons. 

(i) Any activity of interest must be lawfully related to  molecular structure. 
(ii) In many studies the relevant lawful relationship has been successfully approximated by 

(iii) High costs of  synthesis and/or testing put a premium on  predictive capability. 
(iv) Ignorance of the processes relating structure to activity, o r  the complexity of those 

processes, obliges prediction to go beyond the remit of hard scientific theory. 

Most of the more widely used QSAR techniques have been straightforward (and not so 
straightforward!) borrowings from mathematical statistics and the battery of methods 
associated with that academic discipline. The exceptions have in the main come from 
computationally oriented methodology in areas such as pattern recognition and neural 

empirically established QSARs. 
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456 M .  STONE AND P. JONATHAN 

networks. The QSAR literature is in fact refreshingly catholic: it almost seems that no corner 
of quantitative thinking has gone unscrutinized in the search for the key to success. The 
philosophy behind all these borrowings has been openly opportunistic: a technique is to be 
judged either by its performance in predicting the measured activity of newly synthesized or 
newly considered compounds or else by the untested estimate of such performance based on 
its application to a single series of existing compounds. 

Given that ‘statistical thinking’ is broadly definable as being concerned with the 
quantification of uncertain inference or prediction, it is generally agreed that such thinking has 
an important role to play in QSARs - in the design of the database, in the choice of analysis 
and, above all, in the realistic evaluation of results in terms that allow comparison of different 
techniques. There are two special features of QSAR studies that distinguish them from most 
applications of statistical methods: (i) the specification of the series of existing compounds on 
which the study is based and (ii) the choice of descriptors of those compounds on which the 
predicting formula is based. The choice of descriptors has to be related to the series, but the 
series specification calls for a nice marriage of chemical insight and skill in ‘experimental’ 
design; the choice of descriptors calls for a serendipitous union of molecular science and a 
statistical legerdemain that will cope with an essentially unlimited number of descriptors 
without self-deception. Sadly, there are no reliable prescriptions for success in these unions: 
clairvoyance would certainly help. 

The present paper modestly aims to serve two masters: 

(a) the quantitatively minded chemist interested in deepening his or her understanding of 
those strands of statistical thinking that appear to be necessary for a proper assessment 
of the typical QSAR study 

(b) the statistician interested in extending his or her appreciation of the particularities of the 
QSAR subject area and their importance for the choice of statistical method. 

2. THE PREDICTION PROBLEM 

One practical demand of a QSAR is that it should be able to answer a question such as: 

If the particular compound C, perhaps yet unsynthesized, were introduced into the 
particular environment 8, what is the current prediction of the value of the specified 
activity measure y of that compound in b? 

The ultimate need to predict does not preclude QSAR studies whose main purpose may be 
to gain understanding’ of which features of a compound determine the particular activity. For 
such studies, the ability to predict and thereby perhaps to optimize the design of a new 
compound would play a deferred role. A good example is the recent study’ of twelve 
compounds defined by variations in the substituents R I and R2 of the ‘rotenoid core structure’ 
in Figure 1. 

Figure 1 .  Rotenoid series2 
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QSAR AND RELATED STUDIES. I 457 

Most QSAR studies start, like the rotenoid study, as an attempt to pinpoint the causes of 
the observed variation in activity in some series of congeneric compounds. They may then 
identify candidate compounds for synthesis in the light of the study findings. 

3.  DESCRIPTORS 

In order to model chemical activity in some environment with any success, appropriate 
numerical descriptors of chemical structure and fundamental properties are essential. Three 
types of descriptor are in use today: 

(i) chemical descriptors based on the three-dimensional molecular graph 
(ii) physicochemical descriptors based on properties of the molecule in simple, specified 

(iii) high-dimensional descriptors based on the representations of the molecule drawn from 
environments 

‘computational chemistry’ and spectroscopy. 

These three types are discussed in greater detail in the Appendix. 
A range of different approaches, both experimental and theoretical, are available to generate 

numerical values for many of the above descriptors. For example, a physicochemical 
descriptor could be quantified using any one of 

(a) experimental measurement in the physical chemistry laboratory 
(b) a surrogate technique such as chromatography or spectroscopy 
(c) an empirically established mathematical algorithm utilizing a database of descriptors for 

(d) computational chemistry at the appropriate level of sophistication. 
chemical fragments 

4. HIERARCHY OF ACTIVITY 

There is clearly a hierarchy in the different activities that may be measured for a given 
compound, from the physicochemical ‘properties’ of the compound in specific experimental 
environments all the way to  measures of its interaction with complex biological systems. From 
this viewpoint, some QSARs may be regarded as attempts to model or even explain the 
variation in higher-level activities in terms of a selection of elementary, scientifically 
comprehensible activities at  lower levels. The latter may be easily measurable or adequately 
computable from knowledge of the molecular structure. 

The activity of a compound C in a complex biochemical environment such as those found 
in living organisms is undoubtedly a correspondingly complex function of basic properties of 
the molecule that control the variety and rates of component processes, e.g. the transport of 
the compound to and from its main sites of chemical action or the compound’s interaction 
with receptors at those sites. All of this is a statement of the obvious: that the task imposed 
on QSARs is both scientifically defensible and, at the same time, something of a tall order. 
QSARs attempt to bypass the hard science of their concern in the interests of expeditious 
discoveries-and must be allowed to use any ‘soft science’ device in their aid. 

We believe that the concept of a hierarchy of activity may have been neglected as the basis 
of one such device: that, in predicting the measure y of the biological activity in which we are 
principally interested, it may be advantageous first to predict or measure a number, z1, ..., zo, 
of ancillary activities or properties, whose relevance might be argued on general scientific 
grounds, and then to  predict y from the conjunction of z1, ..., zo (now in hand) with other 
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458 M .  STONE AND P. JONATHAN 

features of the structure 8 o f  the compound. For the case where 21, ..., za are not measured 
but are entirely predicted from knowledge of g this may appear to be a distinction without 
a difference, since a general function of 21, ..., za and Bis then just another general function 
of % The potential value of the device is, however, apparent when it is considered that the 
zs may be relatively well-predictable functions of 9 whereas y itself may contain a large 
element of uncontrollable experimental variation. The latter would render difficult the direct 
determination of the best predictor of y from g because it would obscure the important role 
played by the zs, which are themselves well-predictable and need to be predicted reliably before 
being used in the second stage of the prediction of y .  When the zs are themselves relatively 
easily measured activities, the potential predictive value of measurements of activities 
associated with parts of the process leading to y is obvious. For example, a z-variable might 
be a relevant biological activity measured in vitro, while y may be the complex and costly 
biological endpoint measurement in vivo. Yet another scenario is where z is the value of a 
physicochemical descriptor such as logP (see Appendix), predicted for compound C by a 
structural formula that has been validated by the congeneric series. 

