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Principal components analysis (PCA) is often used in the analysis of multivariate process data to identify
important combinations of the original variables on which to focus for more detailed study. However,
PCA and other related projection techniques from the standard multivariate repertoire are not explicitly
designed to address or to exploit the strong autocorrelation and temporal cross-correlation structures that
are often present in multivariate process data. Here we propose two alternative projection techniques
that do focus on the temporal structure in such data and that therefore produce components that may
have some analytical advantages over those resulting from more conventional multivariate methods. As in
PCA, both of our suggested methods linearly transform the original p-variate time series into uncorrelated
components; however, unlike PCA, they concentrate on deriving components with particular temporal
correlation properties, rather than those with maximal variance. The first technique finds components
that exhibit distinctly different autocorrelation structures via modification of a signal-noise decomposi-
tion method used in image analysis. The second method draws on ideas from common PCA to produce
components that are not only uncorrelated as in PCA, but that also have approximately zero temporally
lagged cross-correlations for all time lags. We present the technical details for these two methods, assess
their performance through simulation studies, and illustrate their use on multivariate output measures from
a fluidized catalytic cracking unit used in petrochemical production, contrasting the results obtained with
those from standard PCA.

KEY WORDS: Multivariate process control; Principal components analysis; Temporally structured
components; Temporally uncorrelated components.

1. INTRODUCTION

There are numerous well-established, extensively investi-
gated, and widely used methods for the analysis of univariate
process data (see, e.g., Wetherill and Brown 1991; Bissel 1994).
In contrast, the techniques available for the analysis of multi-
variate process measurements are less well developed (Champ,
Tracy, and Young 1997). This is unfortunate, because multivari-
ate data are commonly encountered in many practical process
control situations, and thus there is an important requirement to
develop and extend the existing repertoire of methods applica-
ble to such data.

In general, multivariate process data may comprise variables
measured on categorical, discrete, or interval-ratio scales, and
possibly a mixture of these, but throughout this article we focus
on multivariate measurements on an interval-ratio scale. Many
datasets arising in industrial process control are of that nature,
and we use a typical example from petrochemical manufactur-
ing to illustrate the methods that we propose here. In addition
to correlation between variables, a particular feature of such
process data is the presence of strong temporal (serial) corre-
lation both within and between variables. Exploitation of this
temporal structure forms the basis for the new methods that we
suggest.

Various approaches have already been proposed for analyzing
multivariate process data depending on whether the objective
is description, control, or prediction. Methods include: differ-
ent forms of multivariate control charts (Alt and Smith 1988;
Fuchs and Benjamini 1994; Lowry and Montgomery 1995; Lui
1995; Runger, Alt, and Montgomery 1996; Aparisi, Jabaloyes,
and Carrión 1999), the incorporation of time series mod-
els in control charts (VanBrackle and Reynolds 1997; Jiang,
Tsui, and Woodall 2000), use of principal components analy-
sis (PCA) and modifications thereof (Jackson 1985; Runger
and Alt 1996; Wilkström et al. 1998a), and dynamic biplots
(Kulkarni and Paranjape 1984; Sparks, Adolphson, and Phatak
1997). Dynamic factor models (Molenaar 1985) are another
possible approach in which latent variable modeling is used to
systematically extract information from the multivariate time
series, although to date, applications of this method have been
in econometrics, psychology, or environmetrics rather than in
industrial process control.

© 2004 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, NOVEMBER 2004, VOL. 46, NO. 4
DOI 10.1198/004017004000000491

392



ANALYZING MULTIVARIATE PROCESS DATA 393

Of this previous work, the most pertinent to the discussion
here is that using PCA or related multivariate projection tech-
niques to decompose the raw data into uncorrelated compo-
nents for subsequent analysis. This is a common approach in
the analysis of multivariate process data, at least at a prelim-
inary stage. However, although undoubtedly useful, the basic
forms of such analyses are not oriented specifically to auto-
correlated data or to the explicit decomposition of temporal
structure in the multivariate process. The need to allow for the
strong temporal correlations that are often present in process
data has long been recognized in univariate process control;
for example, Faltin, Mastrangelo, Runger, and Ryan (1997) and
Harris and Ross (1991) have considered how to adapt univari-
ate exponentially weighted moving average (EWMA) and cu-
mulative sum (CUSUM) charts to allow for an autocorrelated
process. More recently, modifications to PCA for multivariate
temporally correlated processes have been suggested by, for
example, Wilkström et al. (1998b), Wachs and Lewin (1999),
Ku, Storer, and Georgakis (2001). In this article we propose
two additional multivariate methods that may be useful in an-
alyzing temporally correlated multivariate process data. As in
PCA, both methods linearly transform the original p-variate
time series, y(t) = y1(t), . . . , yp(t), into uncorrelated compo-
nents, u(t) = u1(t), . . . ,up(t). However, rather than focusing
on components that explain overall variance in the original
data, our methods instead produce components with particular
temporal autocorrelation or temporal cross-correlation proper-
ties. Such components may provide some analytical advantages
over those resulting from either standard PCA or from previ-
ously suggested PCA modifications designed to cater for tem-
poral structure. We illustrate that by comparing results from our
methods with those from PCA using both simulated data with
known structure and real data obtained from a petrochemical
production process.

