MetOcean Research Ltd

Lancaster Sal

Is the 100-year Return Value for Significant Wave Height Increasing in the Tasman Seas

Kevin Ewans, Philip Jonathan

Draft of presentation at OMAE conference 2023, associated with paper OMAE2023-104360.

Motivation

- Climate change is frequently reported to be the cause of an apparent increase in the occurrence and intensity of extreme events
- Recent studies have found that increases can be expected in sea state extremes for some regions of the world's oceans later this century.
- Can the same be expected in the Tasman Sea?
- FIO-ESM v2.0 CMIP6 Earth System Model data include time-series of significant wave height for several Shared Socioeconomic Pathways (SSP) as well as 165-year historical and 700-year pre-industrial realisations.
- Allows estimation of 100-year return values of significant wave height
 and uncertainties at the end of the 21st century
- Follows approach Ewans & Jonathan (2023)

https://www.sciencedirect.com/science/article/pii/S002980182300224X

Data

- FIO-ESM v2.0 model data (Song et al., 2020)
 - 3-hourly H_s values
 - 700-year pre-industrial period (pi-Control: nominal years 301-1000)
 - 165-year historical period (years 1850-2014)
 - 86-year future scenarios (SSP126, SSP245 and SSP585, for radiative forcing of 2.5, 4.5 and 8.5 Wm⁻¹ in 2100), all for years 2015-2100)
- Select storm peak H_s values: H_s^{sp}
 - Storm events are identified with peaks over threshold
 - 20 25 peaks per annum

Data

- Five locations
- Star configuration
 - Centre (C)
 - North (N)
 - South (S)
 - East (E)
 - West (W)

Approach

- Standard Period 86 years
 - the longest period of data available for all future projection scenarios
- piControl to investigate inherent steady-state conditions
 - 25 representative 86-year subintervals, with starting years approximately uniformly distributed over the 700 years
- Historical to investigate changes over the last 165 years
 - Start and End 86-year periods: first and last 86 years (some overlap)
- Future Scenarios to investigate predictions

Data Tail Characteristics – 40 largest H_s^{sp}

- piControl "Standard"
 - Mean ordered sequence
 of 25 subintervals
- considerable variability for different locations
- Historical Start > piControl
- Historical End < piControl
- SSP126, SSP245 ≈ piControl
- SSP585 > piControl

Non-stationary EVA

- Generalised Pareto (GP) regression to model observations $\{x_{t_i}, t_i\}_{i=1}^n$ of H_s^{sp} at times $t_i \in (0, P)$
- Assume $X_t | X_t > \psi_t$ follows GP distribution

$$F_{\text{GP}}(x|X_t > \psi_t, \psi_t, \sigma_t, \xi_t) = 1 - \left[1 + \frac{\xi_t}{\sigma_t}(1 - \psi_t)\right]^{-1/\xi_t} \quad \xi_t \neq 0$$

= $1 - \exp(-(x - \mu_t/\sigma_t)) \quad \xi_t = 0$

where ξ_t is shape, σ_t is scale, and ψ_t is threshold

• Assume any parameter, η , varies linearly with time

$$\eta_t = \eta(t) = \eta^S + \frac{t}{P}(\eta^E - \eta^S)$$
, for $t \in (0, P)$

Non-stationary EVA

- GP models over four choices of EV threshold, referred to as NEP1-NEP4, based on non-exceedance probability (NEP), τ
 - NEP1 corresponds to $\tau = 0.5$
 - NEP4 corresponds to NEP leaving 30 threshold exceedances
 - NEP2 and NEP3 τ values are equally spaced (log scale) between NEP1 and NEP4
- Threshold ψ_t is then estimated using a quantile regression for specified au
- Annual rate of occurrence, ρ_t , of threshold exceedances in time for given τ , is determined with Poisson regression with density

$$f(\lbrace c_t \rbrace | \rho_t) = \exp\left(-\sum_{t=1}^{P} \rho_t\right) \prod_{t=1}^{P} \rho_t^{c_t}$$

Where $\{c_t\}_{t=1}^p$ are empirical annual counts of threshold exceedances, and $\rho_t = \rho(t) = \rho^S + \frac{t}{p}(\rho^E - \rho^S), \text{ for } t \in (0, P)$

Non-stationary EVA

- For GP threshold exceedances, and Poisson rate of threshold exceedance, the annual maxima are GEV-distributed
- Hence, T-year return value Q_t at year t (for T = 100 years) is estimated as the p = 1 1/T quantile:

$$Q_t = \frac{\sigma_t}{\xi_t} \left[\left(-\frac{\log p}{\rho_t} \right)^{-\xi_t} - 1 \right] + \mu_t \quad \xi_t \neq 0$$
$$\mu_t - \sigma_t \log[-(1/\rho_t)\log p] \quad \xi_t = 0$$

- Parameter estimation using Bayesian inference, with MCMC algorithm; generate 10000 100-year return values, last 1000 used
- Compare Q_1 and Q_{86} 100-year H_s for Start and End of the 86-year period.

Analysis

- First compare two quantities, for given location, EV threshold level, climate scenario, and potential subinterval.
 - ΔH_{s100}^{sp} difference between the estimates of 100-year return value at the end (Q_P) and the start (Q_1) of each sample of P = 86 years of data.
 - med ΔH_{s100}^{sp} median of the 1000 estimates.
- Then average ΔH^{sp}_{s100} and ${\rm med}\Delta H^{sp}_{s100}$ over locations and threshold values
 - Final estimates will therefore be model averages over five locations, and four EV thresholds and potentially 25 subintervals of the piControl output.

