Improving the Risk Assessment of Offshore Structures M. Speers¹ D. Randell² J. A. Tawn¹ P. Jonathan^{1,3} ¹Department of Mathematics and Statistics, Lancaster University LA14YF, United Kingdom

² Shell Global Solutions International BV, Amsterdam, The Netherlands

³ Shell Research Limited, London, United Kingdom

1 Motivation

- Engineers test offshore structure designs using complicated computer models
- They use specially selected design conditions in their simulations

Figure: An oil rig in the North Sea

The Problem

How do we decide which **design conditions** (e.g., wave height) to use to test offshore structure designs?

5 Simulating Forces on Structures

- We efficiently simulate forces on structures
- We use models for wave kinematics and structural forces

5.1 Wave Simulation

- We simulate wave elevation, speed and acceleration
- This is for a known storm peak X

5.2 Force Modelling

Figure: A simulated wave profile

2 Methodology

- Old methods make assumptions about the how the waves affect the structure
- They do not model the structure or the individual waves

Our Solution

We model **individual waves** and the **structure**, meaning our design conditions are found using real physics.

3 Storm Peak Data

- Our data comes from the worst part of the storm
- It tells us averages of properties like wave height

Storm Peaks

H_S Significant Wave Height
T_P Significant Wave Period
S₂ Significant Wave
Steepness

We call these **X**.

4 Modelling Storm Peak Data

- We use Extreme Value Theory to estimate the joint probability density
- Darker combinations of variables are more likely to occur

- We generate the total force on the structure at each time
- Then we find the density f_{R|X} of the maximum response on the structure per storm R for storm peak X.

Probability of Failure

We use our simulations to find the **probability** of the **force** on the structure exceeding a **critical value**.

Figure: Example Probability Density

6 Conditional Density of the Environment

 We find a new density to get our design conditions

$$f_{\boldsymbol{X}|R}(\boldsymbol{x}|r) = rac{f_{\boldsymbol{X}}(\boldsymbol{x}) \times f_{R|\boldsymbol{X}}(r|\boldsymbol{x})}{f_{R}(r)}$$

The CDE The CDE tells us which storm peaks relate to a given force.

7 Impact

Figure: Example CDE

Figure: Storm Data from the North Sea

Figure: Probability density

We have made a **Python package** for use by **data scientists** at Shell, for **risk assessment** of existing and future designs. This work has been published in **Ocean Engineering**.

Paper

Scan the code to see the published paper.

Code

See below for the Python code used to generate these results.

Extreme Value Theory

Extreme Value Theory is an area of **statistics** that focuses on modelling **large** values of variables.

Engineering and Physical Sciences Research Council