The remainder of the article is organized as follows. In Sec-
tion 2 we introduce and describe a multivariate and serially cor-
related dataset obtained from a fluidized catalytic cracking unit
(FCC) used in petrochemical production and report the results
of standard PCA on these data to aid comparisons in subsequent
sections of the article. In Section 3 we develop the first of our
suggested alternative methods, reporting on simulations to es-
tablish its efficacy and comparing results for the FCC data with
those reported using PCA in Section 2. Our idea here is to find
“temporally structured” as opposed to “variance maximizing”
components, that is, components that exhibit distinct differ-
ences in the persistence of autocorrelation. Standard PCA will
not necessarily achieve this aim. The advantage of doing this is
that components of this type enable the analyst to characterize
and separately study short-, intermediate-, or long-term behav-
ior in the multivariate process and capitalize on this knowledge
in further analysis. For example, components with autocorrela-
tion extending over only short time lags may be identified with
the more transient aspects of process behavior (in the limit this
might be considered to be “noise” in the data), whereas those
with autocorrelation of a longer duration will relate to long- or
medium-term influences, which are perhaps more important in
process control. Such components may thus allow one to cap-
ture a fuller picture of the process dynamics than might other-
wise be achieved.

In Section 4 we outline the second of our transformation
methods, again substantiating its performance on simulated
data and then comparing results for the FCC data with those
from PCA obtained in Section 2. Here our aim is to remove
temporal cross-correlation between the components that we de-
rive. Standard PCA produces components, ui(t), i = 1, . . . ,p,
that are instantaneously uncorrelated [i.e., corr(ui(t),uj(t)) = 0
for i �= j], but pairs of these components are not necessar-
ily “temporally uncorrelated” [i.e., it is not the case that for
all time lags δ, corr(ui(t),uj(t − δ)) = 0, i �= j]. The compo-
nents obtained from our approach approximately satisfy this
second condition, which renders such components potentially
more appropriate than ordinary principal components if sepa-
rate univariate process control techniques are subsequently to
be applied to each component. For example, if one such compo-
nent signals an “out-of-control” point, it does not trigger a sig-
nal for future points in other components, as would be the case
for temporally cross-correlated components, such as those that
typically result from PCA. Independent process control analy-
ses of each component thus are not compromised by any tempo-
ral dependency between them. Finally, in Section 5 we provide
a brief summary and discussion.

2. FLOW COMPOSITION DATA FROM A
CONTINUOUS FLUIDIZED CATALYTIC

CRACKING UNIT

The oil industry is under constant pressure to improve the
performance of its manufacturing facilities. Large-scale petro-
chemical processes typically involve the separation and pu-
rification of mixtures of hydrocarbons and their conversion to
chemicals with high economic value. Statistical interrogation of
historical plant operating data has an important contribution to
make toward improving process understanding and optimizing
performance (Gray and Handwerk 1994). A modern refinery
or petrochemicals plant consists of a complex network of in-
terlinked processes. Processing is conducted in a sequence of
stages, with the output from one processing stage becoming the
input for the next. Most major manufacturing units are equipped
with supervisory computer systems that provide automatic con-
trol and allow continuous accumulation of operational data that
characterize process behavior. General features of data samples
drawn from continuous manufacturing processes are that they
are multivariate and both autocorrelated and cross-correlated
in time.

The FCC process is one of the most important in a refin-
ery, converting heavy crude oil fractions into more valuable
gasoline and lighter products via catalytic cracking reactions
(Sadeghbeigi 1995). FCC throughput is measured in thousands
of (metric) tons per day, and hence very small improvements in
performance yield substantial monetary benefits. We focus here
on a subset of output measures collected from the Shell U.K.
Stanlow FCC unit. Data collected from this process have been
described in more detail by Jonathan and Kaskavelis (1998) and
are broadly typical of the kind of multivariate process data ob-
tained from many industrial manufacturing operations. The par-
ticular subset that we consider consists of daily measurements
of the percentage concentrations of just two chemicals in one of
the major FCC output streams. These chemicals, denoted here
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simply as A and B, were selected because they represent two
of the more valuable components in the process. Each chemical
was recorded daily at three different points of the process over
a total of 665 days, giving rise to a multivariate time series on
six variables denoted A1, A2, A3, B1, B2, and B3.

The measured concentration of chemicals A and B can be
expected to vary over time for many reasons. First, there is
variation in chemical composition of feed to the FCC due to
processing of crude oil from different sources or from varia-
tion in operation of the crude distiller process upstream of the
FCC; there is also the potential to reroute hydrocarbon streams
from other parts of the refinery to the FCC. Second, the FCC
is a complex processing unit, the routine operation of which is
largely regulated by automatic process control schemes. These
schemes, based on such ideas as feedback adjustment (see, e.g.,
Box and Luceno 1997), are essential for efficient operation but
can introduce oscillations in process operation. Third, FCC op-
eration is also subject to numerical optimization to achieve
good economic performance. The optimizer adjusts operating
parameters on a daily basis. Fourth, FCC operation is further
manually adjusted on a periodic basis to adjust the rates at
which different products are produced. For example, regula-
tory requirements for motor gasoline in summer are different to
the winter requirements. Finally, as for any industrial process,
there are other essentially uncontrollable sources of variation
in production, including such effects as operator preference
(which tends to vary from shift to shift), causing cyclic trends
in operation.

The chemical bases corresponding to A and B are closely
related, and the operation of the FCC unit can be modified to
produce more of one of A or B at the expense of the other.
We therefore expect variables measuring A to be negatively
correlated with those measuring B. In contrast, we would ex-
pect positive correlation between the measures on each chemi-
cal taken at the three different points of the process.