5 .  THE CONSTRUCTION SET OF COMPOUNDS 

One possible framework for the prediction of the activity y of a compound C is as follows. 

(i) C is a variant of a standard compound C S  and is defined by replacement of parts of 
CS by alternative substituents. 

(ii) There is a set %' of so-called congeneric compounds in existence whose activities have 
been measured and which may all be regarded as related to CS by different 
substitutions. 

(iii) It is believed on reasonable scientific grounds that it may be possible to find an empirical 
relationship between the structure of the compounds in Q and their measured values of 
y that would then provide a statistical prediction of the as yet unmeasured value of y 
for C. 

A more realistic framework might be one in which the compound C is targeted, from the 
class of possible further variants of C S ,  as of special interest only in the light of an empirical 
QSAR fitted to the compounds in '$7. 

The 'congeneric series' of compounds %'is called the construction set for the prediction of y. 
Note that, for cases of hierarchical prediction where the intermediate prediction of ancillary 

quantities z (Section 4) is to be part of the prediction procedure, the construction set for z may 
with advantage be larger than that for y. 

6. STATISTICAL PREDICTION AND ITS ASSESSMENT 

6.1. Generalities 

The problem of statistical prediction of a complex activity of a compound C from knowledge 
of its structure alone is akin to that of forecasting the degree of marital harmony of a 
particular young man who has not yet met his partner. 

The general approach that has been tried up to now has been 

(i) a bold choice of potentially predictive descriptors 
(ii) their deployment in a scientifically plausible formula 
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QSAR AND RELATED STUDIES. 1 459 

(iii) a rough evaluation of its predictive value based on its degree of statistical fit to the 

Examples of the approach are given by the use of indicator variables for substituents in the 
Free-Wilson3 method or by the use of the sum of tabulated values of log P for the 
substructures making up the compound. Even for the first of these techniques, the statistical 
problems associated with too many descriptors may be present. When the description of 
structure moves towards the quantum mechanical, with its potentially vast quantities of 
information, the choice of predictor variables undergoes a combinatorial explosion. Moreover, 
there is increasing difficulty in saying what is meant by ‘the same descriptor’ in the variety of 
quantum mechanical descriptions represented in E. In some cases, variants of CS introduce 
branches in the set % in which descriptors arise which are not definable for all compounds in 
@ we then need the concept of contingent variables. Together with that idea goes the idea of 
a sequential tree-like analysis, in contrast to  the balanced type of analysis of multiple 
regression. 

When it comes to close examination of particular techniques of statistical prediction and its 
assessment, it has to be conceded that these are far from being standardized-even when there 
is no dispute about the probability model that would adequately represent the science behind 
the data. 

For example, suppose that, in screening five congeneric compounds for their biological 
activity, we got the following LD5O activity estimates in loglo [ l/(MOlar concentration)] units: 

known values of y in the construction set %. 

Compound 1 2 3 4 5 

Suppose for the sake of argument that it is known and agreed that for any one of these 
compounds the measurement of activity has a perfectly normal distribution about the true 
value with a standard deviation of 0.7 and that the five measurements are independently 
distributed. (The model here does not pretend to be realistic in the QSAR context. Indeed, we 
will make no further use of such formal models.) Suppose that a group of statisticians with 
a variety of backgrounds were individually asked: 

What is your prediction (estimate) of the true value of compound 2, selected 
because it has the largest measured activity? What is your assessment of the 
accuracy of your prediction? 

Activity 5-27 4-85 4-94 5-01 4.62 

Almost certainly, at least two differing answers would be obtained whose difference might be 
large enough to be of practical concern. One prediction might be the quite reasonable value 
of 6.85  with an assessment given by the experimental standard deviation of 0 .7 .  Alternatively, 
the fact that the compounds do not have significantly different activities ( P =  0.18) suggests 
the prediction of 5 - 3 4  (the average of all five measurements) with a standard deviation of 
0.7/5 = 0.3.  These two predictions differ by a factor of more than 30 on the concentration 
scale. 

If a disagreement of this magnitude can arise so readily for a simple, completely specified 
problem, it is clear that consensus cannot be expected in cases where the background science 
is only fragmentally developed and where, a fortiori, there can be no agreed probability model 
for the data. It is inevitable that in the absence of hard science, different investigators, driven 
by the pressure to predict, will arrive at very different predictions even when presented with 
exactly the same data. Accepting this diversity, the main emphasis has to be placed on 
attempting to  get a realistic assessment of the statistical uncertainties of the different 
predictions. 
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460 M. STONE AND P. JONATHAN 

We are therefore led to the consideration of general statistical methods for the assessment 
of statistical predictions. The first point that must be made is that, especially in an area like 
QSAR, it is much easier to identify potentially misleading techniques than it is to devise 
realistic ones. For example, there was the early recognition4” of the phenomenon of chance 
correlations arising from a rich candidacy of descriptors and of the associated poor 
performance of the selected predicting formula when applied to  new compounds. Such 
identification of misleading assessments requires, of course, that the reporting scientist will 
have given an honest account of the full choice of potential predicting formulae (predictors) 
that was available and of the way in which the variables used in the final predictor were 
actually chosen. 

These necessary caveats should not be used, however, as a counsel of despair leading to the 
wholesale rejection of statistical techniques or to the insistence that the only reliable ‘method’ 
is the retrospective assessment that may be made on new compounds whose measured activities 
may be compared with the predictions made for them. 

Indeed, the simplest simulation of retrospective assessment, known as the ‘split sample 
technique’, provides an alternative to despair that is sometimes used. In this method the 
construction set F? is divided into a training set of compounds (from which the predictor is 
freely manufactured) and the remaining validation set (on which its performance for 
compounds not involved in its manufacture is assessed). 

A refinement of the split sample method, known as cross-validatory assessment,6 is 
available for those cases where the method of predictor construction can be specified with 
enough precision to be put on the computer. This method will be described in some detail after 
we have discussed some of the standard assessment techniques and listed some of the 
limitations on their use. 

We will start the discussion at a somewhat unrealistic level with an example in which there 
are no unspecified parameters in the predictor that need to be estimated from the construction 
data. This example provides a baseline from which the increasingly questionable aspects of the 
more complex procedures may be more clearly appreciated. 

