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In response to global concerns regarding air quality and the environmen-
tal impact of greenhouse gas emissions, detecting and quantifying sources
of emissions has become critical. To understand this impact and target mit-
igations effectively, methods for accurate quantification of greenhouse gas
emissions are required. In this paper, we focus on the inversion of concentra-
tion measurements to estimate source location and emission rate. In practice,
such methods often rely on atmospheric stability class-based Gaussian plume
dispersion models. However, incorrectly identifying the atmospheric stability
class can lead to significant bias in estimates of source characteristics. We
present a robust approach that reduces this bias by jointly estimating the hor-
izontal and vertical dispersion parameters of the Gaussian plume model, to-
gether with source location and emission rate, atmospheric background con-
centration, and sensor measurement error variance. Uncertainty in parameter
estimation is quantified through probabilistic inversion using gradient-based
MCMC methods. A simulation study is performed to assess the inversion
methodology. We then focus on inference for the published Chilbolton dataset
which contains controlled methane releases and demonstrates the practical
benefits of estimating dispersion parameters in source inversion problems.

1. Introduction. The latest Intergovernmental Panel on Climate Change (IPCC) report
concluded with high confidence that climate change is responsible for substantial damage to
our ecosystems. We are approaching irreversible losses and can say with very high confidence
that mass mortality events are being observed on land and in the oceans (Lee and Romero,
2023); Section 2.1.2 paragraph 3. Methane (CH4) has a global warming potential 84 times
greater than carbon dioxide (CO2) over 20 years, making it a more powerful greenhouse gas
(IPCC, 2013). With over 60% of methane emissions being anthropogenic (Saunois et al.,
2019), the current global average atmospheric CH4 concentration is about 1.93 parts per
million (PPM) (Lan, Thoning and Dlugokencky, 2024), increasing by over 0.075 PPM every
decade (Nisbet et al., 2019). While carbon dioxide remains in the atmosphere for hundreds of
years, methane’s shorter atmospheric lifetime of 8.9 ± 0.6 years (Prinn et al., 1995) (before
it is chemically transformed or deposited out of the atmosphere to the earth’s surface) means
that reducing methane emissions can quickly mitigate global warming, aligning with the 2015
Paris Agreement’s climate goals.

Identifying and quantifying methane emissions leads to a better overview of sources of
methane (e.g. leaks) which can subsequently be repaired or avoided. This plays a role in
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addressing climate change and enhancing sustainability efforts worldwide. There is there-
fore a need to accurately estimate and report methane emissions from various sources, such
as production facilities and distribution networks, where emissions may result from venting,
flaring, or equipment leaks. For instance, through satellite observations, the Caspian coast of
Turkmenistan has been identified as one of the most significant methane hotspots globally,
a finding that has since received extensive media coverage. Irakulis-Loitxate et al. (2022)
have linked these emissions to venting and pipeline leaks in oil and gas fields, presenting an
opportunity to make informed decisions towards reducing CH4 emissions in the region.

The Oil and Gas Methane Partnership 2.0 (OGMP 2.0) is the United Nations Environment
Programme’s voluntary framework for methane reporting and mitigation (OMGP2.0, 2024).
The program establishes 5 reporting levels of increasing granularity. To achieve gold standard
reporting, operators must demonstrate their efforts to move towards level 5, which requires
bottom-up emissions estimates from level 4 (based on an emission inventory combined with
source-level measurements) to be reconciled with site-level measurements. Continuous mon-
itoring of oil and gas facilities using methane concentration sensors is one method for obtain-
ing site-level measurements, such measurements should be coupled with a robust inversion
methodology in order to obtain accurate and trustworthy site emissions estimates. For many
applications, including those to leak detection, it is reasonable to assume that the probability
of a source existing in the domain under observation is small. Hence, inversion assuming at
most a single source is likely to be adequate.

Many inversion methods have been proposed to estimate source emission rates and loca-
tions, these can generally be grouped into optimization (Qiu et al., 2018; Albani, Albani and
Neto, 2020; Wang et al., 2020) and Monte Carlo Markov Chain (MCMC) (Hirst et al., 2013,
2020; Ma et al., 2021; IJzermans et al., 2024) algorithms. Forward models describing how
gas disperses in the atmosphere can be used to attempt to explain measured gas concentra-
tions. Inversion methods estimate the parameters that given the forward model would best
describe the data collected. The most commonly used forward model for gas dispersion is
the Gaussian plume model motivated by the solution of an underlying system of partial dif-
ferential equations (PDEs) (Stockie, 2011). The accuracy of the inversion is therefore closely
linked to the accuracy of the forward model. The Gaussian plume model is very sensitive to
the standard deviation of its Gaussian concentration distributions σH and σV ; we will now
refer to these as “wind sigma" parameters. In the literature, wind sigmas are often chosen
based on the Pasquill atmospheric stability class (ASC) (Pasquill, 1961; Cui et al., 2019;
Mao et al., 2020). However, estimating the exact local ASC is often difficult in practice, and
misspecifying it can substantially bias the inversion estimation. This paper shows that the bias
introduced by ASC-based wind sigmas can be removed and source estimation improved by
estimating wind sigmas instead of fixing them. Mao et al. (2021) attempt this by optimizing
the wind sigmas using a genetic algorithm over an ASC-based Briggs scheme parameteriza-
tion. We propose to remove the dependence on ASCs and estimate wind sigmas within our
MCMC procedure. A key challenge when accurately estimating source characteristics relies
on adequately accounting for factors influencing the sensors’ measurements. Background gas
concentration and measurement error substantially influence the recorded concentration and
can introduce bias in our estimation if not correctly accounted for.

Objectives: In this paper, we propose an MCMC inversion method jointly estimating source
emission rates, locations, background concentrations, measurement error variance, and wind
sigmas. We demonstrate that estimating the wind sigmas is beneficial for the practicing en-
vironmental modeler, in terms of improved inferences. Our methodology is based on the
principles of probabilistic inversion, which allows us to incorporate uncertainties and prior
knowledge effectively.
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FIG 1. Methane release set up at the Chilbolton observatory, UK. Credit: Hirst et al. (2020) Supporting Infor-
mation S1. A laser dispersion spectrometer measures path-averaged CH4 concentrations between the sensor and
each retros. “Sonic" indicates the emplacement of the 3-D ultrasonic anemometer measuring the wind speed and
direction.

Layout of paper: Section 2 focuses on the forward model, our framework for simulating
atmospheric gas dispersions, unsteady-state wind fields, and ground sensor measurements.
We employ the Gaussian plume model for gas dispersion (Stockie, 2011), the Ornstein-
Uhlenbeck (OU) process for unsteady-state wind fields (Uhlenbeck and Ornstein, 1930), and
simulate point sensor measurements to mimic real-world data acquisition scenarios incorpo-
rating background concentration. Section 3 introduces the core of our inference methodol-
ogy, we present our parameter estimation method using the Manifold Metropolis adjusted
Langevin algorithm (M-MALA) in combination with Gibbs sampling. Section 4 presents the
results from our simulation case study where we test the robustness of our inversion method
for single source cases, under varying atmospheric, data collection, and sensor layout con-
ditions. We also show the importance of estimating wind sigmas when estimating source
characteristics. In Section 5, we implement our inversion method on data from a real-world
field experimental campaign (see Figure 1) reported by Hirst et al. (2020). This dataset con-
tains wind field and methane measurements for controlled release trials. Finally, Section 6
summarizes the paper and suggests potential lines of future work.

2. Atmospheric Gas Concentration and Sensor Measurements. In this section, we
present the modeling framework of the simulation, incorporating the Gaussian plume model
for gas dispersion (Section 2.1 & 2.2 ); see Figure 2 for visual representation, OU process
for wind fields (Section 2.3), and sensor measurements when accounting for background gas
concentration (Section 2.4). By combining these three elements, we gain a holistic perspec-
tive on air quality dynamics, enabling a deeper understanding of pollutant transport.

The formulation of the forward model sets the stage for the subsequent exploration of inver-
sion modeling, where we aim to estimate sources’ location and emission rate by leveraging
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FIG 2. Representation of the Gaussian plume model. Credit: Stockie (2011).

the simulated sensor observations and gas dispersion patterns. We seek to estimate point
sources mixed with a spatially varying background concentration.

2.1. Modeling Gas Dispersions using the Gaussian Plume Model. A variety of gas dis-
persion models have been developed, each differing in accuracy and complexity, with three
primary categories being prominent. Gaussian plume models, exemplified by ISC3 (Atkin-
son et al., 1996), AERMOD (Cimorelli et al., 2005), and ADMS 6 (Carruthers et al., 1994),
operate on the assumption of a Gaussian distribution and are widely utilized. Gaussian puff
models, such as CALPUFF (Scire et al., 2000), conceptualize the plume as composed of
discrete puffs, while high-fidelity computational fluid dynamics (CFD) models, like Fluidyn-
Panache (Libre et al., 2011), employ rigorous numerical techniques.

In practical application, selecting the most suitable model depends on the specific require-
ments and resources of the modeler. Gaussian plume and puff models are often preferred due
to their practicality, especially when comprehensive spatio-temporal wind field data required
by CFD models are not readily available to set the initial condition and boundary conditions.
Typically, wind data is collected at single points in space, limiting the applicability of CFD
models.