As is typical of process measures encountered in practice,
the raw FCC data contained missing values where instruments

failed to record measurements on one or more of the vari-
ables. Some of these were at isolated time points, whereas oth-
ers involved short contiguous runs of values. Here we used
linear interpolation to impute the short runs, whereas we im-
puted single missing values by the overall mean of the vari-
able. In addition, there were some outlying observations that
clearly corresponded to spurious readings from faulty equip-
ment (because they were not physically possible in the cor-
responding processes), and these were also replaced by mean
imputation. There are arguments against the treatment of miss-
ing values by mean imputation and linear interpolation when
analyzing covariance and autocovariance matrices (as we do in
later sections of this article) because this practice can lead to
bias in their estimation. However, the number of missing values
here is not large relative to the total length of the observed se-
ries, and the dataset that results is believed to be of a quality that
is generally acceptable for the purposes of illustrating the meth-
ods developed in the subsequent sections of this article, where
presentation and exposition is simplified by having a complete
set of data. However, it should be noted that the methods that
we propose could be used without modification in conjunction
with more sophisticated methods for handling missing values if
this were felt to appropriate in a particular application, for ex-
ample, robust estimation of covariance matrices (Little 1988).
An alternative strategy, when the proportion of missing values
is relatively low, is simply to ignore the missing values and base
estimates of covariance and autocovariance matrices on reduced
sample sizes, because our methods do not necessarily require
that the estimates of the various matrices involved be based on
equal sample sizes.

In all of the analyses that we report here, the raw data were
standardized so that each variable was mean-centered with unit
variance. The standardized base dataset is depicted in Figure 1.
As seen from the estimated autocorrelation functions for each
of the six process variables, shown in Figure 2, and from their
sample correlation matrix, shown in Table 1, the six responses
are both correlated and autocorrelated.

(a) (b) (c)

(d) (e) (f)

Figure 1. Time Series Plots of Original Standardized Variables for FCC Data (a) A1; (b) B1; (c) A2; (d) B2; (e) A3; (f) B3.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Estimated Autocorrelation Functions of FCC Original Standardized Variables, With 95% Significance Bands Overlaid. (a) A1; (b) B1;
(c) A2; (d) B2; (e) A3; (f) B3.

For the purposes of comparison in later sections, we report
here the results of a conventional PCA of these data, focus-
ing particularly on how the autocorrelations and lagged cross-
correlations between variables in the raw data are affected by
the analysis. Figure 3 shows the estimated autocorrelations over
20 daily lags of the 6 principal components with 95% signifi-
cance bands overlaid in each case. Like the original variables,
all of the principal components are quite strongly autocorrelated
even over lags of several days. Component 1 exhibits a some-
what more persistent autocorrelation than the others, whereas
the autocorrelation structures of components 2–6 are very simi-
lar. Therefore, these principal components do not convincingly
characterize constituents in the process of a long-, medium-, or
short-term nature.

Figure 4 shows the estimated cross-correlation functions over
20 daily lags between various pairs of the first three princi-
pal components, which cumulatively account for 78% of the
variance in the original data. The 95% significance bands are
overlaid in each case, and the cross-correlations are signifi-
cantly different from 0 for the longer lags in both cases. These
principal components are therefore temporally cross-correlated,
even though the sample correlation between them at any par-
ticular time point is 0. Cross-correlation functions for other
pairs of principal components show a similar situation, and
at various time lags there are significant lagged associations
between all pairs of principal components. Separate univari-
ate process control analyses of these components thus would
be confounded rather than independent, and conclusions drawn

Table 1. Sample Correlations of Original Standardized
Variables for FCC Data

A1
B1
A2
B2
A3
B3




1.00
−.47 1.00

.54 −.48 1.00
−.59 .49 −.11 1.00

.31 −.44 .36 −.31 1.00
−.46 .55 −.36 .40 −.26 1.00




from such analyses may be compromised by the lagged tempo-
ral correlations. For example, knowledge of the occurrence of
an “alarm” in a univariate control chart based on one particu-
lar principal component modifies our future expectations con-
cerning “alarms” for control charts based on the other principal
components.

It is of course not surprising that PCA fails to isolate a dis-
tinctive autocorrelation structure convincingly, or that it does
not remove temporal cross-correlations in the data, because
these do not form part of the objectives of the method. PCA
simply concentrates on finding an orthogonal rotation of the
variables that maximizes variance under the assumption that
the observations for a variable are independent (rather than
potentially autocorrelated and temporally cross-correlated).
However, the results given earlier for this dataset highlight the
point that autocorrelation and cross-correlation structures in the
principal components may remain strong. Alternative projec-
tion methods are therefore needed if the objective of the analy-
sis is to produce components with particular and possibly more
desirable temporal structure. In the next two sections we sug-
gest two possible methods relating to that aim.

3. “TEMPORALLY STRUCTURED” COMPONENTS

Following the ideas outlined in Section 1, the objective of
the first of our alternative projection ideas is to derive a set of
“temporally structured” components, that is, uncorrelated com-
ponents with distinctly different autocorrelation structures. One
way to achieve this objective is to identify components with
minimum and maximum autocorrelation at some appropriately
chosen temporal lag δ. More specifically, we attempt to deter-
mine linear combinations of the original data, ui(t) = a′

iy(t),
i = 1, . . . ,p, such that corr(ui(t),uj(t)) = 0 for i �= j and so that
these components successively minimize autocorrelation at the
predetermined temporal lag δ, that is, corr(ui(t),ui(t − δ)) ≤
corr(uj(t),uj(t − δ)) for i < j.

