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Abstract

A liquefied natural gas (LNG) facility often incorporates replicate liquefaction trains. The performance of equivalent
units across trains, designed using common numerical models, might be expected to be similar. In this paper, we
discuss statistical analysis of real plant data to validate this assumption. Analysis of operational data for end flash
vessels from a pair of replicate trains at an LNG facility indicates that one train produces 2.8% to 6.4% more end
flash gas than the other. We then develop statistical models for train operation, facilitating reduced flaring and
hence a reduction of up to 45% in CO2 equivalent flaring emissions, noting that flaring emissions for a typical LNG
facility account for approximately 4% to 8% of the overall facility emissions. We recommend that operational data-
driven models be considered generally to improve the performance of LNG facilities and reduce their CO2 footprint,
particularly when replica units are present.

1. Introduction

Natural gas (NG) plays a significant role in the global energy transition, since switching from coal to NG reduces
greenhouse gas emissions by 50% when producing electricity and 33% when providing heat; globally, up to 500 MtCO2

were avoided in 2018 compared to 2010 (International Energy Agency, 2019). Natural gas sources in Australia, the
Middle East, Russia, North America and Africa are often distant from consumer demand in Europe, Japan, South
Korea, China and developing Asia (International Energy Agency, 2022). Transporting natural gas via pipeline over
distances > 3000 km is not economically viable due to the low energy density of natural gas on a volumetric basis.
Liquefaction of NG to −163◦C reduces its volume by a factor of around 600, permitting transportation by sea (Hafner
and Luciani, 2022).

A large-scale LNG train typically consumes 14.3 kW/tonne/day of LNG, with 40-60% of the energy used by
compressors (Hasan et al., 2009a). The energy required is normally provided by fuel gas (FG) generated from different
sources at the LNG producing facility including end flash gas (EFG) from end flash vessels, and boil off gas (BOG)
from storage tanks and from loading vessels (LBOG). Economically and environmentally, it is advantageous to reduce
demand for FG as much as possible consistent with demand, whilst avoiding flaring of excess FG. This is achieved by
process modelling using software such as AspenTech’s HYSYS®, UniSim® and MATLAB®. These software packages
use numerical algorithms as summarised e.g. by Bassioni and Klein (2024) and Austbo et al. (2014).

For example on the demand side, in Alabdulkarem et al. (2011), minimization of the power of the compressor
(which consumes FG) in a C3MR process is performed through simulation in Aspen HYSYS ® and optimization in
MATLAB ® using a genetic algorithm, leading to a 9% reduction in energy requirement. Further, Jackson et al. (2017)
optimises the energy requirement for a typical LNG train at different geographical locations using numerical methods
and concludes that liquefaction in colder climates such as that of Norway would require 20-26% lower energy compared
to warmer Australian or Middle Eastern climates. Thus a given compressor can provide more LNG in colder countries.
In Ali et al. (2018), FG demand for a single mixed refrigerant liquefaction process is optimised using the meta-heuristic
vortex search algorithm; optimal values of mixed refrigerant flow rates and process operating pressures are determined
in the vortex pattern corresponding to the minimum required energy, which is reduced by 41.5%. In Castillo et al.
(2013), options to pre-cool NG are studied for hot and cold climate conditions using HYSYS® to determine the most
energy efficient technology for either climate.