The Gaussian plume model is noteworthy for its computational efficiency and straightfor-
ward implementation. It is a closed-form analytical expression, that allows simulation of the
continuous emission from a single source under the assumption of unidirectional wind flow
in an unbounded space. Gaussian plume models have found widespread application in vari-
ous industries, often serving as a tool for monitoring and regulating emissions from industrial
projects. An example of their use can be seen in the work of Lushi and Stockie (2010), who
employed a Gaussian plume model to estimate the emission rates of a large lead-zinc smelting
operation in Trail, British Columbia. Similarly, Ramadan et al. (2008) utilized this model to
calculate the concentration of sulfur dioxide resulting from existing power stations in Kuwait.
These applications demonstrate the practical utility of the Gaussian plume model in assess-
ing and managing the dispersion of pollutants, aiding in environmental impact assessments,
urban planning, and emergency responses, among other critical areas.

In this paper, the Gaussian plume model is used to model the dispersion of methane. The
Gaussian plume equations are derived from the advection-diffusion equation (1) which is a
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PDE describing the transport of a substance in three-dimensional space whose mass concen-
tration is represented by a function C((x, y, z), t)[kg/m3].

(1)
∂C

∂t
+∇ · (Cu) =∇ · (K∇C) + S.

S((x, y, z), t)[kg/m3s−1] provides the source emission rates, K((x, y, z))[m2/s] are the dif-
fusion coefficients (from eddy and molecular diffusion), and u(((x, y, z), t)[m/s] is the wind
velocity field. Using assumptions made by Stockie (2011) and following the derivations
in Supplementary Materials A.1, we can write the close-form analytical expression for the
Gaussian plume solution as:

c(x, y, z; x̃, ỹ, z̃) =
106

ρCH4
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(2)

Variable Definition Units
c(x, y, z) ∈R Plume gas concentration at (x, y, z) PPM
(x, y, z) ∈R3 Three-dimensional coordinates m
(x̃, ỹ, z̃) ∈R3 Source location m
ρCH4 ∈R+ Methane density kg/m3

s ∈R+ Source emission rate kg/s
u ∈R+ Wind speed m/s
P ∈R+ Height of the ABL m
H ∈R+ Height of the source m
j ∈ Z1+ Reflection number

nrefl ∈ Z1+ Maximum number of reflections
δH , δV ∈R Horizontal and vertical offsets m
σH , σV ∈R+ Wind sigmas m

In the table above we define the atmospheric boundary layer (ABL) as the lowest part of
Earth’s atmosphere, the behavior of which is influenced by its height and its contact with
the Earth’s surface (as opposed to the free atmosphere lying above the ABL). We assume
the boundary between the ABL and the free atmosphere to be impermeable, reflecting gas
emissions within the ABL and keeping them trapped within the lower atmosphere. For the
simulation case study (Section 4) and the inversion on the real-world dataset (Section 5) we
set nrefl = 3, based on previous applications experience.

2.2. Parametrization of the Wind Sigmas. The Gaussian plume model (2) contains at-
mospheric parameters that influence the shape of the plume, such as the horizontal and ver-
tical wind sigmas, σH , and σV . These represent the standard deviation of the horizontal
and vertical Gaussian distributions for gas concentration which shape the Gaussian plume
model. A large literature exists on choosing wind sigmas and originated with Pasquill’s
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ASCs (Pasquill, 1961). Pasquill’s approach first determines the local ASC using meteoro-
logical data, then uses a dispersion scheme to fix wind sigmas according to the ASC. Nowa-
days, ASC-based dispersion schemes remain popular in practice (Kahl and Chapman, 2018),
with Briggs (Briggs, 1973), Smith (Pasquill and Smith, 1983), Pasquill-Gifford, and Chinese
National Standard being common choices (Mao et al., 2020). These power-law dispersion
schemes based on downwind distances fix the wind sigma parameters by selecting dispersion
parameters from ASC-based tables. However, atmospheric conditions are extremely com-
plex, and by fixing the dispersion parameters we risk misspecifying them (Finn et al., 2016).
In this paper, we present a method to estimate the wind sigmas by estimating the dispersion
parameters without relying on the ASCs. We generalize the power-law parametrization from
Hirst et al. (2013) by adding dispersion parameters aH ∈ R+, aV ∈ R+, bH ∈ (0,1], and
bV ∈ (0,1]. For time t= 1,2, · · · , nT and fixed location (x, y, z) :

σHt
= aH (δR tan(γHt

))bH +w,

σVt
= aV (δR tan(γVt

))bV + h,
(3)

where γH ∈ R+ and γV ∈ R+ are the 1 minute rolling standard deviation of the horizon-
tal and vertical wind direction time series, δR ∈ R+ is the downwind distance of location
(x, y, z) from the source located at (x̃, ỹ, z̃), w ∈ R+ is the source’s half-width, and h ∈ R+

the source aperture’s half-height. When the measurement location is upwind from the source
we set the Gaussian plume concentration contribution to zero. In Section 4, we show the
impact of misspecified wind sigmas on source parameter estimation and how estimating dis-
persion parameters reduces this bias.

2.3. Simulating Unsteady-State Wind Field using Ornstein-Uhlenbeck Process. The OU
process is a stochastic process often used to model the behavior of physical systems that
tend to revert toward a mean or equilibrium state (Uhlenbeck and Ornstein, 1930). When
simulating wind speeds and wind directions, the OU process can be useful for generating re-
alistic, time-varying wind fields. Here we model the wind speed and direction as two separate
stochastic processes. Their temporal evolution is modeled using an OU process with mean
set to the desired average wind speed and direction. By incorporating the OU process into
wind simulation models, it is possible to generate wind fields that exhibit realistic temporal
and spatial variability, which is useful for many applications such as wind energy production,
air pollution dispersion modeling, and neuronal activity (Arenas-López and Badaoui, 2020;
Boughton, Delaurentis and Dunn, 1987; Ricciardi and Sacerdote, 1979).

The OU process can be numerically simulated using the Euler-Maruyama method (Maruyama,
1955). The Euler-Maruyama scheme discretizes the OU process into a series of time steps,
and the stochastic differential equation governing the process is approximated using a finite-
difference equation. We can therefore simulate an OU process numerically with standard
deviation ξ ∈R+ and correlation time Θ ∈R+:

(4) η(t+ dt) = η(t)−Θdtη(t) + νtξ
√
2dtΘ,

where νt is a random number sampled independently at every time-step dt ∈ R+ from a
standard normal distribution (Kloeden, Platen and Schurz, 2002).

2.4. Point and Beam Sensor Measurements. Our inversion model utilizes measurements
of atmospheric gas concentration. Different types of gas sensor platforms are available, such
as satellites, airplanes, drones, line-of-sight/beam sensors, and point detectors (Fox et al.,
2019), with each sensor type having its advantages. Point sensors can provide very high
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accuracy measurements but have poor spatial coverage whereas satellites can cover vast areas
at the cost of measurement precision. This paper focuses on ground sensors (point and beam
sensors) since these are the most common techniques for continuous fence line monitoring
of assets.

Ground sensors measure gas concentrations over time at fixed locations. Assuming mea-
surement error ϵ and Gaussian plume model concentrations As, the data collected can be
represented by the following equation:

(5) d=As+β+ ϵ.

The nobs data points collected are denoted by a nobs × 1 vector d, while A is a coupling
matrix with dimensions nobs ×nsrc, where nsrc represent the number of sources in our model.
The elements of A are the Gaussian plume model concentrations at the sensor locations for a
unit source emission at the source location. Here, we use a Gaussian plume model, however,
more accurate spatial discretization models of the gas dispersion equations are potential alter-
natives; such as a finite volume method discretization of the advection-diffusion equation (1)
(Moukalled et al., 2016; Calhoun and LeVeque, 2000). The vector s has dimensions nsrc × 1
and contains the emission rate for each source. The spatially varying and temporally station-
ary background gas concentration is represented by the nobs × 1 vector β, from a Gaussian
field with β ∼ N(µβ,Σβ), for µβ ∈ R+ and covariance matrix Σβ . Lastly, ϵ denotes the

measurement error vector, where ϵk
iid∼ N(0, σ2) for k = 1,2, · · · , nobs and σ2 ∈R+.

3. Probabilistic Inversion for Gas Emission Problems. Building upon Section 2, we
now explore the inversion model implemented to estimate the source locations and emission
rates. By leveraging the simulated sensor observations and the knowledge of gas dispersion
patterns, the inversion model offers a valuable tool for identifying and quantifying the precise
source characteristics.