6.2. Inference for a prespecified predictor 

Suppose it is proposed to use the completely specified predictor 9=fo(.V) in which the suffix 
‘0’ is a reminder that there is nothing more to be specified or estimated in fo. 

and 
91, ..., gfl are the corresponding ‘predictions’. Then, for a QSAR study in which the only 
measurements for the construction set are the n values of y, the available raw material for a 
statistical assessment of the prediction 9~ = fO(Yc) (for the unsynthesized or newly considered 
compound C with structure 9~) is the n pairs of values ( j i , y i ) ,  i =  1,  ..., n. Suppose the 
deviations di = y i  -pi, i =  1, ..., n, between measured and ‘predicted’ values do not show any 
lawful dependence on Bbut  appear to vary randomly over the compounds in V as if they were 
a normal random sample with zero mean (!). The reliability of PC as predictor of yc could then 
be assessed by means of a symmetric 95% confidence interval for yc of the form 9~ 2 t ,  RMS, 
where 

Suppose L4, 9 2 ,  ..., Pfl are the structures of the n compounds in the construction set 

RMS= [(d: + + d i ) / n ] ” 2  

and tn  is the upper 2.5% point of the t-distribution with n degrees of freedom. 
However, it is unnecessary and arguably inappropriate in the QSAR context to make any 

assumption of normality for the inference. The n + 1 deviations dl ,  . . . , dn and dc = yc - YC 
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QSAR AND RELATED STUDIES. I 46 1 

are differences between the formula fo(S) ,  presumably generated by some scientific theory, 
and the actual or potential values of y for the n + 1 compounds. Such differences are not likely 
to fall obligingly into order as if from a normal distribution! Instead, the n values that are 
known to the investigator may well be unrelatable in any satisfactory way to the structure 
9 - in other words they may look like a random sample of deviations. If this idea of 
randomness is extended to  all n + 1 values, including the value dc that has not yet been 
revealed, on the grounds that there is nothing very special about the structure Y”c in the context 
of 93, ..., gn, then the set dl, ..., dn, dc may be regarded as weakly exchangeable in the 
following sense: if these n + 1 deviations are all different and we were somehow told the values 
of the deviations but not which of them was dc,  we would assign a probability l / (n  + 1) of 
dc being the smallest, a probability l / ( n  + 1) of it being the next smallest, and so on. It follows 
that if d(1) < d(z) < ... < d(n) are dl ,  ..., d,, placed in increasing order, the probability, on this 
view of the variability, that the unmeasured value of dc lies between the ith smallest and the 
j th  smallest of the values dl ,  ..., d,, is ( j -  i ) / (n  + 1 ) .  Another way of putting this is to  say 
that the interval from d( ; )  to d(,) is a confidence interval for dc with a confidence level equal 
to  ( j  - i)/(n + 1 ) .  This becomes a confidence interval ( 9 ~  + d ( ; ) ,  9c + d( j ) )  for the quantity of 
interest, yc .  

+ d i ) / n ]  = E(RMS2), so that RMS’ 
is a justified estimate of the mean-square error of prediction E ( d 6 )  = E[(yc  - Y c ) ’ ] .  

Exchangeability also implies that E ( d 6 )  = E [ ( d :  + 

6.3. Multiple regression and exchangeability 

An important class of incompletely specified predictors includes those that are linear in 
unspecified parameters. The reader is no doubt over-familiar with the simple case 
9 = a + b f o ( 8 ) ,  so we will go straight to  the case in which 

9 = a + blfA”(9) + + b p f i p ) ( Y )  

This ‘multiple-regression’ predictor looks less intimidating written as 

9 = a + blx(1) + ..- + bpx(p )  ( 1 )  

which is called a general linear predictor because it is linear in the unspecified constants 
a, 61, ..., bp. The predictor variables x ( l ) ,  ..., x ( p )  may be simple descriptors or complex 
functions of descriptors. 

We have gone for the special case where the predictor has an added constant a, in 
accordance with usual practice. Until further notice, we will also make two simplifying 
suppositions about the size and design of the construction set %?. 

(a) There is no exact ‘linear’ relationship between the values of x ( l ) ,  ..., x ( p )  for the n 
compounds in % (e.g. we do  not have x(1) + ... + x ( p )  = 100 as would be the case if 
x(l) ,  ..., x ( p )  were percentages adding to  100). 

(b) The number n of compounds in % exceeds the number p + 1 of unspecified constants 
in 9.  

These suppositions mean that there are no strictly mathematical complications in the ordinary 
least-squares fitting of the predictor formula to  the construction data. (In Part I1 we look at 
some methods designed to tolerate the breakdown of these conditions.) 

If 9 is then fitted by ordinary (unweighted) least squares to the construction data, what may 
be said in assessment of the resulting predictor Ec? This depends on the level of acceptable 
assumption. Strengthening the definition of the previous section, suppose that there are 
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462 M. STONE AND P. JONATHAN 

unknown ‘exchangeability values’, a,, be,, ..., b, say, of a, bl, ..., bp such that the associated 
deviations d l ,  ..., d,,, dc (between the values y l ,  ..., y n ,  yc and the respective values of the 
formula 9 evaluated at the exchangeability values) are (fuUy) exchangeable in the following 
sense: if we were somehow told the values of the n + 1 deviations but not which compounds 
had which values, we would regard all (n + l)! possible allocations as equally probable. It may 
be shown that this assumption justifies the usual estimate of the root-mean-square prediction 
error of jk as predictor of yc at x ( l ) ,  ..., x ( p ) :  

s(1 + l / n  -t gTS-’g)”2 

where (i) the root-mean-square error s is the square root of (residual sum of 
squares)/@ - p - I) ,  (ii) S is the sum-of-squares-and-products matrix for x ( l ) ,  ..., x ( p )  and 
(iii) g j ,  the j th component of g, is the deviation of the value of x ( j )  for compound C from 
its average value in the construction set. (Adding the assumption of normality to that of 
exchangeability would deliver a confidence interval for yc centred at PC and with a halfwidth 
given by the product of (2) and the appropriate value of Student’s t.) 

It is important to  note that there are severe conditions on the applicability of formula (2) 
and the like. Exchangeability is a non-trivial assumption which would be invalidated if the 
compound C had been selected just because the values of its descriptors x ( l ) ,  ..., x ( p )  gave 
a high value of jk. (Consider just p = 1, a very noisy least-squares fit, and C chosen From two 
competing compounds.) 

6.4. Testing and assessment 

Ail prediction is a gamble and so is commentary on prediction in any area of ‘soft’ science 
such as QSARs. There is no statistical technique that eliminates the need for human judgement 
of the reasonableness of any assessment of the uncertainty of a particular prediction. (This is 
in contrast to a game of chance with known and agreed probabilities: the outcome may be a 
gamble but there is nothing uncertain about its prior assessment, provided that the 
mathematics is done correctly.) 