TECHNOMETRICS, NOVEMBER 2004, VOL. 46, NO. 4
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(a) (b) (c)

(d) (e) (f)

Figure 3. Estimated Autocorrelation Functions of FCC Principal Component Scores, With 95% Significance Bands Overlaid. (a) Principal com-
ponent 1; (b) 2; (c) 3; (d) 4; (e) 5; (f) 6.

This idea is familiar from the image processing literature, be-
ing originally studied in that context by Switzer (1985). It has
also recently been used in a more general spatial context by
Bailey and Krzanowski (2000). Switzer was interested in re-
moving noise from observed multivariate satellite imagery and
argued that if a spatial lag δ was chosen judiciously (typically
small in magnitude), then a linear component of the data with
minimal spatial autocorrelation at that lag could be associated
with “noise” in the image, on the basis that any noise compo-
nent would tend to have only short-range spatial dependence in
contrast with signal components where spatial autocorrelations
would persist over longer distances. Once identified, the noise
component could then be filtered from the data to produce a
cleaner image.

Adapting the mathematical derivation of Switzer’s “min/max
spatial factors” to our purposes here, and to the time as op-
posed to the spatial domain, is straightforward and leads to
the result that the coefficients, ai, i = 1, . . . ,p, that we seek
for our “temporally structured” components are solutions to
the eigenvalue problem (C(δ) − λ(δ)�)a = 0 (see Switzer
1985 for mathematical details), where � = cov(y(t)) denotes
the covariance matrix of the original observed process, and
C(δ) = cov(y(t),y(t − δ)) is its autocovariance matrix at time

lag δ (i.e., that of its auto- and cross- covariances at lag δ). So,
put more simply, our required coefficients, ai, for each com-
ponent, ui(t) = a′

iy(t), are the eigenvectors of �−1C(δ), these
being arranged in ascending order of their corresponding eigen-
values, λi(δ). By convention, the eigenvectors are normalized
so that ui(t) have unit variance, and then it follows that the ith
eigenvalue is simply equal to the autocorrelation of the ith com-
ponent at lag δ, that is, λi(δ) = corr(ui(t),ui(t − δ)).

Practical application of the foregoing method depends on the
assumption that the multivariate series under investigation is
at least second-order stationary, or otherwise the autocovari-
ance is not defined. For most multivariate process datasets en-
countered in practice, stationarity of both variance and mean
are common assumptions and we adopt that stronger station-
arity condition here and in subsequent sections of the article.
A more difficult practical issue is that the process covariance
matrix, �, and autocovariance matrix at lag δ, C(δ), would be
generally unknown for an observed series and need to be esti-
mated to apply our suggested technique. It is well known (e.g.,
Percival 1993) that the classical sample estimators of covari-
ance and autocovariance are biased for an observed time series
with unknown mean, even when the series is stationary, and

(a) (b)

Figure 4. Estimated Cross-Correlograms Between FCC Principal Component Scores (a) 1 and 2 and (b) 2 and 3, With 95% Significance Bands
Overlayed.
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that this bias can be surprisingly large when strong autocor-
relations are present, particularly for estimates of autocovari-
ance at long lags. Furthermore, the classical sample estimate
of C(δ) does not even guarantee a symmetric and positive defi-
nite matrix (e.g., Wackernagel 1995). In contrast, Haslett (1997)
suggested a natural sample estimator for the variogram that is
unbiased for a mean and variance stationary process and has
the added advantage of having only a small bias even when
strict stationarity does not apply. For that reason, it is conve-
nient to reformulate our technique in terms of the matrix of
semivariances, �(δ) = (1/2) cov(y(t) − y(t − δ)), using the re-
lationship between semivariance and covariance for a station-
ary process, that is, �(δ) = � − C(δ). We may then express
(C(δ) − λ�)a = 0 equivalently as (�(δ) − ν(δ)�)a = 0, where
ν(δ) = (1 −λ(δ)), and estimate �(δ) using Haslett’s natural es-
timator, that is, �̂(δ) = {γ̂ij(δ)}, where

γ̂ij(δ) = 1

2(T − δ − 1)

T∑
t=δ+1

(
di(t) − d̄i

)(
dj(t) − d̄j

)
,

with di(t) = yi(t) − yi(t − δ) and T denoting the length of the
observed series.

The problem of estimating the covariance matrix, �, re-
mains, but the bias in the classical sample covariance estima-
tor is less than that experienced in autocovariance estimation,
and the classical covariance estimator is asymptotically unbi-
ased for a stationary series. In the applications reported in this
article we are dealing with stationary series observed at sev-
eral hundreds of time points, and so we simply adopt the classi-
cal estimator throughout; that is, we use the sample covariance
matrix, �̂, to estimate �. For shorter series, a bias reduction
technique such as the jackknife could be used in estimating �,
a simple example being the method suggested by Quenouille
(1957) in which sample covariance matrices �̂1, �̂2, and �̂ are
formed from the first half, second half, and whole of the ob-
served series, and then an overall estimate of � is derived as
�̃ = 2�̂ − (�̂1 + �̂2)/2. Alternatively, one might use the sam-
ple semivariance estimate given earlier, but computed at a lag
guaranteed to be large enough to exceed the range of the auto-
covariance structure in the process.