Using i = 1,2, · · · , nsrc, j = 1,2, · · · , nsns, and t = 1,2, · · · , nT to represent sources, sen-
sors, and observation time points, respectively, for every pair (j, t) we have recorded mea-
surements dj = (dj1, dj2, · · · , djnT

)T . Each sensor takes a measurement at time t giving a
nobs × 1 vector of observations d= (dT

1 ,d
T
2 , · · · ,dT

nsns
)T . Each sensor’s concentration mea-

surements are a combination of gas emitted from the sources, background gas concentra-
tion, and measurement error variance. The sources’ contributions for unit emission rates
are denoted by the nobs × nsrc matrix A, modeled using the Gaussian plume equation (2).
Aki is obtained by computing equation (2) for a specified source location (x̃i, ỹi, z̃i) and
dispersion parameters aH , aV , bH , bV from equation (3). Each source has an emission rate
denoted si used to rescale the coupling matrix A. Each sensor’s measurements contain a
different spatially varying background gas concentration βj = (βj1, βj2, · · · , βjnT

)T where
βj1 = βj2 = · · ·= βjnT

giving β = (βT
1 ,β

T
2 , · · · ,βT

nsns
)T .

We are interested in estimating emission rates s = (s1, s2, · · · , snsrc)
T and correspond-

ing source locations (x̃, ỹ, z̃) = ((x̃1, x̃2, · · · , x̃src)
T , (ỹ1, ỹ2, · · · , ỹsrc)

T , (z̃1, z̃2, · · · , z̃src)
T ).

These are estimated simultaneously with β, σ2, and aH , aV , bH , bV to reduce bias. For sim-
plicity, we fix the sources’ height near the ground z̃i ≈ 0.

Inversion modeling is a powerful technique in various scientific disciplines, particularly geo-
physics and statistics, and aims to infer unknown parameters or variables from observed data.
It involves the mathematical formulation of a forward model that simulates the observed data
given a set of input parameters. Inversion modeling reverses this process by estimating the
most likely parameters that produced the observed data. MCMC methods are frequently em-
ployed in inversion modeling for their ability to explore complex, high-dimensional param-
eter spaces that are otherwise intractable. MCMC is particularly useful when dealing with
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nonlinear and non-Gaussian problems, providing robust and probabilistic estimates of model
parameters while accounting for uncertainties in both data and model assumptions.

Let λ = {s, x̃, ỹ, aH , bH , aV , bV , σ
2,β}, we can write the full posterior distribution of our

inversion problem as:

(6) p(λ | d)∝ p(d | λ)p(λ).
The common set of parameters for prior distributions used during the simulation case study
(Section 4) and the inversion on the Chilbolton dataset (Section 5) are listed in Supplementary
Materials B.3.

3.1. Gibbs Sampling. Gibbs sampling (Geman and Geman, 1984) is a fundamental tech-
nique in MCMC methods particularly advantageous in scenarios where the joint distribution
is difficult to sample directly but where conditional distributions are known or can be easily
calculated. When the prior and likelihood functions belong to a conjugate pair, the poste-
rior distribution has a known analytical form. This allows for posterior samples drawn by
sequentially sampling from the conditional posterior distributions. The parameters σ2 and β
are estimated using Gibbs sampling with the following priors:

σ2 ∼ Inv-Gamma(a, b),

β ∼N (µβ,Σβ),
(7)

where a ∈R+, b ∈R+, µβ is set using historical average background gas concentrations and
Σβ is a diagonal matrix. The mathematical derivations of the following conjugate posteriors
are provided in Supplementary Materials A.2:

(8) σ2 | λ \ {σ2} ∼ Inv-Gamma

(
nobs

2
+ a , b+

∑nobs(d−β−As)2

2

)
,

(9)

β | λ \ {β} ∼ N

((
1

σ2
I+Σβ

−1

)−1( 1

σ2
(d−As) +Σβ

−1µβ

)
,

(
1

σ2
I+Σβ

−1

)−1
)
.

3.2. Manifold Metropolis Adjusted Langevin Algorithm Sampling. Gibbs sampling is
only possible when analytical forms of the conditional posterior distribution are available.
The emission rates, locations, and dispersion parameters have a nonlinear relationship, mak-
ing the derivation of the conditional posteriors extremely challenging. In such cases, gradient-
based MCMC methods like the Metropolis-Adjusted Langevin Algorithm (MALA) offer a
valuable alternative to sample from the posterior (Grenander and Miller, 1994).

Considering the structure of the Gaussian plume model, we expect variables to be correlated.
Traditional MALA schemes rely on local gradient information, resulting in inefficient sam-
pling in this scenario. Here M-MALA presents compelling advancements over MALA by
accounting for these interdependencies using a Riemann metric tensor to adapt to the local
curvature of our target distribution (Girolami and Calderhead, 2011; Xifara et al., 2014). This
ensures a more efficient and accurate sampling procedure which has been shown to work for
similar problems (Karimi et al., 2023). Under M-MALA, sampling of θ is performed by a
Metropolis-Hastings (MH) step with the following proposal distribution:

(10) θ∗ ∼ Nn

(
θ(l−1) + 0.5ζ(l−1)G−1∇ log(p(θ(l−1) | d)), ζ(l−1)G−1

)
,
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where l is the current MCMC iteration, n is the number of parameters, θ∗ are the proposed
parameter values, θ(l−1) are the parameter values in the Markov Chain at iteration l − 1,
ζ(l−1) is the step size at iteration l− 1, and G is the Hessian matrix.

However, it is essential to note that M-MALA is often computationally expensive due to the
calculation of the Hessian scaling as O(n3). To address this challenge and enhance computa-
tional speed, our code is implemented in JAX (Bradbury et al., 2018), a library for automatic
differentiation and high-performance computing, enabling efficient sampling and gradient
computation for large-scale Bayesian inference tasks.

3.3. Positively Constrained Manifold-MALA-within-Gibbs. Combining Gibbs sampling
with MH algorithms yields a hybrid approach known as MH-within-Gibbs (Chib and Green-
berg, 1995); here we use M-MALA-within-Gibbs. This methodology leverages the strengths
of both techniques to efficiently sample from complex posterior distributions, particularly in
scenarios with correlated parameters and nonlinear relationships. The pseudo-code for our
implementation of M-MALA-within-Gibbs is presented in Supplementary Materials A.3 and
the full code is available at the GitHub repository provided at the end of this paper. We em-
ploy log transformations to enforce positivity constraints on emission rates and dispersion
parameters, ensuring physically realistic parameter values throughout the sampling process.
However, we do not enforce bH , bV ≤ 1 in the MCMC scheme; exceptional values observed
serve as an indicator of model misspecification.

4. Simulation Study. A simulation study was conducted to assess the performance of
our inversion methodology and identify its limitations. The experiments presented in this
section help to understand how varying factors impact parameter estimation, demonstrating
the robustness of our approach and highlighting the necessary conditions for it to perform
optimally. These are fundamental steps towards applying our method to real-world data (see
Section 5), where some factors cannot be controlled and the true parameter values are often
unknown. In this section, we demonstrate our ability to simultaneously estimate the source
emission rate, location, background gas concentration, measurement error variance, and dis-
persion parameters in single source cases. We then highlight the importance of estimating
dispersion parameters by comparing source estimations when dispersion parameters are as-
sumed to be known or estimated.

In order to simulate the data for all experiments we follow the steps in Section 2 and generate
realizations of point sensor temporal observations. Parameter estimation was performed us-
ing 20,000 M-MALA-within-Gibbs iterations with initialization values set by a coarse grid
search on the emission rate and location followed by a Latin hypercube on all parameters.
The code is available at the GitHub repository listed below and was run using Python version
3.10.12 on 4 cores Intel® Xeon® Gold 6248R and 16GB RAM. The algorithm uses fixed
seed pseudo-random numbers for all MCMC samples to ensure reproducibility of results and
comparability between simulations.

4.1. Single Source Estimation. Simple yet realistic single-source scenarios are useful for
examining the inversion capabilities of our model. Our simulations showcase the model’s
ability to estimate parameters and assess its robustness to parameter variations using the
following experimental design. The simulated parameter variations considered are the fol-
lowing: (a) WDC: wind direction coverage in degrees mathematical [°], (b) DPV: dispersion
parameter values, (c) SER: source emission rate [kg/s], (d) DTS: distance between the source
and sensors [m], (e) OPS: number of observations per sensor, and (f) SL: sensor layout.
These variations assess the robustness of our inversion methodology under different atmo-
spheric conditions (a, b), source characteristics (c, d), and data collection conditions (e, f).
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For each of the six factors (a)-(f), we define low (L), medium (M), and high (H) levels as
detailed in Figure 4 and Figure 5. We then perform a “main effects” analysis, changing each
factor in turn from L to M and then to H, holding all other factors at level M. The level M con-
ditions correspond to an emission source positioned at coordinates (50m, 50m, 5m) within
a 110m × 110m square, emitting at a rate of 0.00039 kg/s (corresponding approximately to
the Chilbolton release rates), with all plume dispersion parameters set to 1.0. A grid of 36
evenly spaced sensors positioned downwind of the plume (see Figure 3), collects 100 mea-
surements per sensor at a frequency of 1 Hz and with a measurement error variance of 1e-6
PPM. In practice, sensor layouts will be informed by the local prevailing wind conditions
and the physical characteristics of the site. We believe the sensor setup adopted here is use-
ful to explore the role of key design parameters on the quality of inference. An OU process
simulates wind speeds with a mean of 6 m/s, and the wind direction varies every second,
encompassing a 140° range as depicted in the left plot of Figure 3. Results of the analysis
are shown in Figure 4 and Figure 5 in terms of box-whisker plots summarizing the marginal
posterior distributions of parameters from the MCMC. In all subplots of Figure 4 and Figure
5, the middle box-whisker plot corresponds to level M for all factors. Detailed results of each
inversion presented in Figure 4 and Figure 5 are available in Supplementary Materials B.1.