The supposition that there is exchangeability of n + 1 particular quantities, one of which 
involves the prediction error, requires such judgement. Given the complexity of the structure 
Yand the environment 6“ for even the simplest QSAR, it would be unrealistic ever to claim 
that such a supposition is a necessary consequence of the available information. Rather, in 
practice, the investigator may be able to make some limited tests of the exchangeability 
hypothesis before accepting the associated assessment as part of the decision making about 
synthesis of C. These tests may be only weakly informative, so that the investigator will be left 
with a large element of uncertainty about the quality of the decision. The only consolation 
from the statistical side may be that the decision is likely to be better when it is thus informed, 
with a necessarily long-run validation of the term ‘better’ over a number of independent 
assessments, i.e. gambles. 

Without the extra assumption of normality (whose testing would add to an already difficult 
task), the only easily exploitable implications of the exchangeability assumption deployed in 
Section 6.3 are in the mean and variance-covariance structure of the least-squares residuals 
rr = y ,  - y I ,  I = 1, ..., n.  It may be shown that a test statistic of the form T =  clrl + + cnrn 
with CI + + cn = 0 is approximately normal with zero mean and standard deviation estimated 
as 

1 .  

s(c: + ... + cf - g:s-1gc)1’2 
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QSAR AND RELATED STUDIES. I 463 

where g,, = c1 [xl  ( j )  - X ( j ) ]  + ... + cn [x,,cj) - X ( j ) ]  . The quality of the approximation 
improves with the number n of compounds provided that T receives appreciable contributions 
from a large enough proportion of the residuals. With the test scene thus prepared, a 
significantly large value of T would cast doubt on the exchangeability supposition. 

We can illustrate all this by a reanalysis of the data in Table 7 of Reference 7 ,  for which 
n = 1 1 ,  y is the natural logarithm of an ‘apparent equilibrium constant’ and x(1) is R N ,  a 
lipophilicity descriptor associated with substituents at site R in the ‘QNB’ series of Figure 2. 
Taking x(2 )  = ~ k ,  the least-squares quadratic of y on TN is 

j =  - 7 . 6 4 + 7 . 3 9 ~ ~ -  1 . 5 5 ~ ;  (3) 

in which the t-value of 3 . 7  for the quadratic coefficient is formally highly significant. (The 
t-test corresponds to an application of our exchangeability test of the residuals for a straight- 
line fit, using a standardized T with coefficients c1, ..., c,, themselves chosen as the residuals 
in a straight-line fit of ~k on TN.) Although theoretically reasonable, the fit of (3) to the data 
is not close enough (with s = 1.04 on the natural logarithm scale) for the residuals to be 
accepted without further tests: in particular, theory suggests a look at their possible 
dependence on the steric descriptor Es. The plot in Figure 3 is informative enough to reject 
exchangeability without formal testing. The final fit including ES is 

p =  - 8 * 3 5 + 8 * 2 7 ~ ~ -  1 * 6 8 ~ $ ~ -  1.45Es (4) 

for which the residuals (with s = 0 . 5 6 )  now seem experimentally reasonable. (The coefficients 
in (4) are in minor disagreement with the calculations of Mager and Rothe. ’ We cannot accept 
the logic of their arguments for rejecting such a simple analysis. They see (4) as an ‘artefact’ 
associated with ‘nonsense correlations’.). 

In the example just considered, if the tests of exchangeability had been arrived at after 
searching for a ‘significant’ refinement among a large number of possible candidates, then the 
possibility that ‘significance’ represents just a chance correlation4s5 would have so reduced the 
impact of the finding that the investigator might stick with his or her initial choice of predictor 
formula. The weighing of this possibility raises difficult statistical questions whose 

..:X::o* 

Figure 2.  3-Quinuclidinyl benzylate (QNB) series’ 

Residual 

f 

-i -1.5 

0 

Figure 3. Residual plot for equation (3) 
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464 M. STONE AND P. JONATHAN 

accommodation requires extensions to the framework of our discussion so far. In effect, in 
contrast to the usual role of significance tests, the testing of exchangeability may then be more 
helpful when it supports the chosen form of predictor than when it makes that choice 
questionable. 

Exchangeability and subjectivity 

The ‘probability’ involved in the definition of exchangeability has to be seen as a variety of 
subjective or betting probability, which is a necessary expression of the difficulty in conceiving 
any realistic chance mechanism as part of the underlying science. Those averse to the ideas of 
‘subjective’ or ‘betting’ probability might wish to adopt some epithet such as ‘judgemental’ 
or ‘quasi-random’. 

Assessment 

Suppose that a broad assessment of the predictive potential of the predictor 9 is wanted, 
without specification of any particular compound as candidate for synthesis. We list three 
assessment criteria that are more dedicated to this objective than is the mere quotation of the 
multiple-correlation coefficient (which is just the Pearson correlation coefficient between pi 
and y i )  or the root-mean-square error s, useful though these two statistics are for general 
purposes. All three criteria assume that the n existing compounds in V are adequately 
representative of new compounds that might be proposed and that (interpolative) ‘prediction’ 
for the compounds in 55’ will provide the required broad assessment. 

(a) The ‘s+ criterion’ This is simply definable as an upward adjustment of s: 

s+ = s[l + ( p  + I)/n] 

Its derivation and interpretation rest on the hypothetical conception of n new compounds, 
different from those already in the construction set 0 but conveniently similar in that their 
positions in the p-dimensional space of x = (x(l), ..., ~ ( p ) ) ~  reproduce the n positions already 
occupied by the existing set %(given by the vectors XI, ..., xn). We are also required to conceive 
of the set of unobserved activities yn+l ,  ..., yzn, say, of these artificially conceived compounds. 
The final conception is that for i =  1, ..., n the values y l ,  ..., ynr yn+i satisfy the 
exchangeability condition that was imposed on yl ,  ..., yn,  yc in order to justify formula (2) 
of Section 6.3. 