Using the estimates discussed earlier, the required coeffi-
cients for our suggested components are therefore obtained
in practice as normalized eigenvectors of �̂−1�̂(δ), where
these are arranged in descending order of corresponding eigen-
values νi(δ), because these are now equal to 1 − corr(ui(t),
ui(t − δ)). Note, however, that �̂−1�̂(δ) is not a symmetric ma-
trix, so it is useful to make a final modification for computa-
tional convenience. If �̂ = FF′ is the spectral decomposition of
the estimated covariance matrix �̂, then (�̂(δ) − ν(δ)�̂)a = 0
reduces to

(
F−1�̂(δ)(F′)−1 − ν(δ)I

)
e = 0, (1)

where e = F′a. Thus, finally, our required “temporally struc-
tured” components ui(t) = a′

iy(t) are given by ai = (F′)−1ei,
where ei are the normalized eigenvectors of the symmetric
matrix F−1�̂(δ)(F′)−1 in descending order of corresponding
eigenvalues νi(δ) = 1 − corr(ui(t),ui(t − δ)).

Given a judicious choice of the prespecified time lag δ, this
method provides a straightforward way to transform multi-
variate process data into a set of constituent components that

are uncorrelated and may be interpretable in terms of phys-
ically meaningful long-, medium-, or short-range features of
the process. The “success” of an analysis of this nature will
depend on a suitable choice of δ and will be one that results
in a distinct separation between components with short-range
and long-range autocorrelation structures. This in turn corre-
sponds to component autocorrelations at lag δ being close in
absolute value to either end of the [0,1] interval. Because
νi(δ) = 1 − corr(ui(t),ui(t − δ)), this suggests that we need
to choose δ so as to optimize a function that characterizes the
range or spread of the eigenvalues obtained at lag δ. Various
possible functions could be adopted; here we suggest simply
taking the variance of these eigenvalues,

G(δ) = 1

p − 1

p∑
i=1

(
νi(δ) − ν̄(δ)

)2
. (2)

Maximizing (2) over a sensible range of lags δ will then indicate
a value of δ that produces components from (1) that strongly
separate long- and short-term components. G(δ) is not, how-
ever, a simple monotonic function, and so there could be several
local maxima and possibly no clear global maximum. If this is
the case, then it is a matter of trying each of the local maxima
in contention to judge the best suitable lag.

We can use simulation to see how our suggested method per-
forms in general in uncovering the underlying structure of a
multivariate series constructed from a convolution of compo-
nents with distinctly different temporal structures. To do this,
we simulated 100 datasets, each composed of 500 observations
from three independent ARMA(1,1) time series. The latter
were chosen so as to have short-, intermediate-, and long-
range autocorrelation functions (φ = .64 and θ = −.20 for
series 1, φ = .83 and θ = −.60 for series 2, and φ = .92 and
θ = −.15 for series 3). Random errors were drawn in each
case from an N(0,4) distribution for 75% of the time and from
an N(0,25) distribution for the remaining time. Once gener-
ated, the three series in each of the 100 datasets were lin-
early combined using randomly selected nonsingular matrices
to produce 100 realizations of a trivariate, correlated multivari-
ate process of length 500. Our suggested method for deriving
temporally structured components, implemented via (1), with δ

chosen via optimization of (2), was then applied in each case
(where a choice of δ = 5 was found appropriate). For compari-
son, a standard PCA was also applied for each dataset, and then
the autocorrelation functions for both the temporally structured
components and the principal component scores were estimated
for each realization. These functions were then averaged over
the 100 datasets. The resulting average estimated autocorrela-
tion functions for each of the three temporally structured com-
ponents and for each of the three principal components are
depicted in Figure 5, along with those of the three original con-
stituent ARMA series. The maximum and minimum autocor-
relation values obtained over the 100 datasets for each lag for
each of the various components are also overlaid in Figure 5.

A clear general picture emerges from these simulation re-
sults in that the autocorrelation structures of our temporally
structured components look very similar to those of the three
original constituent series, even given the min/max variations
experienced over the 100 realizations. On average, our method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (j)

Figure 5. Average Estimated Autocorrelation Functions Over 100 Realizations for Three Constituent ARMA Series [(a) 1, (d) 2, (g) 3] and for the
Scores From the “Temporally Structured” [(c) 1, (f) 2, (i) 3] and Principal Components [(b) 1, (e) 2, (h) 3] Derived From Random Linear Combinations
of These Series, With Overlaid Envelopes of the Min/Max Values Obtained in the Realizations.

does successfully decompose the convoluted three variable se-
ries into its constituent short-, intermediate-, and long-range
components. In contrast, the three principal components fail to
recapture this underlying structure in the data. On average, the
estimated autocorrelation functions of all components are very
similar and do not correspond well to the three distinct struc-
tures underlying the simulated multivariate series. These results
imply that our suggested method performs well (and certainly
better than PCA) at uncovering underlying temporally struc-
tured components in a multivariate series, and more extensive
simulation results, not reported here, confirm this when various
other constituent numbers and types of autocorrelation struc-
tures are combined to make up the multivariate series analyzed.

Turning to the real FCC dataset introduced in Section 2, val-
ues of G(δ), as defined in expression (2), for δ in the range
0–15 days for these data are shown in Figure 6 (with lags of
longer than 2 weeks being of little practical interest here). A lag
of 0 days is equivalent to carrying out a standard PCA and
is included for comparison. The maximum value of G(δ) oc-
curs here at δ = 7. Figure 7 shows the autocorrelations of the
six temporally structured components derived from (1) using
this choice of δ. The components demonstrate markedly differ-
ent autocorrelation structures. Components 1 and 2, with the
shortest-range autocorrelations, are consistent with more tran-
sient effects, possibly “noise,” in the process, whereas compo-
nent 6 exhibits autocorrelation extending over the full 20-day

period and corresponds to global behavior. The other compo-
nents display intermediate behavior. This picture contrasts with
the autocorrelations of the principal components given previ-
ously in Figure 3, where there is less of an obvious difference
in the autocorrelation structures of the components, making it
more difficult to interpret them in terms of long- or short-term
effects.