Varying atmospheric conditions: In practice, the wind direction coverage is often positively
correlated to the observation period. The longer we collect data the higher the chances of
observing a wide range of wind directions. However, a region’s prevailing wind can result
in narrow wind direction coverage, especially when the observation period is small; e.g.
100 seconds in this simulation. The first column in Figure 5 demonstrates the difficulty of
estimating dispersion parameters when the wind direction coverage is too small, shown by
large uncertainty when the wind direction covers only 60°. However, a full 360° coverage
does not lead to optimal inference, due to sensors spending the majority of time outside the
plume. The second column contains varying dispersion parameters and shows the model’s
robustness to different atmospheric conditions. In-depth studies of the impact of varying
wind direction coverage are included in Supplementary Materials B.1.1. These reveal the
following atmospheric conditions for our inversion method to perform optimally:

1. At least one sensor must be in the plume for the majority of the observation period. For
a given source location, this is determined by the wind directions and point sensor place-
ments.

2. The horizontal range of wind directions must exceed the horizontal plume width. This
ensures that no point sensor is always in the plume, which makes identification of the
dispersion parameters difficult.

Varying source characteristics: Source location and emission rate are crucial when monitor-
ing for gas emissions. It is therefore interesting to understand how these affect the inversion
capability of our model. From the third column in Figure 4 and Figure 5, it is clear that
an increase in the emission rate reduces our estimation uncertainty. This is likely due to
a more pronounced distinction between the source contribution and the atmospheric back-
ground concentration. Similarly, the fourth column indicates a positive correlation between
estimation uncertainty and the distance between the source and the sensors.

Varying data collection conditions: The fifth column demonstrates the reduction in bias and
estimation uncertainty as the sample size increases. The sixth column shows that the sen-
sor layout is a fundamental factor influencing our estimation accuracy. Losing the vertical
coverage in the sensor layout has significantly impacted our ability to estimate the vertical
dispersion parameters. Due to the structure of the Gaussian plume model, there are positive
and negative correlations between the emission rate and the dispersion parameters. To explain
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the observed gas measurements, a trade-off exists between the dispersion parameters and the
emission rate. The former can narrow/widen the shape of the plume while the latter is de-
creased/increased to explain the measured concentrations. This identifiability issue is shown
to be significantly influenced by the sensor layout, we explore it in more detail in Supple-
mentary Materials B.1.6. In the next section we illustrate the bias in source estimation when
dispersion parameters are misspecified, highlighting the importance of correctly estimating
them.

Overall, the model and inversion methodology presented in Sections 2 and 3 have demon-
strated the ability to estimate all parameters simultaneously and have shown general robust-
ness to the changing atmospheric, source, and data collection conditions applied. However,
both wind direction coverage and sensor layout indicate potential limitations of our approach
in practice. Dispersion parameters become difficult to estimate when wind direction coverage
is small or in the absence of a vertical sensor layout.

4.2. Estimating Dispersion Parameters. We now focus on a significant limitation of
many gas inversion methods when applying them to real data, the misspecification of dis-
persion parameters. Similar work was done by Cartwright et al. (2019) who tuned the wind
sigmas by estimating a horizontal and a vertical scaling parameter. The parametrization of
the wind sigmas used in their work also uses four dispersion parameters, however, these are
taken from ASC-based tables, and the ASC was determined using a Monin–Obukh length
and an effective roughness length. This approach fixes the dispersion parameters and assumes
that rescaling the pairs {aH , bH} and {aV , bV } can sufficiently improve the Gaussian plume
model. We propose additional flexibility by allowing all four dispersion parameters to be di-
rectly, individually, and jointly estimated. Therefore removing bias introduced by the ASC,
Monin-Obukh length, and effective roughness length. To the best of our knowledge, there is
currently no method other than the one we propose in this paper that simultaneously estimates
source location, emission rate, background concentration, measurement error variance, and
dispersion parameters. In practice, it is common for dispersion parameters to be chosen based
on the local ASC. However, as shown in Figure 6, dispersion parameter misspecification can
introduce substantial bias in the source estimation. We estimated the source location, emis-
sion rate, background concentration, and measurement error variance for various dispersion
parameter misspecifications to quantify this bias. We misspecified each dispersion parameter
at a time, aH , aV , bH , bV , while fixing the remaining three to their true value. This enables us
to identify the main effect biases of each dispersion parameter. Moreover, this experimental
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FIG 4. Parameter estimation performance main effects simulation analysis. Each column compares simula-
tions where a single parameter was varied. The column heading indicates the parameter being varied. WDC:
wind direction coverage [degrees°], DPV: dispersion parameter values, SER: source emission rate [kg/s],
DTS: distance between the source and sensors [m], OPS: number of observations per sensor, and SL: sen-
sor layout. The rows correspond to the different parameters estimated using M-MALA-within-Gibbs. case
1: aH = 1.4, bH = 0.9, aV = 1.2, bV = 0.95. case 2: aH = 1.0, bH = 1.0, aV = 1.0, bV = 1.0. case 3:
aH = 0.9, bH = 0.8, aV = 0.7, bV = 0.85. low: 0.000195 kg/s. mid: 0.00039 kg/s. high: 0.00078 kg/s. line:
36 × 1 line of sensors. grid: 6 × 6 grid of sensors. s.line: 6 × 1 sparse line of sensors. The red dashed lines
represent the true values of the estimated parameters.

design reflects an optimistic reality where three of the four dispersion parameters are correctly
specified. In practice, we expect all four ASC-based dispersion parameters to be misspeci-
fied because the tables these come from discretize the dispersion parameters when these are
in fact continuous. Additionally, the meteorological data required to correctly identify the
local ASC is not always available. Parameter estimation based on misspecified dispersion
parameters is compared to “est.": where all four dispersion parameters are estimated simul-
taneously, and to “truth": the unrealistic scenario where all four dispersion parameters have
been fixed to the truth. The true values of the dispersion parameters in this simulation are
aH = 1.0, aV = 1.0, bH = 0.8, bV = 0.8, and all other conditions are set to level M.

From Figure 6, it can be observed that when aH is too small, or too large, the emission
rate is under or overestimated, the same is true for aV . The estimated source distance to
the grid of sensors is overestimated when the horizontal dispersion parameters are too small
or the vertical dispersion parameters are too large. Similarly, the distance is underestimated
when horizontal dispersion parameters are too large and vertical dispersion parameters are too
small. However, estimation of the source location coordinate y is robust to misspecification
due to the sensors and source layout (see Figure 3). There is no bias in its estimation but a
reduction in uncertainty when dispersion parameters are correctly specified.

Overall, the misspecification of dispersion parameters shows a strong bias in estimating
source characteristics. Meanwhile, estimating the dispersion parameters significantly reduces
this bias, as shown by Figure 6 where the “est" and “truth" box-whisker plots are almost iden-
tical.
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5. Chilbolton Real Data. We now apply our inversion method to the Chilbolton dataset
for controlled methane releases made on the flat terrains of the Chilbolton Observatory,
Hampshire, UK. As these are controlled releases, the true source locations, and emission
rates are known. This enables comparability of our results against other methods applied on
the same dataset (Hirst et al., 2020; Voss et al., 2024). The data for these controlled releases
were collected using a multiple open-path laser dispersion spectrometer (LDS) and a single
3D ultrasonic 20Hz anemometer. The LDS measures path-averaged methane concentrations
along beams between the LDS and seven fixed reflectors (see Figure 7), with continuous
sequential scanning of all beams taking 3s to cover all reflectors. To ensure compatibility
between the coupling matrix’s point location concentration structure and the beam’s path-
averaged measurements, 40cm spaced point locations were created along the beams, across
which the coupling matrix concentrations were averaged. The Chilbolton experiments con-
tain three controlled releases, two with single sources (Source 1 and Source 2), and one with
two sources (Source 3 and Source 4) which we tackle using an extended two source method-
ology. Each release event includes multiple sub-releases to increase wind direction coverage.
Sources were created by 2m×2m aluminum frames laid on the ground, evenly perforated
with 1cm spaced holes. The Gaussian plume model is a representation of the long-term time-
averaged concentration under steady-state wind conditions. Thus, over short time scales, it
can be a poor representation of the observed data. Averaging the data over longer time periods
can improve the correspondence between the model and the (averaged) data. Consequently,
measurements from each beam, taken every 3 seconds, were aggregated within 1-minute
intervals before estimating the parameters. See Supplementary Materials B.2.1 for details
regarding data processing.
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We used four wind sigma parametric forms to implement the inversion procedure presented in
Section 3 and compared their estimation accuracy. 1) ASC-based dispersion parameters using
the Briggs scheme, 2) ASC-based dispersion parameters using the Smith scheme, 3) estimat-
ing dispersion parameters using the Smith scheme, and 4) estimating dispersion parameters
using Equation (3). From now on, we refer to 3) and 4) as “estimated Smith" and “estimated
Draxler" respectively. The Chilbolton dataset does not contain the necessary meteorological
data to identify the local ASC reliably. The only information available is a picture of the
Chilbolton site taken during the releases and the recorded wind speeds. Based on Table 3 in
Supplementary Materials 2.4, the wind speeds recorded and the grey sky in the picture sug-
gest an ASC B or C. However, this approach is not precise enough to confidently determine
a single local ASC as required for ASC-based wind sigma parametrizations. Hence, we per-
formed an exploratory data analysis to overcome the lack of meteorological evidence needed
to select a unique ASC. This involved comparing the Smith and Briggs-based model predic-
tions of spatial gas concentration measurements to the real data. Details are included in the
Supplementary Materials 2.4. The results showed significant differences between the ASC-
based model predictions, however, no model stood out as best approximating the observed
data. Therefore, these results cannot justify the preference for a specific model. Furthermore,
the local ASC could not be determined as the equally most accurate predictions came from
the Smith B, Smith C, Briggs A, and Briggs B schemes. This means that we cannot select a
unique ASC for our inversion. We therefore perform the inversion using the Smith and Briggs
schemes for all available ASCs. The inability to confidently choose an ASC and the bias in-
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troduced when incorrectly selecting the ASC underlines the advantages of estimating the
dispersion parameter over ASC-based methods. See Supplementary Materials B.2.2-B.2.4
for further details regarding the Smith and Briggs schemes, and ASC determination.

