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2 | METHODS: MCMC
• Parameters are estimated using M-MALA-within-Gibbs.
• Background and measurement error variance using Gibbs:
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• Emission rate, location, and gas dispersion parameter using M-MALA:
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4 | CONCLUSION
 Efficient estimation of source emission rate and location, coupled with accurate quantification of 
uncertainties, stands as a cornerstone achievement. This entails mitigating biases in wind sigmas, 
measurement error variance, and background concentration. Furthermore, imposing positivity 
constraints and sparsity on source emissions enhances the fidelity of the estimation process. These 
steps collectively refine inversion techniques, with particular emphasis on estimating wind sigmas, 
thereby enhancing the overall accuracy and reliability of the methodology.

By enforcing positivity constraints and sparsity on source emissions, the estimation process gains 
precision and robustness. Moreover, the refinement of inversion methods, notably through the 
estimation of wind sigmas, marks a significant advancement towards achieving more accurate and 
reliable outcomes in source emission estimation.

1 | INTRODUCTION
In response to the escalating global concerns regarding air quality and the 

environmental impact of greenhouse gas emissions, detecting and quantifying sources of 
emissions has become critical.

AIMS
 We present an innovative approach to address the challenging task of estimating 
parameters in the gas dispersion model, whilst simultaneously estimating the source 
emission rate, location, background concentration, and the sensors’ measurement error 
variance.

Fig 2 | M-MALA-within-Gibbs samples of the source location. The top and right plots are the MCMC
chains of source locations x and y in meters, respectively. The center plot illustrates the spatial
uncertainty of the source location estimation . The dotted lines represent the true parameter values.

Fig 3 | M-MALA-within-Gibbs samples estimating – from top to bottom – source emission rate (kg/s), gas dispersion
parameters, sensors measurement error variances (PPM), and background concentrations (PPM). The left column
shows the MCMC chains and the right column shows the corresponding densities. The dotted lines represent the
true parameter values.

METHODS: Gas Dispersion Model
• Gaussian plumes are used to describe the spatio-temporal dispersion of gas in the

atmosphere, the concentration at location (𝑥, 𝑦, 𝑧) is given by:
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• 𝜎𝐻 and 𝜎𝑉 are called wind sigmas and are parametrised by 𝜎. = tan 𝛾. 𝑎.𝛿𝑅
𝑏. .

• The PDE parameters estimated are 𝑎𝐻, 𝑎𝑉 , 𝑏𝐻 , and 𝑏𝑉.

3 | RESULTS
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Fig 4 | Sparse and positively constrained prior for emission rate parameter. The spike and slab prior is used to
enforce sparsity in the number of sources detected during the inversion process.

Fig 1 | Polar graph of sensors’ measurements.
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