On the supply size, in Hasan et al. (2009b), dynamic simulations are conducted to facilitate reducing in LBOG using
“heel” as a parameter to be optimised; heel is the amount of LNG that is retained in the LNG vessel during its return
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journey to maintain the vessel as close as possible to -163 ◦C. Numerical simulation studies have been developed by
Kurle et al. (2017) for LBOG involving variables such as heat leak, initial-temperature of LNG ship-tank, compressor
capacity, and maximum cooling-rate for ship-tank in the model. The study is expected to help proper handling of
BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy.
Numerical simulations by Jin et al. (2023) on BOG generation and recovery at LNG exporting terminals have been
carried out to understand the Specific Energy Consumption (SEC) using single mixed refrigerant and compare it with
a typical Mark III process. The proposed SMR design has 50.34% lower SEC than a Mark III process. Shin et al.
(2022) models excessive BOG generated due to the temperature difference between the LNG and a tank and designs
a model predictive control (MPC) system to simultaneously regulate the pressure and temperature of the tank by
manipulating the vapour outlet flow rate and the amount of LNG spray injected during the cool-down process. In
Widodo and Muharam (2023), simulation models for BOG generation during liquefaction and loading processes are
discussed for a typical LNG production plant producing 8 million tonnes/year LNG, limited by capacity of BOG
recovery. Numerical optimisation shows a potential production increase from BOG recovery and fuel gas optimization
to be around 90,260 tonnes/ year or equivalent to 1.4 cargo of LNG per year. A numerical simulation of the flow of
LNG stored in a small-sized cylindrical tank is presented in Ferrin and Perez-Perez (2020). The work suggests that
the filling level of the tank substantially influences the boiling rate and the degree of stratification, as well as the flow
structures generated by free convection.

We note that alternative numerical methods exists to model BOG generated during shipping of LNG. For instance,
in Wu and Ju (2021), the BOG generation characteristics in a type C independent liquefied natural gas (LNG) tank
under sloshing excitation are studied using computational fluid dynamics (CFD). Results show that sloshing excitation
influences the thermo-physical process and BOG generation of the LNG tank. Such numerical studies do not consider
the facts that BOG generation from the LNG tank, and LBOG can vary significantly due to climatic conditions, the
nature and size of the loading vessels and other factors. Further, we are not aware of literature that considers the
varying nature of real-time FG supply (from multiple suppliers) and demand.

Moreover, the literature addressing the use of real operational plant data for process optimisation is limited.
Katebah et al. (2023) note the considerable potential for, yet the dearth of literature on, the exploitation of real plant
data to optimise the performance of LNG processes, over and above that achieved using numerical simulation.

Typically, multiple trains at a given LNG production facility have the same design. Multiple trains are preferred
over a single large train for reasons such as (a) improved robustness of production to interruptions on an individual
train, and (b) physical limitations on the design of a single large train. When multiple trains are operated at an actual
LNG facility, some trains may be exact replicas of others in terms of liquefaction technology, size of compressors and
other units such as end flash vessels. Yet the literature examining the performance of multiple trains, from a numerical
or operation plant data perspective, is again limited.

Objectives and layout

In this paper, we use a two-step data-driven approach to demonstrate divergence in performance between two
replicate trains at a full-scale LNG facility, focusing on comparison of end flash vessels at an LNG facility. We emphasise
that this paper exploits real operational data from the full-scale LNG facility. The first analysis step (reported in
Section 3.1) involves exploratory analysis of historical data corresponding to multiple years of operation, to elucidate
whether flash vessels from different trains produce different amounts of EFG under similar process conditions. Then
we use statistical hypothesis testing (Section 3.2) to confirm significant divergence in EFG production between LNG
trains. The second step (Section 3.3) involves the estimation of regression models for EFG production with respect
to driver manipulable process variables. We demonstrate (Section 3.4) that these can be used to control excess EFG
to minimise excess end flash gas and reduce CO2 footprint. We emphasise that the two-step approach is not specific
to any particular process unit or production technology. All that is required is a representative period of historical
operational data for the near-replica production units.

Preceding the main analysis sections, Section 2 provides an overview of typical large-scale liquefaction. Following
the analysis, Section 4 then provides discussion and conclusions. Summary statistics for flow rate from the two end
flash vessels considered, and details of statistical hypothesis testing using Welch’s t-test are relegated to Appendices A
and B.

