

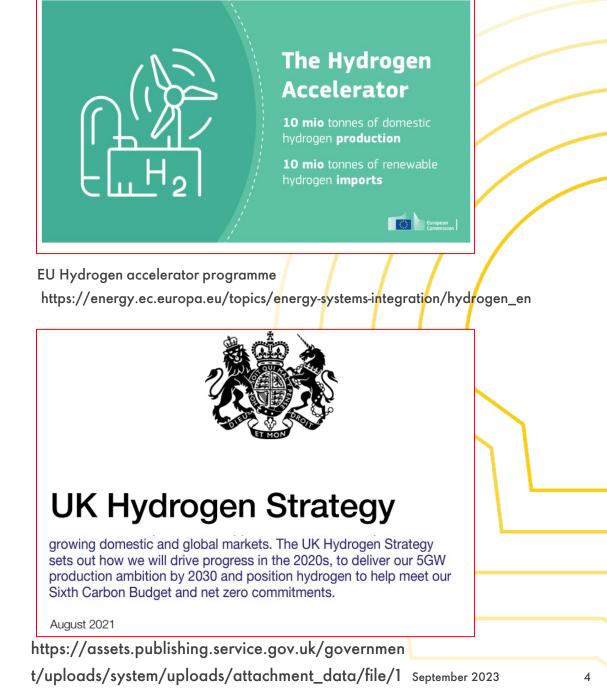
Hydrogen Leak Detection: Atmospheric Dispersion and Sensor Placement

Mr Rakesh Paleja: Shell Research Limited Ms Aarti Nagarajan: Shell India Markets Private Limited Dr Matthew Jones: Shell Research B.V Dr Philip Jonathan: Shell Research Limited

Copyright of Shell Research Ltd.

Agenda

- Motivation
- Gaussian plume dispersion
- Sensor types
- Dispersion of hydrogen and sensor placement
- Conclusions and future work


Motivation

- Growing attention to Hydrogen (H₂) as an energy carrier and low carbon solution in energy transition to net zero
- Projected H₂ aspirations for some major economies*:
 EU: 10 million tonnes of production and imports by 2030
 UK: 5GW of production by 2030
 China: 35 million tonnes by 2025¹
 India : 5 million tonnes by 20230²
- Due to small size H₂ may be more prone to leak
- Motivation:

a)How does H₂ gas cloud disperse in the atmosphere? b)What are the sensor technologies and what is their suitability for H₂?

c)How to spatially place sensors given the limitations of current technologies?

d)What are the emerging R&D topics?

^{175494/}UK-Hydrogen-Strategy web.pdf

^f Indicative aspirations in public domain Copyright of Shell Research Ltd

Gaussian Plume Dispersion

□ Advection diffusion equation⁴:

 $\frac{\partial C}{\partial t} = -\nabla . (C\vec{u}) + \nabla . (K\nabla C) + S \text{ (Equation 1)}$

Under steady state condition, concentration profile given by⁴:

$$C(x, y, z) = \frac{1e^{6}Q}{2\pi\sigma_{y}\sigma_{z}\rho u3600} \exp\left(-\frac{y^{2}}{2\sigma_{y}^{2}}\right) \begin{bmatrix} \exp\left(-\frac{(z-H)^{2}}{2\sigma_{z}^{2}}\right) + \\ \exp\left(-\frac{(z+H)^{2}}{2\sigma_{z}^{2}}\right) \end{bmatrix}$$
(Equation 2)

C: Concentration, ppm,

- x, y, z, : Distance in downwind, across wind and vertical direction, m
- σ_y, σ_z : Horizontal and vertical standard deviations of emission distribution, m
- u: Wind speed, m/s
- ρ : Density, kg/m³
- h : Release height, m
- Δh :Plume elevation from release height, m
- *H*: Plume centre line distance from ground level