The coefficients for each of the derived temporally structured
components are given in Table 2. In general, when standard-

Figure 6. Values of G(δ) for FCC “Temporally Structured” Compo-
nents Obtained for δ Ranging Between 1 and 15 Days.

TECHNOMETRICS, NOVEMBER 2004, VOL. 46, NO. 4



ANALYZING MULTIVARIATE PROCESS DATA 399

(a) (b) (c)

(d) (e) (f)

Figure 7. Estimated Autocorrelation Functions of FCC “Temporally Structured” Component Scores [(a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6] Obtained
for δ = 7 Days, With 95% Significance Bands Overlaid.

ized by the variances of the relevant original variables, such
coefficients allow the components to be interpreted in terms
of contributions from each of the original variables. Here stan-
dardization is unnecessary, because the original data were stan-
dardized before analysis and so raw coefficients can be used
directly. From this it is clear, for example, that the long-range
component 6 is essentially a mixture of B1 and B3, whereas
the shortest-range component is contrasting B2 with the sum of
B1 and A2.

Note that the temporally structured components proposed
here are uncorrelated, but they are not an orthogonal transfor-
mation of the original data; that is, the total variance in the orig-
inal data is not preserved by the transformation as it would be
in standard PCA. For the FCC data analyzed here, the six com-
ponents taken together account for approximately 64% of the
original variance in the data. This is comparable to the 66%
that is cumulatively explained by the first two principal compo-
nents considered in Section 2. Of course, the objective here is
not necessarily one of reducing the dimensionality of the data,
but rather of identifying long- or short-term constituents of the
process behavior. Nevertheless, it is interesting to note that the
temporally structured components do retain most of the vari-
ance in the original data. Individual variances for each may be
calculated directly from the component scores, and, if desired,
these may be used to provide a basis for ordering the relative

Table 2. Coefficients of FCC “Temporally Structured” Components
Obtained for δ = 7 Days

Component
Variable 1 2 3 4 5 6

A1 −.14 −.50 .60 −.14 −.65 −.19
B1 .39 −.56 −.39 −.55 .15 .49
A2 .42 .14 .23 −.27 .70 .15
B2 −.78 −.23 .38 −.24 −.16 −.05
A3 −.18 −.60 −.23 .40 .18 −.20
B3 .12 .04 .49 .63 −.03 .81

importance of each component and perhaps a justification for
retaining only a subset of these in subsequent analyses.

4. “TEMPORALLY UNCORRELATED” COMPONENTS

A byproduct of the projection technique discussed in the pre-
vious section is that it produces uncorrelated components that
also have zero cross-correlation at the single specific lag δ on
which the analysis is based. Although this property does not
necessarily guarantee small cross-correlation at other lags, our
experience in practice is that it does tend to result in com-
ponents with generally smaller lagged cross-correlations than
those between the principal components. However, rather than
simply relying on this general flattening in cross-correlations
induced by enforcing zero cross-correlation at one specific lag,
there may also be value (for the reasons outlined in Sec. 1) in
components that are more directly designed to minimize cross-
correlations over all lags. In this section we therefore focus
on the second of the alternative projection ideas mentioned
in Section 1 concerning the derivation of a set of “temporally
uncorrelated” components, that is, linear combinations of the
original data, ui(t) = a′

iy(t), i = 1, . . . ,p, with the property that
corr(ui(t),uj(t)) = corr(ui(t),uj(t − δ)) = 0 for i �= j and for all
time lags δ. The key motivation is that such components may be
used in separate univariate analyses with more confidence than
would be the case with conventional principal components be-
cause, although the latter are uncorrelated at any point in time,
they may, as demonstrated in Section 2, remain cross-correlated
over a range of time lags.

Our aforementioned objective may be achieved by adapting
techniques from those used in common PCA (Flury 1988). To
see this, suppose that δ1, . . . , δK are a set of K temporal lags
chosen so as to reasonably span the full temporal range of lags
over which cross-correlation might be expected to persist be-
tween the original variables. Then, with notation similar to that
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used in Section 3, the problem of finding coefficients for “tem-
porally uncorrelated” components involves finding solutions, a,
to the set of simultaneous equations

(
C(δk) − λ(δk)�

)
a = 0 for all k = 1, . . . ,K, (3)

where, as before, C(δk) = cov(y(t),y(t − δk)) are the autoco-
variance matrices of the original process at each of the time
lags δk and � = cov(y(t)) is its covariance matrix.

As in Section 3, issues of practical estimation and com-
putational convenience would arise in directly applying the
foregoing formulation to an observed series. So, as before, we
reexpress the problem in (3) in terms of sample estimates of
semivariance matrices, �̂(δk), and use the spectral decomposi-
tion of the sample estimate of the covariance matrix, �̂ = FF′,
to obtain the series of equations