2. Description of LNG process

This section provides a brief overview of the components and operation of a liquefaction train, followed by a
discussion of LNG facilities containing replicate trains and the potential this offers for improved operation.
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2.1. The liquefaction train
A liquefaction train at an LNG facility is comprised of a hot and a cold section. NG from the gas field enters hot

section, operating at above ambient temperature. Here, NG is pre-treated to remove acid gas (carbon dioxide and
hydrogen sulphide), water and mercury. The processed NG then enters the cold section at temperature T1, pressure
P1 and flow rate Q1 respectively as shown in Figure 1. Temperature T1 depends on the geographical location and

Figure 1: Schematic of cold section of LNG train. The end flash vessel shown in blue produces end flash gas, used as fuel gas for the facility

can vary from 25 to 30 ◦C, pressure P1 usually ranges from 50 to 60 bar whereas mass flow rate Q1 (Tonnes per day,
T/d) depends on the availability of NG. There are different designs for the cold section. In the C3MR design (Lim
et al., 2012), the cold section pre-cools NG in C3 kettles from T1 to temperature T2 and subsequently to T3 in the
main cryogenic heat exchanger (MCHE) using a mixed refrigerant (MR). MR consists of nitrogen (N2), C1, C2 and
C3. T2 usually approaches -30 to -27 ◦C whereas T3 ranges from -150 to -145 ◦C depending on a variety of factors
such as NG composition, MR composition and pressure,and flow rates of NG and MR. The C3 kettles and MCHE
are shell-and-tube heat exchanger units with NG flowing on the tube side, C3 in the kettles and MR in the MCHE,
both on the shell side. The duty required to circulate propane and MR to cool NG from T1 to T3 is provided by two
compressors. Figure 1 illustrates compressor 1 (C3) and compressor 2 (MR). Cooling NG from T1 to T3 results in
vaporisation of C3 and MR; vapour heat is ejected to the atmosphere by air or water cooler before returning back to
C3 kettles and MCHE respectively. When upstream pressure P1 is high, the final cooling to T4= −163◦C occurs in
the flash vessel, where NG from MCHE is flash evaporated at pressure P4 (close to the atmospheric pressure). As a
result, the flow Q3 from the MCHE is divided into a vapour stream with flow rate Q5, and a liquid stream with flow
rate Q4, the latter to storage tanks maintained at atmospheric pressure. The vapour stream is EFG to the FG pool,
whereas the liquid stream is LNG for export. The nature of the flash evaporation process is such that Q5 ≪ Q4 with
Q3 = Q4 + Q5 to retain mass balance; the temperatures and pressures of the EFG and LNG are similar.

2.2. Replicate trains
As noted in Section 1, LNG facilities often contain replicate trains; Figure 2 shows a schematic for two replicate

trains studied in this paper. Here, EFG from end flash vessels of each train is sent to the FG pool along with other
sources of FG such as BOG and LBOG. The FG pool supplies the FG to the LNG facility. When there is excess FG,
the flare valve is opened and the excess FG is flared. To prevent flaring, typical practice is to reduce EFG production
from both trains equally, since trains are notionally replicates by design.

In this work we take advantage of replicate flash vessels at the LNG facility to minimise flare value opening. The
presence of replicate components such as compressors, MCHEs, coolers and C3 kettles at LNG facilities generally can
be similarly exploited for operational improvements.

3. Exploratory data analysis and hypothesis testing

In this section we present an analysis of operational data from an LNG facility with two replicate liquefaction
trains. The objective of the analysis is to identify differences in the operating characteristics of the end flash vessels of
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Figure 2: Schematic of two replicate trains, Train 1 and Train 2, feeding EFG to FG pool besides BOG from LNG tank LBOB from tank
in the loading vessel (also shown in blue). When the FG pool has excess FG it is released and flared through the flare valve

the two trains. The differences identified are then exploited in Sections 3.3 and 3.4 to improve the overall performance
of liquefaction, in particular with respect to reduced flaring of EFG. Section 3.1 provides an exploratory analysis of
operational data, and Section 3.2 uses statistical hypothesis testing to demonstrate significant differences in operating
characteristics for the trains.

We emphasise that the analysis is intended to exploit different operating characteristics of notionally replicate
LNG trains. A necessary preliminary step therefore is to ensure that trains considered are indeed replicates. We have
confirmed this for a pair of trains, henceforth identified as Tr1 and Tr2, from the LNG facility.