Gaussian plume dispersion

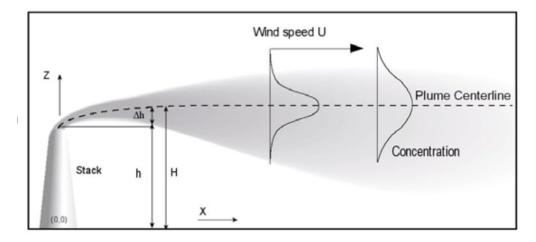


Image from

https://www.researchgate.net/figure/Gaussian-plume-for-air-dispersionmodel_fig1_267209805?vm=r

σ_y, σ_z and wind stability classes

- σ_y, σ_z linear function of downwind distance x and random shift in wind direction⁴
- □ Random shift expressed as standard deviation of wind angle θ_y , θ_z
- σ_y, σ_z specified as a function of x and θ_y, θ_z $\sigma_y(x) = x * tan(\theta_y) + w$ (Equation 3) $\sigma_z(x) = x * tan(\theta_z)$ (Equation 4)
- Generally for European locations, stability classes D and
 E are prevalent. Realistic u and θ_y, θ_z:

u: 3-9 m/s

 θ_y , θ_z : **3-11**°

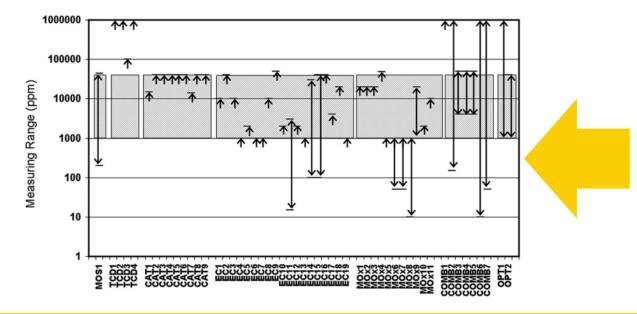
Pasquill Class ⁷	<i>θ</i> , degrees ⁵	
A-Extremely unstable	25	
B-Moderately unstable	20	
C-Slightly unstable	15	
D-Neutral	10	
E-Slightly stable	5	
F-Moderately stable	2.5	
G-Extremely stable	1.7	

Wind speed	Daytime radiation	ytime incoming solar diation			Night time cloud cover	
m/s	Strong	Moderate	Slight	>50%	<50%	
<2	А	A-B	В	E	F	
2-3	A-B	В	С	E	F	
3-5	В	B-C	С	D	E	
5-6	С	C-D	D	D	D	
>6	С	D	D	D	D	

Class D applies with overcast skies at any windspeed during day or night⁷

Hydrogen Leak Detection : Sensor Types

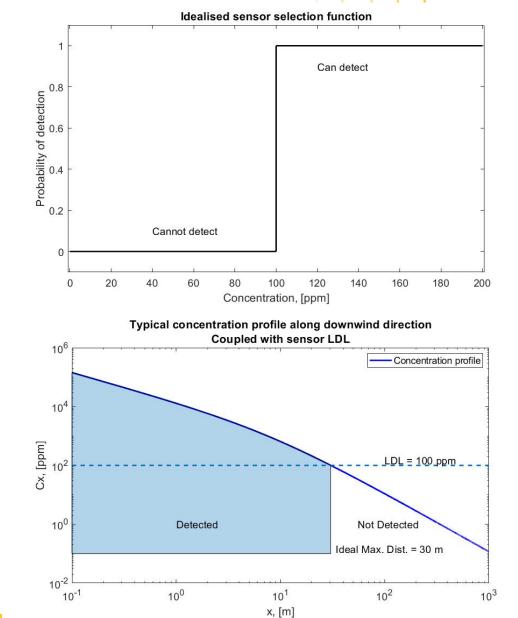
Spot Sensors (e.g. Smoke detector)


- $\hfill\square$ $\hfill H_2$ has to come in contact with the sensor
- Commercially available
- Sensor will detect if

-Concentration of H₂ is above the lower measuring range also called low detection limit (LDL)