With all this in mind, an estimate of the conceptual mean value of the square of the 
prediction error in En+i (the least-squares prediction of y,+i at xi, say) is 
s2[1 + l / n  + (xi - X)TS-’(xi - X)] by application of formula (2). Averaging this over the index 
i gives us an estimate of the mean value of the average of the squares of the prediction errors 
in & + I ,  ..., 9 2 , :  

= s2 [ l  + ( p  + l) /n] 

The latter expression has the uninformative label J, in the statistical literature. The label s+ 
for its square root is both informative and memorable, while the square root puts the criterion 
on the activity scale itself. 
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QSAR AND RELATED STUDIES. I 465 

(b) A n  alternative to s+ This is definable by 

s++ = s[l - ( p  + 1 ) / n y 2  
It is equivalent to the ‘generalized cross-validation’ criterion of Wahba’ and is claimed to be 
an advance on RMSPE (see below). Its derivation is rather technical and it is not clear whether 
s++ is superior to either s+ or RMSPE for the purpose of prediction assessment. Its 
adjustment of s always exceeds that resulting from the use of s+ and becomes quite drastic 
as ( p  + l ) /n  approaches unity, as the following numbers show: 

Multiplier of s 
When (p + 1)/n is 0 .1  0 -2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
the multiplier i n s +  is 1-05 1-10 1.14 1.18 1-22 1.26 1.30 1.34 1.38 1.41 
themultiplier i n s + +  is 1-05 1-12 1-20 1.29 1.41 1.58 1-83 2-24 3-16 03 

(c) The cross-validatory criterion RMSPE This is based on the simple idea that in turn, each 
of the compounds in V can simulate both a new compound prior to synthesis and the same 
compound after it has been synthesized and had its activity measured. For example, leaving 
out C1, we can fit formula (1) of Section 6.3 to  the n - 1 compounds CZ, ..., C ,  and use the 
resulting prediction formula to give a prediction 9-  1,  say, for CI. The error el = y l  -9-1 in 
this prediction is clearly of a different character from the residual rl = y1 - E l .  Whereas rl is 
the result of a calculation that is adaptive to the value of y1, the prediction error el genuinely 
reflects the true hazards of prediction, embracing both bias and variance (even though it is 
necessarily based on a slightly reduced construction set). In fact, el is always larger than rl ,  
the relationship between them being el  = r l / ( l  - h l ) ,  where hl = ( X I  - f f ) T S - l ( ~ l  - X). The sum 
e: + ... + e f  is the well-known statistic PRESS (prediction error sum of squares). Practitioners 
may prefer, as we do, the equivalent root-mean-square prediction error criterion 

RMSPE = [ ( e :  + ... + e;) /nl”* 

since this criterion is both on a ‘per compound’ basis and is directly assessable on the activity 
scale. 

Craig’ has rightly remarked that such cross-validatory assessment is based on the measured 
activities of the compounds C1, ..., C ,  and, of necessity, does not refer to new compounds. 
However, this remark also applies to  any data-based assessment and we cannot agree with 
Craig’s emphatic rejection of the leave-one-out procedure. (He refers to a paper by Snapinn 
and Knoke,” but this does not appear to relate to  the valid point he makes.) 

6.5. Problems of choice and ‘chance correlation’ 

Up to now we have considered the assessment of predictors of prespecified form, involving a 
number of parameters that have to be determined by fitting the formula to  the construction 
data. This type of problem is too restrictive to  be in wide use: prespecification is too binding 
on the investigator, who would usually wish to be free to  adapt the form of the predictor to 
the message of the construction data, prior to  parameter determination in the chosen form. 

In most QSAR problems there is a profusion of available descriptors whose value for 
prediction cannot be gainsaid in advance. The dimensionality of choice is usually very high and 
so therefore is the associated freedom to find a ‘predictor’ that fits the construction data 
unrealistically well, inducing a false sense of predictive competence in the user. 

This statistical problem has long been recognized” as particularly serious in areas of soft 
science with a profusion of explanatory variables. However, the necessary statistical techniques 
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466 M. STONE AND P. JONATHAN 

are still relatively undeveloped, even primitive. (The option is not available in soft science to 
impose a hard probability model in which the necessary mathematics could be developed.) The 
problem of ‘choice’ from a wide variety of formulae has to be distinguished from the problem 
of ‘overfitting’ within the ambit of a specified but overparametrized formula. The problem of 
choice is an order of magnitude more difficult than that of overfitting. For the latter there is 
often a prior ordering of the variables in the order in which they would be added to the fitting 
by least squares and the multiple-correlation coefficient r may be made as close to unity as we 
like (reaching the value of unity when the formula fits all the y-values in ‘$? perfectly). 
However, the root-mean-square residual s will not in general show any parallel trend towards 
zero. This is because the ‘degrees-of-freedom’ divisor of the residual sum of squares makes an 
automatic adjustment for the overfitting. Moreover, criteria such as s+ or RMSPE will reveal 
the point at which the overfitting starts and thereby provide the user with a safeguarding signal. 
(These criteria may be thought of as doing this by achieving a balance between the ‘bias’ from 
fitting an inadequately adaptive formula and the ‘variance’ in the fitted parameters due to the 
limited size n of the construction set.) 

However, if the choice of successive variables was not predetermined but was made with an 
eye to the enhancement of the correlation with y (as, for example, in stepwise regression), 
unrealistically small values of s may be easily generated. (Cramer” has suggested that this may 
have happened in the analysis of Cheney et al. 1 3 )  

The most difficult problem in assessing the consequences of choice may, however, stem from 
the selection of a compound, for synthesis or testing, that has the maximum predicted activity 
in the chosen and fitted relationship. Especially when the dimensionality p is high, there is 
likely to  be a large positive bias in the observed maximum as an estimate of the activity that 
would actually be found for the selected compound. The assessment techniques of Section 6.4 
and the next section are essentially just averages of honest assessments of the values of 
x = (x(l), ..., x ( p ) ) =  corresponding to CI ,  ..., C,. They do  not tell us anything directly about 
the bias in any selected maximum. Unfortunately, there seem to be no general methods for 
correcting the bias in maximum predicted activity that do not depend on strong and probably 
insupportable assumptions about the underlying relationship. 

6.6. Cross-validatory control 

We will have nothing to say about the assessment of methods involving undocumented, 
perhaps subjective, choices of technique. (The only reasonable course of action for these would 
be documented reanalysis.) Rather, we consider now those methods for handling a multiplicity 
of descriptors that are completely specified apart from a small number (preferably one or two) 
of control parameters that have to be chosen before the prediction for any compound C can 
be calculated. 

For example, nearest-neighbour techniques are controlled by the number of neighbouring 
compounds involved, while partial least squares is controlled by the number of construction 
stages used. 

Cross-validatory choice of control parameters proceeds ideally by the ‘leave-one-out’ 
procedure. For each point of a suitably located grid covering the space of control parameters, 
each compound is left out in turn and a cross-validatory assessment is made of the 
corresponding ‘prediction’ for the omitted compound. The point of optimal aggregate 
assessment then determines the predictor to be used. 

In the interests of computational economy, approximations to this ideal have been used in 
practice, such as the random or systematic division of W into training and validation sets 
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QSAR AND RELATED STUDIES. I 467 

(several such divisions being used) and the aggregation of the associated split-half assessments. 
Given the low cost of computing and the high cost of obtaining data, we recommend that 
efforts should always be made to achieve the symmetrical leave-one-out procedure, not 
forgetting the possible role of algebra in cutting computational comers. The method of cross- 
validatory choice is itself adaptive to  the construction data and therefore runs the risk of 
‘overfitting’. However, when the number of control parameters is small compared with the 
number of degrees of freedom after fitting the construction data, the value of the cross- 
validatory assessment criterion at the optimized choice should be a reasonably realistic measure 
of the predictive performance of the method as a whole. 