3.1. Exploratory analysis

We consider the operation of flash vessel units U1, U2 of replicate trains Tr1, Tr2, with EFG mass flow rates Q51,
Q52. Figure 1 motivates the assumption that Q5 for individual units is dependent on (a) the corresponding flow Q3 of
NG from the MCHE to the flash vessel, (b) the outlet temperature T3 of NG from the MCHE to the flash vessel, and
(c) flash vessel pressure P4. The “manipulated” (or, in statistical terminology, “treatment”) variables Q3, T3, P4 can
be changed independently, thereby influencing Q5. We anticipate that increasing the values of Q3 and T3 will lead to
a higher value of Q5. Conversely a higher P4 will lead to lower Q5.

We seek to assess fairly whether Q5 from U1 and U2 is similar. Ideally, we would conduct a series of experiments
on both units, where the values of Q3, T3 and P4 were set at common values across trains, and differences in Q5
quantified. However, such experiments are impractical economically for trains in continuous operation. Nevertheless,
over the course of normal operation of the trains in time, the set points of Q3, T3 and P4 for the two trains vary,
exploring a domain of typical set points for both trains. We can therefore exploit these historical data to quantify
differences in Q5. It is of course critical that our assessment is fair, in particular because the domains of Q3, T3 and
P4 might be different for the two trains. Since Q5 depends on Q3,T3 and P4, it is essential that the historical data for
both the trains is filtered such that the treatment variables Q3, T3 and P4 correspond to similar sets of values across
the two units. Concisely in mathematical notation, we wish to compare Q5|(Q3,T3,P4) conditionally across trains,
rather than Q5 marginally. The simple filter condition applied takes the form

LL≤Xt
1/X

t
2≤UL for all of X = Q3, T3, P4 (1)
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where Xt is the value of X and time t, for data sampled every 5 minutes for a period of a contiguous calendar year. We
emphasise that the filter considered is applied to all of X = Q3, T3 and P4. Further, LL indicates a common lower limit
for the ratio of manipulated variables across trains, set at 0.98 in this work. UL indicates the corresponding common
upper limit, set at 1.02. The effect of filtering manipulated variables is illustrated in Figure 3, for data corresponding
to the calendar year 2019. Panels of the figure are scatter plots of X2 on X1 for X = Q3, T3, P4 and Q5, with
green dots indicating data for time points at which the filter conditions in Equation 1 are satisfied, corresponding to
approximately 10% of the unfiltered sample, over all years of available data. Data for all other time points is shown
in blue. Of course, filtering yields subsets of operational data for Tr1 and Tr2 of equal size. For reasons of commercial
confidentiality, note also that all flows Q3 and Q5 presented in this work (e.g. in Figure 3, Figure 4 and accompanying
tables in Appendix A) have been normalised using a common factor k (i.e. Normalised Flow = k × Observed Flow)
such that the maximum Q5 (over all trains and years) in the filtered data is 100 T/d after normalisation. No other
variables are normalised.

Figure 3: Scatter plots of Q3, T3, P4 and Q5 across trains Tr1, Tr2 of operational data sampled at 5 minute intervals for the year 2019.
Values for time points satisfying the filter conditions in Equation 1 are shown in green. All other time points are shown in blue. Values of
Q3 and Q5 have been normalised using a common factor so that the global maximum value of Q5 is 100 T/d

The quality of NG sourced from upstream wells, distributed to the two trains, varies over time. As the proportion of
low boiling point components (e.g. C2, C3, and butane, C4) in NG increases, Q5 production reduces in both U1 ad U2.
Moreover, the performance of LNG trains often exhibits seasonal patterns that can influence Q5; filtering (Equation 1)
ensures that the comparison of units is not influenced by season and other external variation of the common NG input
to liquefaction. Filtering therefore allows us to characterise underlying differences in the operational characteristics of
the trains, rather than differences in inputs and operating set points.