For each model, we ran 10,000 and 5,000 iterations of the M-MALA-within-Gibbs for
Sources 1 and 2 respectively, with a 4,000 and 1,000 burn-in which took on average 27 and
30 minutes for ASC-based models and 48 and 54 minutes for estimated Smith and Draxler
approaches. MCMC convergence was evaluated by investigating traceplots of estimated pa-
rameters. Convergence diagnostics are shown in Supplementary Materials B.2.5 and B.2.6.
Based on equivalent diagnostics, we found that the MCMC of the multiple source scenario
(Source 3 and Source 4) failed to converge after 50,000 iterations taking 1631 minutes. For
that reason, we excluded this scenario from the results. A simulation of Chilbolton’s Source
3 and Source 4 release, included in Supplementary Materials B.2.7, indicates that the lack of
convergence is likely due to insufficient wind direction coverage in the real data (See Supple-
mentary Materials B.2.7.1) Figure 8 compares the models’ estimation of Source 1 and Source
2 emission rate and location. As expected from the exploratory data analysis, we observe a
significant difference between the estimation of ASC-based models. For both Sources 1 and
Source 2, estimation accuracy decreases as ASC moves away from ASC A. Furthermore,
Briggs A seems to outperform all other models including the estimated Smith and estimated
Draxler models. However, both estimated Smith’s and estimated Draxler’s estimations are
close to the truth, comparable to ASC B-based models, and outperform ASC C, D, E, and F-
based models. Figure 9 helps to visualize the location estimation in relation to the true source
locations and beams. Finally, we examine a model selection criterion and a performance indi-
cator across all estimated variables. Tables 1 and 2 containing Bayesian information criterion
(BIC) (Schwarz, 1978) and root mean square error (RMSE) quantify each model’s goodness
of fit and residuals. Only the best ASC-based Smith and Briggs models were presented for
clarity. Supplementary Materials B.2.5 and B.2.6 contain details regarding all other ASC-
based models’ inversion results. According to these tables, Source 1 is best estimated using
estimated Smith but Smith B is preferred when penalizing for model complexity, and for
Source 2 estimated Draxler is the best fitting model and produced the lowest RMSE.

We can draw two major conclusions from these findings. ASC-based Gaussian plume models
can accurately estimate the source characterization on flat open terrain when the local ASC
is correctly identified. However, correct identification of the local ASC is not always possible
and multiple choices of ASCs may often seem reasonable. The misspecification of the local
ASC leads to bias in our estimation which can result in poor estimation accuracy. There-
fore, ASC-based models are vulnerable to inaccurate determination of the local ASC, and we
believe most practical applications are susceptible to making this mistake. Estimating disper-
sion parameters is a solution to this problem, it eliminates the bias introduced by specifying
an ASC and has shown to be robust and able to accurately estimate source characteristics.

TABLE 1
Comparing models’ inversion performances for Source 1 using BIC and RMSE. Optimal models for each

performance measure are given in bold. “Est. Smith" and “Est. Draxler" estimate the dispersion parameters
instead of using ASC-based tables.

Briggs A Smith B Est. Smith Est. Draxler

BIC 2048 2014 2025 2058
RMSE 0.629 0.617 0.611 0.622
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TABLE 2
Comparing models’ inversion performances for Source 2 using BIC and RMSE. Optimal models for each

performance measure are given in bold. “Est. Smith" and “Est. Draxler" estimate the dispersion parameters
instead of using ASC-based tables.

Briggs A Smith C Est. Smith Est. Draxler

BIC 4386 4343 4223 3539
RMSE 0.577 0.611 0.552 0.477
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FIG 7. Sensor, beam, and source positions for the Chilbolton experiment. Each colored line corresponds to a
different sensor-reflector path. The straight blue line and dashed red line boxes correspond respectively to the
plotting area of Source 1 and Source 2 in Figure 9.
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FIG 8. Source 1 and Source 2 emission rate and location estimations for all ASC-based models tested, estimated
Smith, and estimated Draxler. The red dashed line represents the true sources’ location and rate.

6. Discussions. We consider a Gaussian plume-based forward model for atmospheric
gas dispersion simulating realistic source emissions monitoring scenarios. We also propose
an MCMC-based inversion method to estimate the source emission rate, location, gas back-
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ground concentration, measurement error variance, and dispersion parameters. Our results
show that estimating the dispersion parameters reduces bias relative to inference using ASC-
based models. When meteorological data is insufficient to determine the stability class, our
model provides robust and accurate results. The dispersion parameters of the Gaussian plume
model should therefore be estimated rather than fixed when possible, ideally incorporating
meteorological and methane concentration measurement information. The simulation study
in Section 4 shows that this is only feasible when data are recorded using an appropriate
sensor layout and sufficient wind direction coverage. A large literature exists demonstrating
the importance of appropriate sensor layouts in inverse problems (Liu et al., 2022; Liu and
Li, 2022; Dia et al., 2024). These conditions ensure optimal inversion estimation and should
therefore serve as guidelines when installing ground sensors and collecting data for monitor-
ing purposes. Additionally, the simulation study demonstrated the robustness of our inversion
methodology to a wide range of atmospheric, source, and data collection conditions. Finally,
in Section 5 we proved the effectiveness of our method in practice by applying it to real data.

This paper serves to demonstrate the importance of carefully choosing the dispersion param-
eters when performing inference in practice. As such, it does not focus on creating the most
realistic CFD model, and we could consider the following simple modifications. The obser-
vation equation (5) can be extended to model the background gas concentration, the sensor
measurement errors, and the gas dispersion in a more physically realistic way. For example,
background gas concentration β could be modeled using a spatio-temporal Gaussian process
or Gaussian Markov random field, potentially accounting for wind field-induced dependence.
Under this assumption, it is important to jointly estimate β and the measurement error vari-
ance σ2. Additionally, the assumption that sensor measurement errors are independently and
identically normally distributed may be overly simplistic. We might relax this assumption
by choosing to model serially correlated errors and modeling sporadic error spikes. Finally,
the coupling matrix A could be computed using a more physically realistic forward model
able to account for obstacles in the flow field. Traditional finite element or finite volume
methods have been extensively studied for this purpose and numerous high-quality software
libraries are available e.g. OpenFOAM (OpenCFD, Ltd., 2024) and ANSYS Fluent (Ansys,
Inc., 2024). However, solving the PDE every time the estimated parameters change can be
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time-consuming. Recent advancements in forward model emulators might offer a solution.
Physics-informed neural networks (PINNs) have shown great accuracy at solving general
nonlinear PDEs (Raissi, Perdikaris and Karniadakis, 2019; Cai et al., 2021) including the
advection-diffusion equation (Pang, Lu and Karniadakis, 2019; Salman et al., 2022) and 2D
Navier-Stokes equations (Brahmachary and Thuerey, 2024). Training a PINN can be very
computationally expensive and time-consuming. However this cost is amortized, once the
training is complete, the solution evaluation is fast (Cuomo et al., 2022). This efficiency is
particularly advantageous in inversion scenarios where the same PDE must be solved repeat-
edly with different parameter values.

In the current work, the source is assumed to be located near the ground z̃ ≈ 0, appropriate
for many applications. This assumption can be relaxed by estimating z̃, allowing our method-
ology to estimate off-ground source characteristics. The source horizontal and vertical half
widths {h,w} can be estimated similarly; additionally, assuming a spherical source remains
a sufficient approximation in many scenarios.