-H₂ comes in contact with the sensor

- H₂ does not come in contact with the sensor
- Not commercially available



Measuring range of spot sensors⁶ Most commercial spot sensors have LDL >=1000 ppm. Few have LDL = 10-100 ppm

No commercial sensor with LDL = 1ppm

Combining sensor property with Gaussian Plume Dispersion in 1-D

- Sensor selection function intrinsic property of the sensor and depends on its the lower detection limit (LDL)
- Pollutant concentration profile (C_(x,0,0) or simply C_x) in downwind direction given by Equation 2 (Gaussian Plume dispersion)
- Combining the two provides useful information on sensor placement to detect a potential leak
- Distance at which the concentration is equal to LDL is the Maximum Distance from source at which the sensor can be placed
- Sensor place beyond Maximum Distance will lead to false negative alarm

Copyright of Shell Research Ltd

Impact of Q, u and θ on Maximum Distance in 1-D

- Realistic Q and u and θ for most prevalent wind stability class assumed in simulation
- □ H = 4m, open space. Potential leak sources are known
- \Box C_x can be derived analytically but not the Max Distance
- □ Adverse wind conditions (high u and θ_y , θ_z) reduce Max

10⁰

10

 10^{4}

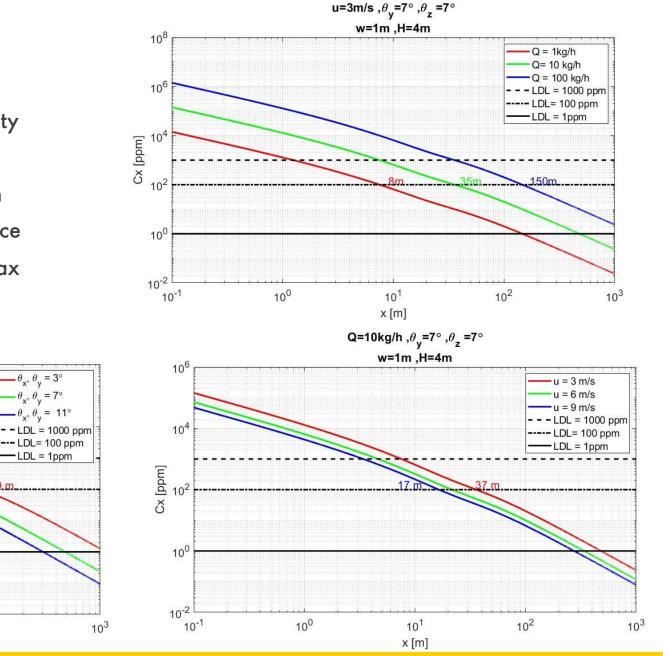
[mdd] 10²

10⁰

 10^{-2}

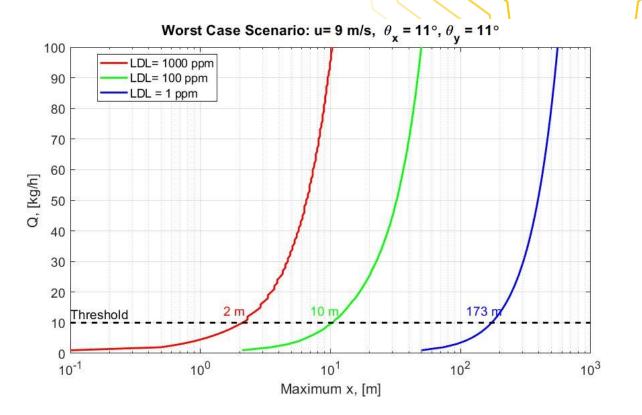
10-1

Q=10kg/h ,u=3m/s w=1m ,H=4m

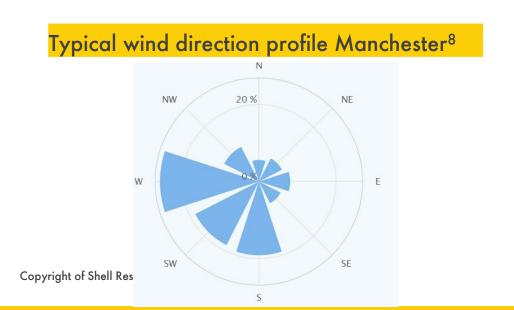

 10^{1}

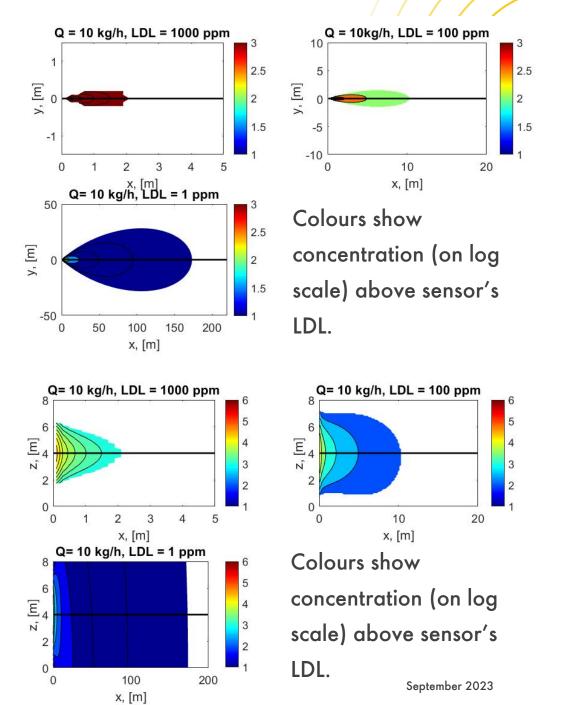
x [m]

10²


Distance

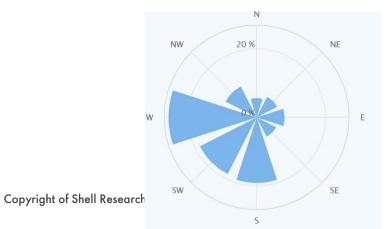
Copyright of Shell Researc

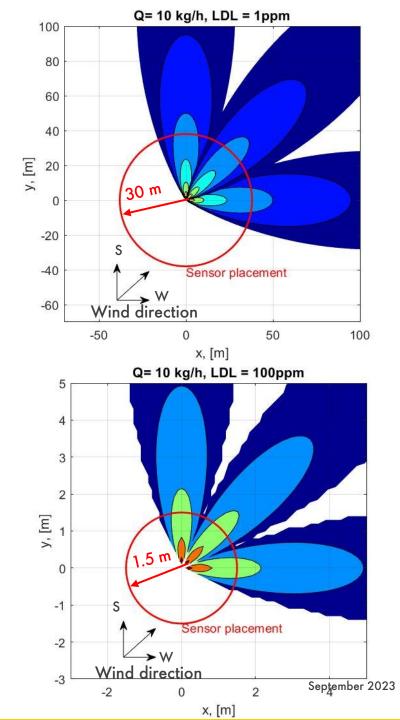

Sensor placement in 1-D: Threshold leak rate


- All possible cases of Q considered for most adverse wind conditions (u = 10 m/s, θ_y, θ_z = 11^o) to determine conservative Maximum Distance
- Not all leaks can be detected by current technology
- A "threshold" leak rate can be used to understand sensor placement in downwind direction
- Sensor placement at Maximum Distance in downwind direction is a function of sensor's LDL, threshold leak rate and wind properties

Dispersion in 2-D plane

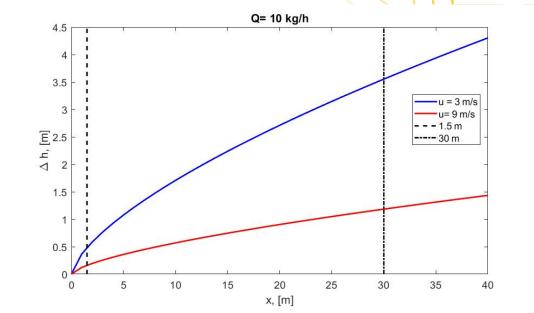
- Dispersion in 2-D plane for threshold rate coupled with sensor LDL determine co-ordinates in a plane
- Wind direction also changes over time
- A single sensor can lead to false negative (no alarm when there is a leak) with unfavourable wind direction
- Multiple sensors required to cover change in wind direction