In some cases it is feasible to carry out what may be termed a ‘two-deep’ procedure, in which 
the whole calculation, ‘cross-validatory choice of control parameters + optimized prediction’, 
is itself subjected to a leave-one-out cross-validatory assessment! This clearly requires the 
leaving out of pairs of compounds: hence the ‘two-deep’. It is feasible only for simple 
procedures such as those involving least-squares matrix algebra, but the need for it or for some 
approximation to  it should be recognized in those cases where the number of control 
parameters is not small. 

6.7. Cause and effect 

With few caveats, the logic of causal inference is applicable to  the simplest of QSAR 
comparisons of existing compounds. Suppose the activities y 1  and yz of compounds C1 and 
C2 have been established, effectively error-free, by valid unbiased experimental procedures. 
Any difference between y1 and y2 must then be attributed to  the difference between C1 and 
C Z .  For example, if C1 and C2 differ only in their substituents, A and B respectively, at a 
particular location in the molecule, then we may say that the change of substituent A -+ B is 
the cause of the eflect y1 -+ y2. The logic is less straightforwardly applicable either when more 
complex comparisons are made than between just two compounds with one site of difference 
between them or when, for the design of a new molecule, we wish to predict a (necessarily 
causal) ‘effect’ for that molecule. The difference between C 1  and C Z  may be expressed as a 
trivial Free-Wilson QSAR 

Y = Y ~ I A  + Y Z ~ B  

for the congeneric class ( C l ,  CZ), where IA = 1 or 0 according to whether A is present or not 
(ditto for ZB). In this simple case the Free-Wilson relationship encodes the ‘cause and effect’. 

When C1 and C2 differ in a more complex fashion, e.g. in their substituents at  two locations, 
causal inference requires more data. The minimal case invokes a third compound C 3  with 
measured activity (also supposed for simplicity to  be effectively error-free). The set-up for four 
substituents A, B, (Y and p could then be as follows: 

Compound Location Activity 
1 2 

CI A ff Yl 

c2 B P Y2 
c3 A P Y3 

If y1, y2 and y3 are all different, then it can be truly said that (i) in the presence of p at location 
2 the change A -+ B causes the effect y3 -+ y2, and (ii) in the presence of A at location 1 the 
change a -+ /3 causes the effect y1-+ y3. However, no certain prediction can be made about the 
effect of joint changes A -+ B and /3 -+ a in the compound C3 that would give a new compound 
C with B and a at locations 1 and 2 respectively and with unknown activity y c .  At best we 
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468 M. STONE AND P. JONATHAN 

might hypothesize that, for example, the joint changes will have an additive effect, so that we 
would predict 

yc=y3+(y2-y3)+(yI-y3)=yl+yZ-y3 

However, any faith in this prediction is not evidentially supported by the construction data in 
W =  [Cl,  CZ, C3): its strength is no more than that of the extraneous hypothesis of additivity. 
The associated Free-Wilson QSAR 

y=y l  +(yZ-y3)lB+(y3-yl)ZLi 

is also evidentially neutral. 
Alternatively, consider the possibility of a good fit of y1, y2 and y3 by the two-parameter 

Hansch model y = a + bx, where x = H I  + H2 is the sum of tabulated hydrophobic fragmental 
constants l5 of the substituents at locations 1 and 2. A correlation coefficient of 0.9999 would 
give strong support from the data for the hypothesis that y = a + bx is a causally interpretable 
QSAR that can predict the activity of the new compound with the variable x playing a fully 
causal role. 

Similar support for causal interpretation can be given to more complex QSARs provided 
that their derivation has avoided the pitfalls of choice discussed in Sections 6.5 and 6.6. 
Although the QSAR area is a soft science, it does not have the degree of softness that in some 
areas, such as economics or sociology, renders causal interpretation of discovered relationships 
extremely hazardous. A chemical compound is a good model of an isolatable, fully describable 
agency. Moreover, the introduction of one compound rather than another into an environment 
in the determination of y1, . . . , yn is usually under the control of the experimenter. If one finds 
a strong, cross-validated QSAR in a rationally chosen set ‘I3 of congeneric compounds, the 
expectation is reasonable that the relationship should extend to any new compound that would 
have been classed with ‘$2 had it existed at the time. To deny this expectation by the counter- 
argument of ‘correlation not causation’ would be to invoke Murphy’s law, i.e. to suppose that 
some other latent influential causal variable has misleadingly correlated with the QSAR for the 
compounds in %? only to strike against it when the new compound has been synthesized. 

The reassurance just offered does not remove the need for adequate ‘congenericity’ between 
the new compound C and the construction set ‘I3. At the more technical statistical level the 
expectation of predictability has already been interpreted as an assumption of exchangeability. 
The prediction for C should not be so ‘extrapolative’ that doubt may reasonably be cast on 
the applicability of the predicting formula. (The terms ‘congenericity’ and ‘extrapolative’ are 
put in quotes for lack of precise definitions.) 

6.8. Collinearity 

The QSAR literature abounds with warnings16-21 about the dangers of coffinearity or near- 
collinearity of the predictor variables constituting the vector x = ( x ( l ) ,  ..., ~ ( p ) ) ~ .  Such 
warnings serve a useful purpose and the following alternative formulation may serve to bring 
out the key point more clearly. 

Suppose that the values H I ,  ..., Hn of some natural (i.e. not specially contrived) function 
H ( x ( l ) ,  ..., x ( p ) )  for CI, ..., C ,  respectively happen to be approximately equal (to their mean 
H ) .  If a new compound has a value of H ,  HC say, appreciably different from i?, then either 
the prediction of its activity should be treated with caution on the grounds that the discrepant 
value HC may be associated with lack of congenericity or extrapolability, or the prediction will 
have high assessed standard deviation (if extrapolation is carried out). 
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QSAR AND RELATED STUDIES. I 469 