Numerous extensions of the current work are possible. A grid-based version of our method
was originally considered, with the center of the grid cell serving as a potential source loca-
tion. In practice, the number of sources is expected to be small compared to the number of
cells; our methodology therefore incorporated a spike and slab prior on the emission rates to
constrain the number of cells corresponding to sources. However, this method was abandoned
due to its computational cost. Assuming cell-centered sources introduces bias in the parame-
ter estimation, which can be reduced by increasing the grid’s resolution. Unfortunately, using
a fine grid creates a high-dimensional inversion problem with strong correlations between
parameters. Nonetheless, we believe it would be interesting to use the grided approach, with
a computationally cheaper non-Hessian-based MCMC method, to identify the number of
sources and their emission rates. These estimates could then be used as starting solutions for
our inversion method. See for example Van de Kerkhof, Jones and Randell (2024) and Hirst
et al. (2013).

Finally, for practical online source monitoring applications, it is critical to accommodate
temporal variations in source, background, and dispersion parameter characteristics, due to
effects of e.g. weather conditions, human activities, and seasonality. To account for these tem-
poral variations, we believe extending our work to state-space models whilst enforcing source
sparsity would be an exciting area of research. Voss et al. (2024) have presented promising
results for such approaches on the Chilbolton dataset.

Data Availability Statement. The raw Chilbolton data that support the findings of this
study are openly available at the following: https://edata.stfc.ac.uk/items/5c88d121-0e19-4
840-a26b-499dba49419a.

Code Availability and Supplementary Materials. Code and data for replicating the
study results are available at https://github.com/NewmanTHP/Probabilistic-Inversion-Mod
eling-of-Gas-Emissions. The Python package sourceinversion implementing the proposed
method and Supplementary Materials A and Supplementary Materials B for this paper are
also available on the same GitHub repository.
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Supplementary Materials A: Mathematical Theories and
Derivations

1 Modeling Gas Dispersions using the Gaussian Plume

Model

From the Stockie derivation [Stockie, 2011], the distribution of the plume perpendicular to the
wind direction has a 2-D Gaussian form. That is, the gas concentration at location (x, y, z)[m]
takes the general form:

c(x, y, z; x̃, ỹ, z̃) =
106

ρCH4

s

2πu|Σ| 12
exp

{
−1

2
ωTΣ−1ω

}
, (1)

where ρCH4 ∈ R+ is the density of methane [kg/m3], the term 106/ρCH4 ensures the gas concentra-
tion is in parts per million [PPM], u is the wind speed [m/s], s is the source emission rate [kg/s]
for a source at location (x̃, ỹ, z̃)[m], and:

ω = (δH , δV ),

Σ =

[
σ2
H 0
0 σ2

V

]
,

(2)

with: δR
δH
δV

 =

 cos θu sin θu 0
− sin θu cos θu 0

0 0 1

×

xy
z

−

x̃ỹ
z̃

 , (3)

for θu being the wind direction [rad] and with the parametrization of σH and σV based on δR.
Therefore, this simplifies to:

c(x, y, z; x̃, ỹ, z̃) =
106

ρCH4

s

2πuσHσV

exp

{
−1

2

(
δ2H
σ2
H

+
δ2V
σ2
V

)}
. (4)

So far we have only included horizontal and vertical offsets. However, we can extend equation (1)
to account for gas reflections against surrounding boundaries. Assuming there are no horizontal
boundaries, the horizontal term remains:

exp

{
− δ2H
2σ2

H

}
. (5)

1



However, the atmospheric boundary layer (ABL) with height P and the ground form vertical
boundaries against which the gas reflects. Denoting the source height by H the vertical reflections
are captured by:

nrefl∑
j=1

[
exp

{
− 1

2

(2⌊(j + 1)/2⌋P + (−1)j(δV +H)−H)2

σ2
V

}

+exp

{
− 1

2

(2⌊j/2⌋P + (−1)j−1(δV +H) +H)2

σ2
V

}]
.

(6)

The first exponential term in equation (6) corresponds to the reflection against the ABL and
the second exponential term to the reflection against the ground. nrefl denotes the number of
reflections against the ABL and against the ground. Adding the vertical and horizontal offset and
the vertical reflections we finally obtain the formula :

c(x, y, z; x̃, ỹ, z̃) =
106

ρCH4

s

2πuσHσV

exp

{
− δ2H

2σ2
H

}
×

(
exp

{
− δ2V
2σ2

V

}

+

nrefl∑
j=1

[
exp

{
− 1

2

(2⌊(j + 1)/2⌋P + (−1)j(δV +H)−H)2

σ2
V

}

+ exp

{
− 1

2

(2⌊j/2⌋P + (−1)j−1(δV +H) +H)2

σ2
V

}])
.

(7)

2 MCMC Posterior Derivations

2.1 Conditional Posterior p(σ2|d, s,β)
The conditional posterior distribution for the variance of the measurement error, σ2, can be written
as:

p(σ2|d, s,β) = p(d|s, σ2)p(s)p(β)p(σ2)∫
p(d|s, σ2)p(s)p(β)p(σ2)dσ2

,

=
p(d|s,β, σ2)p(σ2)∫
p(d|s,β, σ2)p(σ2)dσ2

.

To make it clearer lets denote R =

∫
p(d|s,β, σ2)p(σ2)dσ2, i.e. the normalising constant.

p(σ2|d, s,β) = 1

R
× p(d|s,β, σ2)p(σ2),

=
1

R

(
2πσ2

)−nobs
2

exp

{
− 1

2σ2

nobs∑
(d− β − As)2

}
ba

Γ(a)

(
1

σ2

)a+1

exp

{
− b

σ2

}
.

2



We can now absorb the terms that do not depend on σ2 into R. We obtain:

p(σ2|d, s,β) = 1

R

(
σ2
)−nobs

2
−a−1

exp

{
− 1

2σ2

nobs∑
(d− β − As)2 − b

σ2

}
,

=
1

R

(
σ2
)−(

nobs
2

+a)−1

exp

{
− 1

σ2

(∑nobs(d− β − As)2

2
+ b

)}
.

This corresponds to the Inverse-Gamma distribution:

σ2|d, s ∼ Inv-Gamma

(
nobs

2
+ a , b+

∑nobs(d− β − As)2

2

)
.

2.2 Conditional Posterior p(β|d, s, σ2)

The conditional posterior distribution for the background concentration β can be written as:

p(β|d, s, σ2) =
p(d|s,β, σ2)p(s)p(β)p(σ2)∫
p(d|s,β, σ2)p(s)p(β)p(σ2)dβ

,

=
p(d|s,β, σ2)p(β)∫
p(d|s,β, σ2)p(β)dβ

.

To make it clearer lets denote R =

∫
p(d|s,β, σ2)p(β)dβ, i.e. the normalising constant.

p(β|d, s, σ2) =
1

R
× p(d|s,β, σ2)p(β),

=
1

R

(
2πσ2

)−nobs
2 exp

{
− 1

2σ2
(d− β − As)2

}
× (2π)−

nobs
2 |Σ|−

1
2 exp

{
− 1

2
(β − µ)T Σ−1 (β − µ)

}
,

=
1

R
exp

{
− 1

2

[
βT (

1

σ2
I+ Σ−1)β − 2βT

(
1

σ2
(d− As) + Σ−1µ)

)]}
.

This is the kernel of a multivariate Gaussian distribution, therefore:

β|d, s, σ2 ∼ N

((
1

σ2
I+ Σ−1

)−1(
1

σ2
(d− As) + Σ−1µ

)
,

(
1

σ2
I+ Σ−1

)−1
)
.
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3 M-MALA-within-Gibbs Pseudocode

Algorithm 1: M-MALA-within-Gibbs

Input: number of iterations: L , initialize variables: θ(0) = [s, x̃, ỹ, aH , aV , bH , bV ], σ
2,β,

data: d, log-likelihood function: log(p(θ|d)), step-size: ζ(0).
Output: Samples for: θ, σ2,β, log-likelihoods, acceptance rates.

1 for l = 1, 2, 3, · · · , L do
2 # M-MALA

3 Evaluate: log(p(θ(l−1)|d)),∇ log(p(θ(l−1)|d)),∇2 log(p(θ(l−1)|d)), and A(l−1)

4 Propose samples: θ∗ ∼ Nn

(
θ(l−1) + 0.5ζ(l−1)G−1∇ log(p(θ(l−1)|d)), ζ(l−1)G−1

)
5 Evaluate: log(p(θ∗|d)),∇ log(p(θ∗|d)),∇2 log(p(θ∗|d)), and A∗

6 acceptance-prob = log(p(θ∗|d))− log(p(θ(l−1)|d)) + q(θ(l−1)|θ∗)− q(θ∗|θ(l−1))
7 u ∼ Uniform(0, 1)
8 if log(u) < acceptance-prob then

9 θ(l) = θ∗

10 A(l) = A∗

11 sum-accept += 1

12 else

13 θ(l) = θ(l−1)

14 A(l) = A(l−1)

15 sum-accept += 0

16 end

17 acceptance-rate(l) = (0.01)× acceptance-rate(l−1) + (0.99)× sum-accept
l

18 Update step-size ζ(l) using acceptance-rate(l)

19 # Gibbs

20 σ2(l) ∼ Inv-Gamma

(
nobs

2
+ a , b+

∑nobs (d−β(l−1)−A(l)s(l))2

2

)

21 β(l) ∼ N

((
1

σ2(l) I+ Σ−1
)−1
(

1
σ2(l) (d−A(l)s(l)) + Σ−1µ

)
,
(

1
σ2(l) I+ Σ−1

)−1

)
22 return θ(l), σ2(l),β(l), acceptance-rate(l), log(p(θ(l)|d)).
23 end

Note: The code allows to either keep the step-size ζ fixed throughout the MCMC or to tune it
during burn-in to achieve an optimal acceptance rate of 70% [Girolami and Calderhead, 2011] then
fixing it at the end of the burn-in period.