Sensor placement in 2-D (x-y) plane

- Historic wind direction data and sensor LDL useful for sensor placement in x-y plane and maximize probability of leak detection
- With three sensors limit, for prevalent wind directions, maximum distance is 30 m (1 ppm LDL) or 1.5 m (100 ppm)
- Sensor with 1000 ppm LDL not suitable to cover variation in wind direction
- Other factors such as permissible time between commencement of leak and detection play a role in number of sensors required


Δh and approximate adjustment for 3-D sensor placement

- $\square H = h + \Delta h \text{ (H = Centre line, h = release height, } \Delta h$
 - = rise in centre line from release height)
- Buoyancy (F) and Advection (governed by u)
 counter each other to determine Δh, rise of plume
 from release height to h. Other factors* play a role
- Derivation of \Delta h ⁹ useful in determining lift in centre line and height , H at which sensors should be placed to maximise leak detection probability

$$F = Qg$$
 (Equation 5)

$$\Delta h = \frac{1.6F^{0.33}x^{0.66}}{u}$$
 (Equation 6)

- Units of measurement:
 - F: m4/s3, Q:m3/s, g: m/s2
- Effective 3-D placement thus covered using dispersion properties and sensor LDL

* Other factors that determine ∆h are
 release pressure & temperature, ambient
 temperature gradient in vertical
 direction, size of leak etc

Copyright of Shell Research Ltd

Conclusions and future research areas

- It is possible to understand spot sensor placement in 3-D using Gaussian Plume dispersion and Sensor's Low Detection Limit (LDL) for open space application with potential leak sources known
- For wind conditions prevalent in Europe, sensors with lower LDL provide flexibility and additional degree of freedom in placement strategy
- Buoyancy is complex, needs to be fully understood
- R&D efforts to develop spot sensors with LDL ~1ppm will help to develop sustainable pathway for green hydrogen economy

 Development of appropriate wide area sensing technology can lead to significant reduction false negatives

References

- 1: Center for Strategic and International Studies. (2022). *China Unveils Its First Long Term Hydrogen Plan*. Retrieved from CSIS: https://www.csis.org/analysis/china-unveils-its-first-long-term-hydrogen-plan
- 2: Reuters. (2022). India plans to produce 5 mln tonnes of green hydrogen by 2030. Retrieved from https://www.reuters.com/business/energy/india-plans-produce-5-mln-tonnes-green-hydrogen-by-2030-2022-02-17/#:~:text=India%20will%20set%20up%20separate%20manufacturing%20zones%2C%20waive,to%20incentivise%20production%2C%20t he%20federal%20power%20ministry%2
- 3: ARUP. (2023). *Five minutes guide to Hydrogen*. Retrieved from ARUP: https://www.arup.com/perspectives/publications/promotionalmaterials/section/five-minute-guide-to-hydrogen
- 4: Stockie, J. M. (2011). The Mathematics of Atmospheric Dispersion Modelling. *Society Of International Applied Mathematics*, 349-372. doi:10.1137/10080991X
- 5: NOAA Air Resource Laboratory (2023). *PG classes for fluctuations in wind direction and vertical temperature gradient*. Retrieved from https://www.ready.noaa.gov/READYpgclass.php
- 6: Brett, L. B. (2010). Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. International Journal Of Hydrogen Energy, 373-384.
- 7: Kahl, J. (2018). Atmospheric stability of characterisation using the Pasquill method. A critical evaluation. *Atmospheric Environment*, 196-209. doi:https://doi.org/10.1016/j.atmosenv.2018.05.058

8: Weather Archive (2023) *Weather archive in Manchester*. Retrieved from World Weather: https://worldweather.info/archive/united_kingdom/manchester_1/