Since (replicate) trains are optimised through numerical simulations during design, we expect differences in Q5
across trains to be small. We might therefore expect that a comparatively long period of historical data might be
required to quantify differences in operational characteristics with confidence: in particular, analysis of filtered data
from only one year can lead to spurious conclusions. Therefore here, we analyse historical operational data for the
five year period 2015 to 2019. The panels of Figure 4 shows histograms of filtered Q5 per annum for years 2015 to
2019, for train Tr1 (blue) and Tr2 (red). The title of each plot shows the year and number n of filtered 5-minute
observations. Vertical blue and red lines and annotated text give sample means of filtered Q51 and Q52 respectively.
Figure 4 suggests for each of the five years, that Q5 through U1 is greater than that through U2. The difference in
sample means ranges from 2.5 to 5.5 T/d. Corresponding tables of summary statistics are provided in Appendix A.
It is also interesting that the number of observations retained after filtering is considerably higher in 2018 and 2019
than in 2016 in particular, possibly indicating more consistent setting of operational conditions across trains in more
recent years.
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Figure 4: Histograms of filtered Q51 (blue) and Q52 (red) data per annum, for years 2015 to 2019. Panel titles indicate the number
of observations n retained after filtering. Vertical lines and annotated text give mean values of filtered data. Values of Q5 have been
normalised using a common factor so that the global maximum value is 100 T/d

The figure for unfiltered data corresponding to Figure 4 is show in Figure 5. It is notably difficult to see from the
figure that there is a material difference between the operating characteristics of trains Tr1 and Tr2. This emphasises
the need to consider the conditional behaviour of Q5 given its driver variables Q3, T3, P4.

Figure 5: Histograms of full unfiltered data for Q51 (blue) and Q52 (red) per annum, for years 2015 to 2019. Panel titles indicate the
number of observations n retained after filtering. Vertical lines and annotated text give mean values of filtered data. Values of Q5 have
been normalised using a common factor so that the global maximum value is 100 T/d
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3.2. Statistical testing

The exploratory analysis above suggests that Q5 from vessel U1 in train Tr1 is higher than that from U2 in train
Tr2. We can quantify this using a statistical hypothesis test to assess whether the population mean Q51 of Q5 in
train Tr1 is greater than the corresponding population mean Q52 in train Tr2. To perform this one-sided hypothesis
test, we set the null hypothesis H0 that there is no difference between Q51 and Q52, and an alternative hypothesis H1

that Q51 > Q52. Then we calculate whether there is sufficient evidence in the data to reject the null hypothesis in
favour of the alternative. Various parametric and non parametric tests are suggested in the literature (e.g. Marshall
and Jonker 2011) for this purpose. The choice of test depends on the nature of the data and the specific question at
hand. Here we use the independent two-sample Student’s t-test, calculating test-statistic t measuring the difference in
population means relative to the variability within the groups using sample data. This test assumes that the variances
of the two samples are approximately equal. For samples of random variables X1 and X2 with common sample size n,
t is calculated as

t = (X̄1 − X̄2)/sd (2)

where X̄1 and X̄2 are the sample means for Q51 and Q52 (from Tables A1 and A2 in Appendix A), and sd is the
standard error of the difference in means given by s2d = (s21 + s22)/n, where s21 and s22 are corrected sample estimates
for the variance of X1 and X2. sd can also be written as s2d = 2s2p/n, where sp is an estimate for the pooled standard
deviation of the samples given by s2p = (s21 + s22)/2. The test statistic t follows a t-distribution with ν = 2(n − 1)
degrees of freedom (Evans et al., 2000). This probability distribution generalizes the standard normal distribution:
both the t-distribution and standard normal distribution have mean zero and exhibit a bell-shaped curve, but the
t-distribution has heavier tails controlled by shape parameter ν. Typically, the null hypothesis H0 is rejected at the
α = 0.05 level; this occurs when the value of the t-statistic calculated exceeds a critical value tcrit,ν(1 − α) equal to
the (1− α)× 100 = 95%ile of the t-distribution with ν degrees of freedom.