Additionally, using Table 4 in Supplementary Materials B.3 we define Σs = σ2
sI, Σxy = [σ2

x, σ
2
y ]I,

Σa = σ2
aI, and Σb = σ2

b I.

p(θ | d) = N
(
d | As+ β, σ2I

)
×

{
N(s | µs,Σs)× N

([
x̃
ỹ

]
| µxy,Σxy

)

×N

([
aH
aV

]
| µa,Σa

)
× N

([
bH
bV

]
| µb,Σb

)}
,
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q(θ∗ | θ(l−1)) = N
(
θ∗ | θ(l−1) + 0.5ζ(l−1)G−1∇ log(p(θ(l−1) | d)), ζ(l−1)G−1

)
.
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Supplementary Materials B: Simulations and Real-Data Case
Studies

1 Varying Parameters

In this section, we explore the effect of varying parameters on estimating source emission rate, location,
measurement error variance, background concentration, and diffusion parameters. Each subsection
focuses on varying a different factor ( (a) WDC: wind direction coverage [degrees°], (b) DPV: dispersion
parameter values, (c) SER: source emission rate [kg/s], (d) DTS: distance between the source and sensors
[m], (e) OPS: number of observations per sensor, and (f) SL: sensor layout.) while all other factors are
fixed. We define low (L), medium (M), and high (H) levels, then perform a “main effects” analysis,
changing each factor in turn from L to M and then to H, holding all other factors at level M. The
level M conditions correspond to an emission source positioned at coordinates (50m, 50m, 5m) within
a 110m× 110m square, emitting at a rate of 0.00039 kg/s, with all plume dispersion parameters set to
1.0. A grid of 36 evenly spaced sensors positioned downwind of the plume (see Figure 3), collects 100
measurements per sensor at a frequency of 1 Hz. An OU process simulates wind speeds with a mean
of 6 m/s, and the wind direction varies every second, encompassing a 140° range as depicted in the left
plot of Figure 1.
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Figure 1: Polar plot of methane concentrations measured by the grid of 36 sensors. Wind
direction coverage is 140°. Each line corresponds to a different sensor.

Figure 2: Source Gaussian plume model simulation at location (50m, 50m, 5m), with emission
rate 0.00039 kg/s, and centered at sensor layout center. Background concentration is also
included.
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Figure 3: Sensor layout: grid of 36 equally spaced point sensors.
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1.1 Varying the Wind Direction Coverage
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Figure 4: Source location estimation chains for varying wind direction coverage.
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Figure 5: Source location estimation densities for varying wind direction coverage.
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Figure 6: Source emission rate location estimation chains for varying wind direction coverage.
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Figure 7: Sensor measurement error variance estimation chains for varying wind direction
coverage.
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Figure 8: Background concentration estimation chains for varying wind direction coverage.

6



0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

1.0e+00

2.0e+00

3.0e+00

4.0e+00

5.0e+00

6.0e+00
a H

0.0 2.5 5.0 7.5 10.0
Density

60°
140°
360°

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

5.0e-01

1.0e+00

1.5e+00

2.0e+00

2.5e+00

3.0e+00

a V

0 2 4
Density

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

2.0e-01

4.0e-01

6.0e-01

8.0e-01

1.0e+00

1.2e+00

1.4e+00

b H

0 5 10 15 20
Density

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

6.0e-01

8.0e-01

1.0e+00

1.2e+00

1.4e+00

b V

0.0 2.5 5.0 7.5 10.0
Density

Figure 9: Diffusion parameter estimation chains for varying wind direction coverage.
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In-depth simulation: Here we estimated the parameters for a range of different wind direction cover-
age. The sharp increase in estimation accuracy and reduction in estimation uncertainty corresponds to
the change from a wind direction coverage that is smaller than the plume’s width to a larger one. This
is illustrated in Figure 12.
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Figure 10: Dispersion parameters estimation for varying sensor layout.
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Figure 11: Source emission rate, location, and sensor measurement error variance estimation for varying
wind sensor layout.
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Figure 12: Visual representation of varying wind direction coverage with source location and sensor
layout.
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1.2 Varying the Dispersion Parameters’ Value
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Figure 13: Source location estimation chains for varying dispersion parameter values.
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Figure 14: Source location estimation densities for varying dispersion parameter values.
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Figure 15: Source emission rate location estimation chains for varying dispersion parameter
values.
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Figure 16: Sensor measurement error variance estimation chains for varying dispersion pa-
rameter values.
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Figure 17: Background concentration estimation chains for varying dispersion parameter val-
ues.
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Figure 18: Diffusion parameter estimation chains for varying dispersion parameter values.
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1.3 Varying the Source Emission Rate
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Figure 19: Source location estimation chains for varying source emission rate.
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Figure 20: Source location estimation densities for varying source emission rate.
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Figure 21: Source emission rate location estimation chains for varying source emission rate.
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Figure 22: Sensor measurement error variance estimation chains for varying source emission
rate.
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Figure 23: Background concentration estimation chains for varying source emission rate.
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Figure 24: Diffusion parameter estimation chains for varying source emission rate.
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1.4 Varying the Distance between the Source and Sensors
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Figure 25: Source location estimation chains for varying distance between source and sensors.
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Figure 26: Source location estimation densities for varying distance between source and sen-
sors.

0 200 400 600 800 1000 1200 1400
Iterations

3.4e-04

3.6e-04

3.8e-04

4.0e-04

4.2e-04

4.4e-04

4.6e-04

4.8e-04

s:
 E

m
iss

io
n 

ra
te

 (k
g/

s)

0 20000 40000 60000 80000100000
Density

30 m
50 m
70 m

Figure 27: Source emission rate location estimation chains for varying distance between source
and sensors.
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Figure 28: Sensor measurement error variance estimation chains for varying distance between
source and sensors.
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Figure 29: Background concentration estimation chains for varying distance between source
and sensors.
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Figure 30: Diffusion parameter estimation chains for varying distance between source and
sensors.

22



1.5 Varying the Number of Observation per Sensor
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Figure 31: Source location estimation chains for varying number of observation per sensor.

23



48.5 49.0 49.5 50.0 50.5 51.0 51.5
x: location (m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
De

ns
ity

10 obs
100 obs
1000 obs

49.4 49.6 49.8 50.0 50.2 50.4 50.6
y: location (m)

0

10

20

30

40

50

De
ns

ity

Figure 32: Source location estimation densities for varying number of observation per sensor.
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Figure 33: Source emission rate location estimation chains for varying number of observation
per sensor.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

6.0e-03

2 : 
M

ea
su

re
m

en
t e

rro
r (

PP
M

)

0 5000 10000 15000 20000 25000
Density

10 obs
100 obs
1000 obs

Figure 34: Sensor measurement error variance estimation chains for varying number of obser-
vation per sensor.
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Figure 35: Background concentration estimation chains for varying number of observation per
sensor.
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Figure 36: Diffusion parameter estimation chains for varying number of observation per sensor.
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1.6 Varying the Sensor Layout
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Figure 37: Source location estimation chains for varying the sensor layout. line: a line of
36x1 sensors, grid: a 6x6 grid of sensors, and s.line: a line of 6x1 sensors.
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Figure 38: Source location estimation densities for varying the sensor layout. line: a line of
36x1 sensors, grid: a 6x6 grid of sensors, and s.line: a line of 6x1 sensors.
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Figure 39: Source emission rate location estimation chains for varying the sensor layout. line:
a line of 36x1 sensors, grid: a 6x6 grid of sensors, and s.line: a line of 6x1 sensors.

Figure 40: Sensor measurement error variance estimation chains for varying the sensor layout.
line: a line of 36x1 sensors, grid: a 6x6 grid of sensors, and s.line: a line of 6x1 sensors.
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Figure 41: Background concentration estimation chains for varying the sensor layout. line: a
line of 36x1 sensors, grid: a 6x6 grid of sensors, and s.line: a line of 6x1 sensors.
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Figure 42: Diffusion parameter estimation chains for varying the sensor layout. line: a line
of 36x1 sensors, grid: a 6x6 grid of sensors, and s.line: a line of 6x1 sensors.30



In-depth simulation: Here we estimated the parameters for a range of sensor layouts and different
numbers of sensors: 4, 9, 16, and 36. We have grid formations: 2 × 2, 3 × 3, 4 × 4 and 6 × 6 and
line formations: 4 × 1, 9 × 1, 16 × 1 and 36 × 1. The loss of vertical coverage in the line formations
(equally spaced sensors at fixed height impacts the ability to accurately estimate the vertical dispersion
parameters correctly and impacts the emission rate estimation. To explain the data, this increases the
measurement error variance. However, grid formations show greater robustness even with a low number
of sensors.
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Figure 43: Dispersion parameters estimation for varying the sensor layout. We are comparing line
layouts and grid layouts for different number of sensors.
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Figure 44: Source emission rate, location, and sensor measurement error variance estimation for varying
the sensor layout. We are comparing line layouts and grid layouts for different number of sensors.