For the case where H =  clx(1) + ... + cpx(p )  (which corresponds to the case of near- 
collinearity), the mathematical expression of the higher variability of least-squares prediction 
may be obtained from Section 6.3. For this it may be shown that in formula (2) 

which will be large under the suppositions made. 
We think that some confusion may have arisen from the use of the term ‘independent 

variables’ for what we have called the predictor variables. The ‘independent’ may originally 
have been intended in the sense that the variables could be varied independently of each other 
at the whim of the experimenter or, when the framework is observational rather than 
experimental, as the result of chance influences acting on each variable separately. The usage 
has since weakened to  mean simply any variables that are used in an explanatory role with 
respect to  a variable that is ‘dependent’ on them in a functionally specified relationship. The 
‘independence’ in the term ‘statistical independence’ has a different technical meaning which 
happens to imply uncorrelatedness. The chain of association here might suggest that 
independent variables should ideally be uncorrelated and that caution is required (in some 
unspecified way) when they are not. (The term ‘uncorrelated’ is otherwise expressed as 
‘orthogonal’ in the language of vector spaces.) It is the case, of course, that for efficient least- 
squares estimation and prediction, the ‘design’ of the points XI, ..., x,, for C1, ..., C, 
respectively should be well spread out, spanning their p-dimensional space, and that this 
property is often associated with zero or small correlations. However, designs with high 
correlation can be more efficient than orthogonal designs. For example, with n = 4 and p = 2 
the design labelled ‘0’ in Figure 4 has high correlation but would be more efficient (for an 
additive predictor) than the ‘ x ’  design. Furthermore, there are no greater difficulties in 
interpretation of the fitted coefficients for the ‘0’ design. 

G ,  
Figure 4. Comparison of an uncorrelated design ( X )  with a correlated design (0). 

It may therefore be that warnings about correlation have been overdone. A possible example 
of their subtle influence may be seen in the analysis of Rowberg and Hopfinger2’ with n = 22 
and unspecified p .  The authors found a correlation between the indicator variables for pOH 
and mOH, corresponding to  the imbalance in numbers of compounds in the 2 x 2 table 
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470 M. STONE AND P. JONATHAN 

which ‘shows the specific hydroxyphenyl substituent combination lacking in the database 
which is needed in order to  determine the importance of the C-4’ and C-3’ hydroxy positions 
for inhibition potency’. They found that I m o ~  was not statistically significant in a Free-Wilson 
analysis with just Z p o ~ .  However, when the model is extended to  include the three indicator 
variables THP, PYR and I N - ~ ~ ~ ~ I  (all in Rowberg and Hopfinger’s best-fitting Free-Wilson 
equation), we find that Z m o ~  is significant at P =  0.03, with a coefficient corresponding to a 
multiplicative factor of 2.7  on the ~ / Z S O  scale, consistent with the other findings gently 
questioned by the authors. (DuewerZ3 has raised a number of statistically contentious issues 
for Free-Wilson modelling, but these are without import for the present analysis.) 

6.9. Scale standardization 

Many standard statistical techniques have the property that their output is unaffected by the 
choice of units of measurement (‘scale’) of the input variables. An influential example is that 
of prediction in the non-singular case with n 2 p + 1 (the ‘multiple regression’ of Section 6.3): 
with a, bl, . . . , bp fitted by least squares, the actual value of the predictor (1) is unchanged by 
any rescaling of the descriptors x (  l), . . . , x ( p ) .  (The least-squares coefficients b,,  . . . , bp 
automatically compensate to  keep 9 the same.) 

By contrast, principal component regre~s ion’~  and partial least squares l4 are examples of 
techniques that are seriously affected by changes in the descriptor scales. For example, a useful 
predictor found with descriptors recorded in the old cgs units might have gone undiscovered 
had the newer SI units been used - or vice versa. 

It is commonly held that the output of any statistical procedure for QSARs should not 
depend on what the units of measurement of the individual descriptors happen to be. This view 
has led to the usual practice of scale standardization (or autoscaling) whereby the variables 
(whether ‘centred’ to have zero means or not) are divided by their individual standard 
deviations over the construction set. There is clearly much to be said for this practice where 
the individual descriptors are all of very different characters, e.g. ‘number of carbon atoms’ 
and ‘molar refractivity’, and where prior knowledge about their relative importance is not 
available. In such cases autoscaling serves the interest of scientific standardization, reducing 
the risk of subjective, deceptive scaling. However, standardization may have undesirable 
consequences. Suppose, for example, that the set of descriptors includes those making up a 
digitized NIR spectrum. Typically, 24 the informative wavelengths are those of high variance 
over the construction set. For a number of techniques this information would be degraded if 
we were to  autoscale each individual wavelength. (Of course, this does not exclude other forms 
of spectrum preprocessing. 2 5 )  In this context, what might be termed group autoscaling should 
be considered, in which subgroups of similar descriptors (e.g. the NIR wavelengths) are jointly 
autoscaled as a group in a way that does not destroy the relative informativeness of individual 
descriptors within groups. 

Technical footnotes 

(i) As a non-linear operation, autoscaling has the disadvantage that it stops algebraically 
slick cross-validation in least-squares multiple regression based on downdating formulae 
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QSAR AND RELATED STUDIES. I 47 1 

for matrix inversion: valid cross-validation has to use the n-fold leave-one-out 
procedure. 

(ii) The use of logarithms of positively valued descriptors should always be considered as 
an alternative to scale standardization. Their use gives independence of measurement 
units too and its value depends on the informativeness of percentage variations. 
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APPENDIX: CHEMICAL DESCRIPTORS FOR QSAR 

A l .  The role of computational chemistry 

The possibility of establishing QSARs based on theoretical descriptors offers the opportunity 
to predict the likely activity of a hypothetical chemical prior to  synthesis. For this reason, 
considerable effort has been devoted to the development of chemical descriptors using 
computational chemistry. From the quantum mechanical perspective a complete description of 
any molecular system could in principle be obtained by solution of the appropriate Schrodinger 
equation.26 In practice, this solution is unobtainable except for the hydrogen atom! (For the 
most elementary molecular ion, H: , we are forced to adopt the Born-Oppenheimer 
approximation, which permits a decoupling of the Schrodinger equation into nuclear and 
electronic equations. 2 7 )  In general, approximate solution of the Schrodinger equation requires 
a number of further simplifying assumptions. The quality of the solution obtained is 
dependent on many factors, notably 

(i) the completeness of the Hamiltonian (energy) function used 
(ii) the approximate form of the wavefunction assumed 

(iii) the method used for solution of the Schrodinger equation. 

Three levels of computational methods are in current use2' to generate descriptors for 
QSARs. Two of these, the ab i n i t i ~ ~ ~  and the semi-empirical, 30 provide approximate quantum 
mechanical solutions; the third approach, known as molecular mechanics, 3' ,32 utilizes a 
classical Newtonian 'ball and spring' method parametrized by experiment or high-level 
computation. Molecular mechanics provides a means for rapid calculation of minimum energy 
3D molecular conformations essential for many structure-based QSAR descriptors. 3 3  

Molecular mechanics also permits the modelling of molecular interactions 34*35 and hence the 
estimation of free energies of binding36 and time-averaged properties 37 (via molecular 
dynamics38) for example. 