(X̄1 − X̄2)/sd − tcrit,ν(0.95) > 0. (3)

Multiplying the left hand side above by sd gives (X̄1− X̄2)− sd× tcrit,ν(0.95), equal to the lower confidence limit LCL
for the difference X̄1 − X̄2 in population means. Rejecting H0 is therefore also equivalent to estimating LCL¿0. For
total sample n > 100, tcrit,2(n−1)(0.95) ≈ 1.645, the 95%ile of standard normal distribution, to at least two decimal
places; for smaller sample sizes, values of tcrit,2(n−1)(0.95) are provided by standard statistical software.

Table 1 shows the results of significance testing for the difference in population mean duty, Q51 - Q52, between
trains Tr1 and Tr2, annually from 2015 to 2019. In percentage terms, Q51 exceeds Q52 by some 2.8% to 6.4%.

Year 2015 2016 2017 2018 2019
Q51 - Q52 2.45 3.82 5.53 3.95 3.89
sp 2.46 2.49 1.93 2.42 3.73
sd 0.0598 0.125 0.0324 0.0236 0.0364
ν = 2(n− 1) 6752 1584 14182 42144 41944
tcrit,ν(0.95) 1.65 1.65 1.65 1.65 1.65
LCL 2.33 3.57 5.47 3.90 3.81

Table 1: Independent two-sample t-test for population mean difference Q51 - Q52 per annum. Null hypothesis rejected for each year since
LCL¿0. Note that the critical value tcrit,ν(0.95) at infinite sample size is adopted as a good approximation, since n > 1000 throughout.

When there is evidence that the variance of the two samples is not equal, we can use the Welch’s t-test (Welch
1947) as an alternative to the test above. For the current data, using the corresponding Welch test at α = 0.05, the
null hypothesis of equality of Q51 and Q52 was also reject for each of the years 2015 to 2019; see Appendix B for
details.

3.3. Regression and adjusted regression plots

For each of units U1 and U2 on trains Tr1 and Tr2 respectively in turn, we establish linear regression models for
Q5 in terms of Q3, T3 and P4 of the form

Q5 = f(Q3,T3,P4) + ϵ (4)

for regression function f , where ϵ is assumed to be a zero-mean Gaussian random variable with unknown standard
deviation. Here, we assume that f takes the linear form

f(Q3,T3,P4) = a+ b Q3 + c T3 + d P4 (5)
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for parameters a, b, c and d to be estimated. Following DuMouchel (1988), we then use adjusted response or adjusted
regression plots to quantify the effects of individual treatment variables (more naturally referred to as covariates in a
regression context) in regression models for Q5 in terms of Q3, T3 and P4, for each of trains Tr1 and Tr2. In essence,
these are generalisations of partial residual and augmented partial residual plots (Mallows 1986), useful for linear

regression models with arbitrary power and interaction terms. The fitted regression function f̂ from Equation 5 is

f̂(Q3,T3,P4) = â+ b̂ Q3 + ĉ T3 + d̂ P4 (6)

where •̂ represents an estimate. The corresponding residuals from the regression form the set {ri}ni=1, with

ri = Q5i − f̂(Q3i,T3i,P4i) for i = 1, 2, ...,n (7)

where {Q3i,T3i,P4i}ni=1 is the set of values of Q3, T3 and P4 in the data sample of filtered data for regression model
fitting.

Next, adjusted fit functions are calculated for each of Q3, T3 and P4 in turn. For example in the case of Q3, the
adjusted fit function is the average value of f̂ , expressed as a function of Q3, over all n observations in the data sample

gQ3(q) =
1

n

n∑
i=1

f̂(q,T3i,P4i). (8)

Similar adjusted fit functions can be derived for each covariate in each train in turn. Finally the set {Q̃5
i

Q3}ni=1 of
adjusted response values for Q5 with respect to Q3 is calculated using

Q̃5
i

Q3 = gQ3(Q3i) + ri for i = 1, 2, ...,n (9)

where {ri}ni=1 are the residuals from the full regression (Equation 4). Similar sets of adjusted response values can be
calculated for response Q5 with respect to each covariate in each train in turn.