32



2 Chilbolton Dataset

2.1 Data Processing

The GitHub repository available at https://github.com/NewmanTHP/Probabilistic-Inversion-Modeling-of-Gas-Emissions/
tree/master/Code/Chilbolton_Case_Study%20(Section%205%20%2B%20SM.B%202)/Data%20Processing%

20(SM.B%202.1) contains jupyter notebooks detailing how the raw data was processed.

2.2 SMITH Scheme

The SMITH scheme used to fix the wind sigma parameters in the Gaussian plume model has the following
parametric form:

σH = aHδR
bH ,

σV = aV δR
bV ,

where δR ∈ R+ is the downwind distance. The dispersion parameters aH , bH , aV , bV are chosen
based on the local atmospheric stability class (ASC) at the time the data was collected. Once the ASC
is determined the dispersion parameters can be chosen using Table 1 from Hanna et al. [1982].

Table 1: Briggs ASC-based dispersion parameter table

ASC aH bH aV bV

B 0.4 0.91 0.41 0.91
C 0.36 0.86 0.33 0.86
D 0.32 0.78 0.22 0.78

2.3 Briggs Scheme

The Briggs scheme used to fix the wind sigma parameters in the Gaussian plume model has the following
parametric form:

σH = aδR(1 + 0.0001δR)
−0.5,

σV =

{
bδR if ASC is A or B

bδR(1 + cδR)
d if ASC is C, D, E or, F.

where δR ∈ R+ is the downwind distance. The dispersion parameters a, b, c, d are chosen based on the
local atmospheric stability class (ASC) at the time the data was collected. Once the ASC is determined
the dispersion parameters can be chosen using Table 2 from Hanna et al. [1982].
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Table 2: Briggs ASC-based dispersion parameter table for open country conditions

ASC a b c d

A 0.22 0.20 0 0
B 0.16 0.12 0 0
C 0.11 0.08 0.0002 -0.5
D 0.08 0.06 0.0015 -0.5
E 0.06 0.03 0.0003 -1
F 0.04 0.016 0.0003 -1

2.4 Atmospheric Stability Class Determination

Pasquill’s ASC system is determined by wind speed and net solar radiation index. The following classi-
fication table is drawn:

Table 3: Pasquill ASC table

Wind Speed (m/s) Daytime incoming solar radiation
Strong Moderate Slight

<2 A A-B B
2-3 A-B B C
3-5 B B-C C
5-6 C C-D D
>6 C D D

where strong > 700Wm2, moderate 350-700Wm2, and slight < 350Wm2 [Seinfeld and Pandis, 2016].
During the Chilbolton experiments, wind speeds were between 1 and 5 m/s. There is no other measured
information about the weather conditions at the time of the release. Furthermore, the UK Met Office
data for the closest meteorological observation stations do not cover the period of interest. The only
available information regarding the radiation index is a picture of the release site taken during the
experiments. A light grey sky is visible from which we assumed the radiation index was moderate.
Therefore, using table 3 we would expect the Chilbolton experiments to have taken place under ASC B.

To overcome the lack of evidence needed to confidently determine the ASC, we performed an exploratory
data analysis to identify the ASC. Instead of selecting a single ASC using the poor meteorological
data available, we compared Smith and Briggs-based model predictions of spatial gas concentration
measurements to the real data. This was done by computing the average CH4 measurements observed
by each beam for a carefully chosen subset of data points which we call a slice. The subset is chosen
as to contain observations where the wind direction always intersects some of the beams. This ensures
that for some beams the average CH4 measurement is calculated using only observations where the
plume is crossing their path. Then for each Smith and Briggs ASC wind sigma parametrization, we
predicted the corresponding averaged CH4 beam measurements, this is possible because we know the
true source location and emission rate. Finally, we plot the CH4 measurements against the downwind
distance for the intersection points between the beams and the averaged wind direction line starting
from the source location (as illustrated in Figure 45, 47, 49,51, 53, and 55. Figure 46, 48, 50,52, 54,
and 56, shows the results for both Source 1 and Source 2, the local ASC could not be determined as the
equally most accurate predictions came from the Smith B, Smith C, Briggs A, and Briggs B schemes.
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This means that we cannot select a unique ASC for our inversion. Predictions made from est. Smith
and est. Draxler’s maximum a posteriori estimations of source emission rate and dispersion parameters
were also added for comparaison. These are represented by the dotted lines in Figure 46, 48, 50,52, 54,
and 56.
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Figure 45: The dashed red lines represent the range of wind directions in slice 1 of Source 1 data and
the straight red line is the average wind direction.
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Figure 46: This plot shows the CH4 measurements as a function of downwind distance and corresponding
model predictions for slice 1 of Source 1 data.
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Figure 47: The dashed red lines represent the range of wind directions in slice 2 of Source 1 data and
the straight red line is the average wind direction.
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Figure 48: This plot shows the CH4 measurements as a function of downwind distance and corresponding
model predictions for slice 2 of Source 1 data.
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Figure 49: The dashed red lines represent the range of wind directions in slice 3 of Source 1 data and
the straight red line is the average wind direction.
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Figure 50: This plot shows the CH4 measurements as a function of downwind distance and corresponding
model predictions for slice 3 of Source 1 data.
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Figure 51: The dashed red lines represent the range of wind directions in slice 1 of Source 2 data and
the straight red line is the average wind direction.
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Figure 52: This plot shows the CH4 measurements as a function of downwind distance and corresponding
model predictions for slice 1 of Source 2.
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Figure 53: The dashed red lines represent the range of wind directions in slice 2 of Source 2 and the
straight red line is the average wind direction.
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Figure 54: This plot shows the CH4 measurements as a function of downwind distance and corresponding
model predictions slice 2 of Source 2.

30 40 50 60 70 80
x: location (m)

0

20

40

60

80

100

y:
 lo

ca
tio

n 
(m

)

min-max wd
mean slice 3
slice 3
Intersection points
Source 1
Source 2
Source 3
Source 4

Figure 55: The dashed red lines represent the range of wind directions in slice 3 of Source 2 and the
straight red line is the average wind direction.
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Figure 56: This plot shows the CH4 measurements as a function of downwind distance and corresponding
model predictions slice 3 of Source 2.
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2.5 Chilbolton Source 1 Inversion

Figure 57: Source 1 location chains.
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Figure 58: Source 1 location densities.

Figure 59: Source 1 emission rate.

Figure 60: Source 1 measurement error variance.
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Figure 61: Source 1 background.
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Figure 62: Source 1 wind sigmas.
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2.6 Chilbolton Source 2 Inversion

Figure 63: Source 2 location chains.
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Figure 64: Source 2 location densities.

Figure 65: Source 2 emission rate.

Figure 66: Source 2 measurement error variance.
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Figure 67: Source 2 background.
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Figure 68: Source 2 wind sigmas.
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2.7 Chilbolton Source 3 and 4 Inversion

2.7.1 Real-data

Figure 69: Source 3 and Source 4 true wind direction time series.
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Figure 70: Source 3 and Source 4 true wind direction coverage and beam placements.
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Figure 71: Source 3 and Source 4 location chains.
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Figure 72: Source 3 and Source 4 location densities.
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2.7.2 Simulation

Figure 73: Source 3 and Source 4 simulation’s location chains.
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Figure 74: Source 3 and Source 4 simulation’s location densities.
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3 Prior Specification

In this section, we present the common set of priors used during our simulation case study and the inver-
sion on the Chilbolton dataset. Parameters estimated using M-MALA-within-Gibbs {log(s), x̃, ỹ, log(aH),
log(aV ), log(bH), log(bV )} follow a normal distribution [Girolami and Calderhead, 2011]. We chose an
inverse gamma prior for the sensor measurement error variance as it is a conjugate prior and ensures
that σ2 ≥ 0. Finally, we expect gas background concentrations to be normally distributed, therefore a
normal prior is a sensible chose allowing efficient Gibbs sampling.

Distribution Prior Value Unit

log(s) ∼ N (µs, σ
2
s)

µs -7.5
kg/s

σ2
s 1.5

x̃ ∼ N (µx, σ
2
x)

µx 50.0
m

σ2
x 25.0

ỹ ∼ N (µy, σ
2
y)

µy 50.0
m

σ2
y 25.0

log(aH), log(aV ) ∼ N (µa, σ
2
a)

µa log(0.6)
m

σ2
a 0.52

log(bH), log(bV ) ∼ N (µb, σ
2
b )

µb log(0.6)
m

σ2
b 0.22

σ2 ∼ Inv-Gamma(a, b)
a 1e-11

PPM
b 1e-8

β ∼ N (µβ,Σβ)
µβ 2⃗.0

PPM
Σβ 0.12I

Table 4: Prior specification.
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