Inherent variability in return value over 86 years

- ΔH_{s100}^{sp}
 - $5 \times 4 \times 25 \times 1000 = 500,000$ values
 - MPV ≈ 0
 - Range ± 5m
- med ΔH_{s100}^{sp}
 - 5×4×25 = 500 values
 - MPV ≈ -2 m
- ΔH_{s100}^{sp} , Cntr, NEP4, Sub13
 - 1000 values, around year 650
 - MPV ≈ 0
 - Range ± 5m
- SSP med ΔH_{s100}^{sp} up to 5m consistent with piControl

Variability in return value over early and late historical periods of 86 years - ΔH_{s100}^{sp}

- ΔH_{s100}^{sp} piControl
 - 500,000 values
 - MPV ≈ 0
- ΔH^{sp}_{s100} Start
 - 1000 values
 - MPV ≈ -1m
 - Similar to piControl
- ΔH_{s100}^{sp} End
 - 1000 values
 - MPV ≈ 0m
 - Similar to piControl

Variability in return value over early and late historical periods of 86 years - $med\Delta H_{s100}^{sp}$

- $med\Delta H_{s100}^{sp}$ piControl
 - 500 values
 - MPV ≈ 0
- $med\Delta H^{sp}_{s100}$ Start
 - 20 values
 - MPV ≈ -1.5m
 - Similar to piControl
- $med\Delta H^{sp}_{s100}$ End
 - 20 values
 - MPV ≈ 0m
 - Similar to piControl

Variability in return value over 86 years under SSP climate scenarios

- ΔH_{s100}^{sp} piControl
 - 500,000 values
 - MPV ≈ 0
- ΔH_{s100}^{sp} SSP126, SSP245
 - 1000 values
 - MPV ≈ +2m
 - Similar to piControl
- Δ*H*^{sp}_{s100} SSP585
 - 1000 values
 - |MPV| < 0.5m
 - Similar to piControl

Variability in return value over 86 years under SSP climate scenarios

- $med\Delta H_{s100}^{sp}$ piControl
 - 500,000 values
 - MPV ≈ 0
- med ΔH_{s100}^{sp} SSP126
 - 1000 values
 - MPV ≈ +1.5m
- $med\Delta H_{s100}^{sp}$ SSP245
 - 1000 values
 - MPV ≈ +3m
- med ΔH_{s100}^{sp} SSP585
 - 1000 values
 - |MPV| < 0.5m
 - Density narrower

Variability in ΔH_{s100}^{sp} by threshold & location

- Dashed NEP1 & NEP2
- Continuous NEP3 & NEP4
- Line for each location
- piControl & SSP585 consistent
- SSP126 & SSP245 rightshoulder
 - Zonal variation for SSP126
 - Meridional variation for SP245
 - Perhaps arbitrary GCM-wave model run effects

Variability in $medH_{s100}^{sp}$ with location & threshold

Some evidence for systematic effects

- higher values across NEPs for location C and SSP245
- lower values across NEPs for location W and SSP585
- lower values across locations for NEP1 and SSP585
- Warning against overinterpretation of specific EV analyses
 - sensitive to arbitrary modelling effects
- Advantageous to model average over output from multiple GCM-wave models, and ensembles from given GCM-wave model.

Conclusions

<u>PiControl</u>

- Most probable value of ΔH_{s100}^{sp} and $med\Delta H_{s100}^{sp}$ over a period of 86 years is approximately zero
- Empirical densities of ΔH^{sp}_{s100} and $\mathrm{med}\Delta H^{sp}_{s100}$ are broad
- Change in H_{s100}^{sp} and $med\Delta H_{s100}^{sp}$ of ±5m not surprising

<u>Historical</u>

- Weak evidence for reduction in ΔH^{sp}_{s100} (1m) and $\text{med}\Delta H^{sp}_{s100}$ (1.5m) for Start 86-yr period
- Weak evidence for some reduction H_{s100}^{sp} in the End 86-yr period
- Effects are small relative to the inherent uncertainty in H_{s100}^{sp} (±5m) observed in the piControl output

Conclusions

Future Projections

- SSP126: Results suggest H_{s100}^{sp} increases
 - Distribution modes of ΔH_{s100}^{sp} and med ΔH_{s100}^{sp} are +2m and +1.5m respectively
- SSP245: Results suggest H_{s100}^{sp} increases
 - Distribution modes of ΔH_{s100}^{sp} and med ΔH_{s100}^{sp} are +2m and +3m respectively
- SSP585: Results more inconclusive
 - Distribution modes -0.5m < of ΔH_{s100}^{sp} < 0 < med ΔH_{s100}^{sp} < +0.5m

<u>Historical</u>

• Weak evidence for ~1 m reduction in H_{s100}^{sp} over Historical period, but small relative to the inherent piControl uncertainty observed (±5m).

Is H_{s100}^{sp} increasing the Tasman Sea?

- From a design perspective for year 2100 at this location, it would be wise to plan for an increase of H_{s100}^{sp} of around 2m relative to 2015
- But the evidence in favour of a climate-driven change in H_S^{sp} is weak