Adjusted response values for Q5 with respect to each of Q3, T3 and P4 are shown in Figure 6, for train Tr1 (blue)
and Tr2 (red). The anticipated directions of the trends of Q5 with covariates are seen in each case. However, despite
the trains being nominally replicates, the magnitudes of gradients are larger for train Tr1 regardless of covariate.
Briefly, Q5 is more sensitive to changes in covariates for train Tr1. To achieve unit reduction in Q5, the reduction in

Figure 6: Adjusted response values for Q5 with respect to Q3, T3 and P4 for U1 (blue circles) and U2 (red circles). Corresponding adjusted
fit functions g are shown as black lines

Q3 (and/or T3) needed in Tr1 is smaller than that needed in Tr2. This is potentially a valuable handle with which to
reduce the need for flaring.

Note that the adjusted regression methodology is applicable generally, regardless of the form of the regression
function in Equation 4.
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3.4. Implementation of recommendations

Given the findings above, trials were conducted on the liquefaction trains to evaluate the impact on flaring of
different manipulations of set-points of manipulated variables on Tr1 and Tr2 end flash units U1 and U2. In a first
period (“Period 1”), each time the flare valve was on the verge of opening, a common reduction of T3 was made
for both trains, followed by common reduction of Q3 if necessary. In the second period (“Period 2”), preferential
treatment was given to Tr1: T31 was reduces first, followed if necessary by Q31, T32 and Q32 if flaring persisted. P4
was not used as a handle during the trial. Results are shown in Figure 7. Panels show the mean flare valve opening

Figure 7: Flare valve opening, ranging from High, Medium to Low for Period 1 (left) and Period 2 (right) as a function of mean of T3 and
sum of Q3 from Tr1 and Tr2 . In Period 1, simultaneous and equal reductions were made, first for T3 and subsequently if necessary for
Q3, for both trains at the point of flare onset. In Period 2, T31 and then Q31 (if necessary) were reduced first, followed (if necessary) by
T32 and Q32. Polygons shows domains of mean T3 and total Q3 corresponding to low risk of High and Medium flare opening

in Periods 1 (left) and 2 (right) as a function of the mean T3 (x-axis) and total Q3 (y-axis). The figure indicates a
reduction in High and Medium flare valve opening in Period 2 compared to Period 1, resulting in a reduction of up to
45% in flaring-related CO2 emissions. Polygons (magenta) in each panel show approximate ranges for mean T3 and
total Q3 within which the risk of High or Medium flaring is low. The area of the polygon for Period 2 is considerably
wider than for Period 1, indicating that reduction of T3 and Q3 for Tr1 before those of Tr2 is advantageous in reducing
FG flaring.

4. Discussion and conclusions

This article demonstrates that differences in the operating characteristics of nominally replicate units at an LNG
facility can be exploited to improve the overall performance of the facility, in particular by minimising flaring. We
demonstrate that careful exploratory analysis can be used to identify differences in operating characteristics, and that
statistical hypothesis testing lends weight to findings from exploratory work. We then show that simple regression
models can be used to illustrate and quantify differences in unit performance. Finally, we demonstrate by modifying
operating practices at the “live” LNG facility, that the recommendations of the statistical analysis provide clear
material benefit. We emphasise that this paper exploits real operational data from the full-scale LNG facility.