(
F−1�̂(δk)(F′)−1 − ν(δk)I

)
e = 0 for all k = 1, . . . ,K, (4)

where a = (F′)−1e and ν(δk) = 1 − λ(δk).
Therefore, in practice, the problem of identifying compo-

nents with zero cross-correlations at each of a set of lags
δ1, . . . , δk reduces to that of finding common eigenvectors, ei,
i = 1, . . . ,p, of the set of symmetric matrices F−1�̂(δk)(F′)−1,
k = 1, . . . ,K. This is essentially an identical problem to that en-
countered in the well-established method of common PCA, and
although there is no exact mathematical solution in the gen-
eral case, there are maximum likelihood or least squares algo-
rithms readily available to obtain a set of eigenvectors that best
approximate the simultaneous diagonalization of these K ma-
trices (Flury and Constantine 1985; Clarkson 1988). Once the
best approximating common eigenvectors, ei, are found via one
or other of these algorithms, then the required coefficients, ai,
i = 1, . . . ,p, for our set of “temporally uncorrelated” com-
ponents, ui(t) = a′

iy(t), i = 1, . . . ,p, are simply formed from
ai = (F′)−1ei. The K sets of eigenvalues, νi(δk), i = 1, . . . ,p,
k = 1, . . . ,K, corresponding to the p common eigenvectors ei,
then have analogous properties to the single set encountered in
Section 3, that is, νi(δk) = 1 − corr(ui(t),ui(t − δk)).

Thus formulated and given a sensible choice of the time
lags δk, our method provides a practical way to transform multi-
variate process data into a set of “temporally uncorrelated” con-
stituent components ui(t), i = 1, . . . ,p, that is, components for
which corr(ui(t),uj(t)) = 0 and corr(ui(t),uj(t − δ)) ≈ 0 for all
i �= j and all “reasonable” time lags δ. As in Section 3, the pro-
posed method depends on sensible choices of time lags. How-
ever, here the lags δk are simply required to be representative of
all “reasonable” time lags. The choice thus presents little prac-
tical difficulty, because it is relatively straightforward to decide
a priori on a realistic range over which lagged cross-correlation
in the original process might extend. One then chooses K such
that equally spaced δk, k = 1, . . . ,K, sufficiently cover that
range.

To check the performance of our suggested method in pro-
ducing components with low cross-correlation, we simulated
100 datasets each composed of 500 observations from a trivari-
ate VARMA (vector ARMA) model chosen to have strong
autocorrelation and cross-correlation structures. More specif-
ically, we used a modification of the artificial three-variable

VARMA(1,0) series given by Quenouille (1957), taking his au-
toregressive parameter matrix

� =
(1.0 −.1 0

.2 1.0 −.3
0 .9 0

)

but adjusting the error structure to reflect a similar mixture to
that used in the simulations in Section 3. Random errors were
drawn from a multivariate N(0,�1) distribution 75% of the
time and from an N(0,�2) distribution the remaining time, with

�1 =
(4.0

1.6 4.0
1.6 1.6 4.0

)
, �2 =

(25.0
10.0 25.0
10.0 10.0 25.0

)
.

Table 3 gives the results of applying our method to the
simulated series from this model and includes corresponding
comparative results for the raw series. The cells of the table
report the averages for the 100 realizations (with standard de-
viations in parentheses) of the mean absolute values of the
cross-correlations over lags 1–10 between the three raw vari-
ables and between the “temporally uncorrelated” components.
On average, our “temporally uncorrelated” components exhibit
markedly less overall cross-correlation than the original vari-
ables. Our suggested method is therefore effective in decom-
posing a correlated multivariate series into components that at
least have small, if not zero, temporal cross-correlations, some-
thing that cannot be guaranteed for PCA. Space prevents us
from reporting the details here, but this picture is confirmed
in more extensive simulations involving a variety of other types
and higher-dimensional multivariate time series models.

We now return to the FCC example used in Sections 2 and 3
and examine the results of applying our method in that six-
variable case. Components were derived via (4), selecting
lags, δk, k = 1, . . . ,7, to correspond to 1, 4, 7, 10, 13, 16,
and 19 days. Figure 8 shows the estimated cross-correlation
functions over 20 daily lags between the “temporally uncorre-
lated” component scores 1 and 2 and 2 and 3, with 95% sig-
nificance bands overlaid in each case. All cross-correlations
between the first and second components lie wholly within the
95% significance band, showing that the temporal correlation
between components is not significantly different from zero
over all lags. The cross-correlations between the second and
third components show only a few marginally significant lags.
Hence we can conclude that the method has been successful
in substantially removing cross-correlations between compo-
nents. These results may be contrasted with the corresponding
cross-correlation functions for the principal components given
previously in Figure 4.

Table 3. Averages for 100 Realizations of Simulated VARMA Series
(with standard deviations in parentheses) of the Mean Absolute Values

of the Cross-Correlations Over Lags 1 to 10 for Raw Variables
and for “Temporally Uncorrelated” Components

Raw variables Temporally uncorrelated components
1 2 1 2

2 .4735 .1825
(.080) (.060)

3 .4448 .4311 .0471 .1378
(.080) (.074) (.018) (.019)
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(a) (b)

Figure 8. Estimated Cross-Correlograms Between FCC “Temporally Uncorrelated” Component Scores (a) 1 and 2 and (b) 2 and 3, With 95% Sig-
nificance Bands Overlaid.

Cross-correlations between all possible pairs of the six de-
rived “temporally uncorrelated” components are usefully sum-
marized in Table 4, which reports the mean absolute value over
20 daily lags of the estimated cross-correlations between the
“temporally uncorrelated” component scores and between the
original FCC variables. Values in this table for the “temporally
uncorrelated” components are generally much smaller than the
corresponding figures for the original variables, confirming that
the minimization of lagged cross-correlations has been consis-
tent over each of the pairs of components. That situation is
not guaranteed for the principal components scores derived in
Section 2.