A2. Chemical descriptors based on 3D molecular structure 

Useful chemical descriptors have been devised using nothing more than a knowledge of the 
molecular constituent atoms and their connections. In addition, some approaches make use of 
the precise 3D molecular geometry (incorporating bond lengths, angles, etc.), the 
determination of which involves either computational or experimental (e.g. crystal log rap hi^^^) 
work. These descriptors are discussed here. 
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472 M. STONE AND P. JONATHAN 

The Free- Wilson descriptors 

Consider a congeneric set of chemicals whose molecular structures differ only in the presence 
or absence of certain substituents on a common parent structure. In Free-Wilson analysis3 the 
variation in molecular structure is encoded as a set of binary indicator variables Xi (i = 1, 
2 ,  ...), each referring to the presence (Xi = 1) or absence (Xi = 0) of some substituent at some 
location. 

Minimal topological difference4' 

This can be considered as an extension of Free-Wilson analysis. The 3D structures for a set 
of chemicals are superimposed. As the first stage of the analysis, the molecular structure of 
each chemical is encoded as a set of binary indicator variables indicating the presence or 
absence of particular substituents at given locations in space. 

Topological descriptors 

Using the topology of a molecular structure, a number of chemical descriptors have been 
developed via graph theory. 4 1  In general terms, these descriptors describe the disposition of 
atoms in the molecule. For example, Wiener4* proposed a measure of molecular branching 
based on the molecular distance matrix, whose elements are the numbers bonds between 
appropriate pairs of atoms in the molecule. Kier and Hall43 introduced connectivity indices, 
which have been widely used for QSARs. 

A3. Chemical descriptors based on elementary physicochemical properties 

Historically, QSARs were attempts to relate chemical activity with simple measurable chemical 
properties. 44 One of the earliest reported QSARs involved correlation of the toxicity of simple 
organic compounds with their solubility in water.45 Hansch et al.46 showed that the 
octanol-water partition coefficient, a measure of hydrophobicity, could be correlated with the 
biological activity of certain plant growth regulators. Hammett4' demonstrated that a measure 
of substituent electronic effect could be correlated with the reactivity of substituted benzenes. 
The comparative success of these studies has motivated the widespread development of 
chemical descriptors for QSARs based on one or more simple measures of hydrophobicity, 
electronic and steric properties. Originally, these descriptors were measured experimentally. In 
recent years, however, computational chemistry and particularly molecular-fragment-based 
algorithms such as CLOGP and CMR48s49 have made reasonable theoretical approximation 
more attractive. 

The following are noteworthy physicochemical properties useful in QSARs. 

Hydrophobic descriptors 

The distribution (or partition) of a solute between two immiscible liquid phases is clearly of 
considerable interest for QSARs, involving biological systems 50 for example. A typical 
measure of hydrophobicity is the molecular octanol-water partition coefficient introduced by 
Hansch et al.46 Expressed as a logarithm, log P(oct/water) is a popular descriptor for both 
pharmaceutical5' and agrochemicalS2 QSARs. Initially, only experimental values for log P 
were obtainable. The popularity of this measure has resulted, however, the development of 

 1099128x, 1993, 6, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.1180070603 by R
ow

an U
niversity, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QSAR AND RELATED STUDIES. I 473 

analogous descriptors using chromatography. ” From the theoretical viewpoint, Rekker l 5  and 
colleagues pioneered an empirical method for estimating log P using molecular fragment data; 
this culminated in the development of software such as CLOGP49 which provides rapid 
approximation of log P values. Direct quantum mechanical approximation is also possible. 54 

Electronic descriptors 

Hansch et clearly established the importance of electronic effects in drug design following 
Hammett’s work on substituted  benzene^.^' Refined versions of Hammett’s approach” have 
been widely applied to  QSARs, with varying success. Today, a wide variety of electronic 
properties are used for QSARs. These include reaction constants, 5 5  ionization constants, 56 

dipole moments 57  and calculated energies for the highest occupied and lowest unoccupied 
molecular orbitals. ’* 

Steric descriptors 

Size and shape properties were first shown to be related to  chemical activity by Meyer. s9 Since 
then, a number of physical and chemical descriptors of steric properties have been proposed; 
notable early descriptors were Taft’s steric constants. 6o Many steric descriptors are calculated 
theoretically from a knowledge of the van der Waals radius of each atom in the molecule 
concerned. The van der Waals radius is defined as the distance at which the repulsion between 
the electron densities of two neighbouring atoms balances the attractive force between them. 
The value of this radius can be estimated from crystallography or computational chemistry. 

Various descriptors based on the van der Waals radius have been used for QSARs. In 
general, however, it is unlikely that any one of these would be of use in isolation. For this 
reason, Verloop and Tipler 52 devised the STERIMOL method, which describes molecules or 
substituents in terms of five steric parameters. Knowledge of the van der Waals radii permits 
the computation of the molecular van der Waals volume, 61 namely the volume of intersection 
of atom-centred spheres whose radii are given by the corresponding atomic van der Waals 
radii. 

Another popular descriptor of steric properties is the molar refractivity (MR), 62 related to 
refractive index and molar volume by the Lorenz-Lorentz equation. The precise meaning of 
MR as a QSAR descriptor is unclear; its close relation to  molecular volume and molecular 
mass is obvious, however. A fragment-based method, CMR,49 has been developed for rapid 
theoretical estimation of molar refractivities. Molecular volume and molecular mass63 have 
also been used as steric parameters for QSARs. 

A4. High-dimensional chemical descriptors 

The advent of accessible computing facilities, the ensuing ease of data generation, acquisition, 
manipulation and application of multivariate statistical techniques have encouraged the use of 
high-dimensional descriptors for QSARs. These are drawn primarily from computational 
chemistry and spectroscopy. Weinstein et a/ .  64 initiated the use of electrostatic potential 
maps,6s corresponding to  the electrostatic potential of a molecule, calculated on a lattice of 
points surrounding the molecule. Cramer et ~ 1 . ~ ~  have used a similar approach in their 
comparative molecular field analysis (CoMFA); this technique yields steric and electrostatic 
maps quantifying the interaction between the molecule of interest and a chosen probe atom. 
The use of measured or simulated spectroscopic data (infrared, near-infrared and nuclear 
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474 M. STONE AND P. JONATHAN 

magnetic resonance spectra) for prediction of the constituent proportions in a complex 
m i ~ t u r e ~ ” ~ ~  has also prompted the use of these and similar data as chemical descriptors for 
QSARs. 
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