The statistical analysis conducted here is elementary but sound. Indeed, we hope the current work demonstrates the
real-world benefits available from careful application of straightforward statistical thinking and method: complicated
models are not always necessary for process improvement in manufacturing. Nevertheless, there are numerous ways in
which the current analysis can be improved. For example, preliminary analysis suggests there may some benefit from
consideration of seasonal trends in the relative operating characteristics of the flash vessel units.
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Specifically, our study of end flash vessels from two trains at an LNG facility has shown that statistically significant
differences in train performance can exist even though trains may be “exact copies” of each other from a design
perspective. In fact, although the end flash vessels in the two trains are designed to identical specification, in operation
they may not perform equivalently due to a number of reasons. For example, they may be exposed to different localised
variation in ambient conditions, causing variation in end flash gas produced. We actually observe the flow rate of end
flash gas (EFG, Q5) produced from one end flash vessel to be 2.8% to 6.4% higher than from the other replicate unit.
As a result, on the onset of EFG flaring, the standard practice of reducing natural gas input temperature (T3) and flow
rate (Q3) simultaneously and equally to the main cryogenic heat exchangers of the two trains to minimise flaring is
demonstrably not best practice. An improved procedure based on the current statistical analysis first reduces T3 and
Q3 for the train whose EFG production is more sensitive to operating conditions. When this strategy was followed at
the LNG facility, flaring-related CO2 emissions were reduced by up to 45% compared with standard practice, noting
that flaring emissions for a typical LNG facility account for approximately 4% to 8% of the overall facility emissions.

Insights from analysis of operational data cannot be obtained from simulation studies of model trains with identical
designs. We hope the current paper serves as motivation for wider use of data-informed and data-driven approaches
for improved efficiency in manufacturing.

Appendix A: Annual summary statistics for Q5 from trains Tr1, Tr2 for years 2015-2019

This appendix gives summary statistics for normalised filtered Q5 from trains Tr1, Tr2 for years 2015-2019, corre-
sponding to Figure 4. These values are also used in the statistical testing reported in Section 3.

Year Mean Median Variance s2 Skewness Kurtosis
2015 89.34 89.80 7.22 -1.17 5.69
2016 90.78 91.15 8.30 -1.95 10.03
2017 90.78 91.15 4.13 -0.38 3.56
2018 92.77 93.13 6.84 -1.08 6.34
2019 91.90 92.99 20.08 -1.54 5.26

Table A1: Summary statistics of samples of filtered Q5 values for train Tr1 over years 2015 to 2019. Values have been normalised using a
common factor so that the global maximum value (over both trains and all years) is 100 T/d.

Year Mean Median Variance Skewness Kurtosis
2015 86.89 87.02 4.86 -0.86 8.29
2016 86.96 86.58 4.09 0.15 2.67
2017 85.25 85.54 3.30 -0.91 4.34
2018 88.83 89.11 4.85 -0.87 4.91
2019 88.02 88.19 7.74 -1.28 6.93

Table A2: Summary statistics of filtered Q5 values for train Tr2 over years 2015 to 2019. Values have been normalised using a common
factor so that the global maximum value (over both trains and all years) is 100 T/d.

Appendix B: One-tailed, two-sample Welch’s t-test for un-equal variance

In the notation of Section 3.2, the expression for Welch’s t-test statistic (Welch 1947) to compare the means of
populations with unequal population variances of X1 and X2, but equal sample size n, is the same as that given in
Equation 2. The degrees of freedom ν of the t-distribution is however different, given by Satterthwaite’s approximation
(Satterthwaite, 1946) as

ν =
(n− 1)(s21 + s22)

2

s41 + s42
(10)

where s1 and s2 are the corrected sample standard deviations for the two groups; the Welch’s t-test is more conservative
in estimating ν. The corresponding table of results using Welch’s t-test is given in Table (c.f. Table 1) is given in
Table B1.
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Year 2015 2016 2017 2018 2019
Q51 - Q52 2.45 3.82 5.53 3.95 3.89
ν 6505 1420 14007 40953 35055
tcrit,ν(0.95) 1.96 1.96 1.96 1.96 1.96
LCL 2.33 3.57 5.47 3.90 3.81

Table B1: Welch’s t-test for population mean difference Q51 - Q52 per annum, assuming unequal population variances. Null hypothesis
rejected for each year since LCL¿0. Note that the critical value tcrit,ν(0.95) at infinite sample size is adopted as a good approximation,
since n > 1000 throughout.
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