Note that, as in Section 3, our “temporally uncorrelated”
components are not an orthogonal transformation of the origi-
nal data and thus, in contrast to the principal components, do not
preserve the total variance in the original data. In this case the
six “temporally uncorrelated” components account for approx-
imately 72% of the original variance in the data, comparable
to the 78% cumulatively explained by the first three principal
components in Section 2. The “temporally uncorrelated” com-
ponents thus retain most of the variance in the original data. In-
dividual variances for each may be calculated directly from the
component scores, and, if desired, these may be used to provide
a basis for ordering the relative importance of each component
and perhaps a justification for retaining only a subset of these in
subsequent analyses. An alternative basis for an ordering would
be provided by considering the eigenvalue sums,

∑K
k=1 νi(δk).

Arranging the components in descending order of these quan-
tities would correspond to attempting to match the components
to short-range as opposed to long-range process behavior. This
results in components with similar properties to those obtained
in Section 3, but with the added advantage of a lack of lagged
cross-correlation. Clearly, however, there is no guarantee that

the components here would be as successful in exhibiting dis-
tinctly different autocorrelation structures as those obtained by
the methods discussed in Section 3. In the case of the FCC data,
it is components 4 and 1 that correspond to the shortest- and
longest-range components.

The primary motivation for considering a method for deriv-
ing “temporally uncorrelated” components was that their lack
of cross-correlation would make them well suited to subsequent
separate univariate analyses without any need to consider po-
tential difficulties that might arise from variables in these analy-
ses having strong temporal cross-correlation. Figure 9 provides
an illustration of this by comparing univariate Shewhart charts
for principal components 1, 2, and 3 with similar charts for
the three “most important” “temporally uncorrelated” compo-
nents, that is, those with the three highest individual variances.
The 95% upper and lower control limits are also indicated in
Figure 9 (adjusted to allow for multiple testing over the six
variables).

The general behavior of the process indicated in each of
the principal components can be matched to that for a corre-
sponding “temporally uncorrelated” component (1 matches 1,
2 matches 2 and 3 matches minus 3). However, although the
overall chart picture is similar for each principal component
and for its “temporally uncorrelated” counterpart, a closer in-
spection reveals some differences in the detail. This is par-
ticularly interesting where it concerns inconsistencies in the
values that exceed the control limits, and it serves to illus-
trate that different judgments can arise from “temporally un-
correlated,” as opposed to principal, components. The general
point to be stressed is that separate significance tests carried out
on individual principal components are not independent (due
to potential temporal cross-correlations between components),
whereas corresponding tests performed on individual “tempo-
rally uncorrelated” components are less confounded, because

Table 4. Mean Absolute Auto- and Cross-Correlations Over Daily Lags 1–20 Between FCC “Temporally
Uncorrelated” Component Scores and Between Original Standardized Variables

Temporally uncorrelated components FCC original variables
1 2 3 4 5 6 1 2 3 4 5 6

1 .633 .416
2 .064 .372 .315 .539
3 .087 .059 .307 .223 .246 .396
4 .035 .037 .055 .196 .247 .311 .075 .371
5 .091 .066 .040 .079 .285 .149 .261 .165 .208 .355
6 .057 .048 .099 .061 .058 .294 .347 .420 .231 .299 .210 .584
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Standard Shewhart Control Charts for FCC Principal Component Scores (a) 1, (c) 2, and (e) 3 and for the Three FCC Temporally
Uncorrelated Components With the Largest Variance [(b) 1, (d) 2, (f) 3], With Upper and Lower Control Limits Overlaid.

the lagged cross-correlations between these are generally re-
duced. We thus may have more confidence in any control warn-
ings given by the “temporally uncorrelated” components.

5. CONCLUSIONS

We have proposed two multivariate projection methods
that may be useful in the analysis of multivariate process
data exhibiting strong temporal autocorrelations and cross-
correlations. The first technique derives components that ex-
hibit distinctly different autocorrelation structures and may be
used to characterize and separately analyze short-, interme-
diate-, or long-term behavior in the multivariate process. The
second method produces components that are approximately
temporally uncorrelated and allow application of separate uni-
variate techniques without such analyses being compromised
by temporal dependency. Both methods are relatively straight-
forward to implement in practice given access to the standard

matrix algebra routines that exist in most statistical software.
For example, all of the analyses in this article used functions
developed within S–PLUS, which are available from the au-
thors on request.

Both methods were demonstrated to be effective, both in sim-
ulated studies and when applied to real data from a fluidized
catalytic cracking unit typical of the kind of serially correlated
multivariate data arising from many industrial manufacturing
processes. In the latter case, the resulting components retained
most of the variability in the original data while also provid-
ing distinctly different, and possibly more advantageous, prop-
erties from those that arise from standard PCA applied to the
same data.

At this stage, we present these methods primarily as useful
exploratory techniques. Further simulation studies are currently
being conducted on inferential aspects and such issues as their
robustness to the distributional properties of the original data.
The possibilities for updating these methods in real time are
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also being investigated, so as to be able to apply them dynami-
cally in “on-line” process control. However, one benefit of the
methods that we suggest is that they depend on few assumptions
about the original data, whereas other multivariate approaches
assume specific process models. The techniques thus can po-
tentially be applied to a broad range of data, provided that the
processes considered are stationary.

The analysis of multivariate process data is a difficult practi-
cal problem that is probably best approached using a multiplic-
ity of methods. Ultimately, the justification for any particular
methodology is the extent to which it aids in a meaningful and
useful analysis of data in practice. We believe that the methods
discussed here do represent a useful addition to the growing
range of statistical tools in this area, particularly when the data
have strong temporal dependencies.
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