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Abstract

The statistical characteristics of the largest observations in a sample are highly uncertain. In this work we consider the

problem of how to define empirical estimates of exceedance probabilities and return periods associated with an ordered

sample of observations. Understanding the sampling properties of these quantities is important for assessing the fit of a

statistical model and also for placing confidence bounds on estimates of extreme events from Monte Carlo simulations.

The empirical distribution function (EDF) is often defined as the expected non-exceedance probability (NEP) associated

with sample order statistics. Yet, due to the non-linearity of the relations between return periods and quantiles and NEP,

the return period (or quantile) associated with the expected NEP is not equal to the expected return period (or quantile),

leading to ambiguity. However, the sampling distributions of exceedance probabilities, return periods and quantiles are,

in fact, linked by a simple relation. From this relation, it follows that defining the EDF in terms of the median NEP of

the order statistics gives a consistent framework for defining empirical estimates of all three quantities. We demonstrate

that the median value of the return period of the largest observation is 44% larger than the return period calculated using

the common definition of the EDF in terms of the expected NEP of the order statistics. We also derive some new results

about the size of the confidence intervals for exceedance probabilities and return periods.

Keywords: Sampling variability, Return period, Return value, Plotting position, Model diagnostics, Empirical

distribution function, Confidence interval

1. Introduction

Estimating the frequency of occurrence of extreme events is an important topic in offshore and coastal engineering.

Many design standards for marine structures require the design to be assessed in sea states associated with specific return

periods. The usual approach for estimating return values of metocean variables is to fit a statistical model to observed or

hindcast data and extrapolate into the tail of the fitted model. For extreme value analyses, the fit of the model is usually

assessed using plots of the observations together with various quantities derived from the empirical distribution function

(EDF), such as exceedance probabilities, return periods or quantiles.

In this work we consider the problem of how to define empirical estimates of exceedance probabilities, return periods

and quantiles and the related problem of calculating their sampling properties. Understanding the sampling properties of

these quantities is important for assessing the fit of a statistical model and also for placing confidence bounds on estimates

of extreme events from Monte Carlo simulations.
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Suppose we have a sequence of n independent random variables X1, ..., Xn, assumed to have common distribution

function FX . The ordered variables, denoted X(1) ≤ ... ≤ X(n), are referred to as the order statistics. We denote the

non-exceedance probability associated with the kth order statistic as

Pk = FX(X(k)) = Pr
{
X ≤ X(k)

}
∈ [0, 1]. (1)

The return period, T , of level x is defined as the inverse of the exceedance probability

T (FX(x)) =
1

1− FX(x)
∈ [1,∞]. (2)

We denote the return period of the kth order statistic as Tk = T (Pk). The quantities X(k), Pk and Tk are random variables.

In general, for extreme value analysis, the data-generating distribution FX is not known. Consequently, for a given sample,

the values of Pk and Tk are not known. However, as discussed below, the sampling distribution of Pk is well known and

is straightforward to derive (e.g [1, 2]).

In the following, we make no assumptions about how X1, ..., Xn are sampled, only that observations are independent

and identically distributed. If X1, ..., Xn are a sample of annual maxima, then T has units of years. If X1, ..., Xn are a

sample of peaks-over-threshold, with a mean rate of m peaks per year, then mT has the unit of years. Thus, the difference

between samples of annual maxima and peaks-over-threshold only affects the units of T .

The EDF is the non-exceedance probability assigned to the order statistics. Here, we denote the EDF as p̂k, to

indicate that it is an estimate of the unknown non-exceedance probability associated with the kth order statistic. One

way to define the EDF is in terms of proportion of observations in the sample less than or equal to X(k), so that p̂k = k/n

[3, 4]. However, this gives p̂n = 1, which is undesirable when considering the extremal properties of a sample, since it

implies that the largest observation is the upper end point of the distribution. To avoid this issue, the EDF can be defined

as the expected value of Pk (e.g [5–7]):

p̂k = E(Pk) =
k

n+ 1
. (3)

This definition was originally proposed by Weibull [8] and was popularised by Gumbel [9]. It has the attractive properties

that it is simple and has a well-founded theoretical justification. However, since T (p) and F−1X (p) are nonlinear functions

of p (apart from the special case where X is uniformly distributed in which case F−1X is linear), we have

E(Tk) 6= T (E(Pk)), (4a)

E(X(k)) 6= F−1X (E(Pk)). (4b)

In fact, since T (p) is a convex function, from Jensen’s inequality, we have E(Tk) ≥ T (E(Pk)). However, since the quantile

function F−1X (p) can be either concave or convex, E(X(k)) can be either less than on greater than F−1X (E(Pk)). The

difference between E(X(k)) and F−1X (E(Pk)) has led to many other definitions of the EDF, so-called plotting positions, p̂′k,

for which F−1X (p̂′k) ≈ E(X(k)). Since E(X(k)) depends on the data-generating distribution FX , unbiased estimates of p̂′k

are dependent on FX . The problem of defining plotting positions has been considered in many studies over the years and

is still an active topic of research [10–30].

It used to be common practice to fit extreme value models to observations using a least-squares fit to observed quantiles

plotted on probability paper (plots of order statistics against the EDF, with various transformations applied to the axes,
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such that if the data follow a straight line this indicates that it follows a certain distribution). In this case, the choice

of plotting position can affect the inferences made from the data. Although modern methods for statistical inference,

such as maximum likelihood or Bayesian inference, mean that this type of least-squares fitting is now less common, using

graphical means to assess the fit of a model is still commonplace. For extreme value models, we are interested in the fit

of the model for the largest observations. The purpose of the present work is to illustrate how the definition of the EDF

can have a large impact on the probabilities and return periods associated with the largest observations.

In this work, we argue that a common framework can be used for defining the empirical estimates of either exceedance

probabilities, return periods or quantiles, where the EDF is defined as p̂k = median(Pk), rather than p̂k = E(Pk). The use

of the median in this context has been advocated by various authors in the past [11, 22–24, 28, 29, 31, 32]. In the current

paper, we present a brief review the theory of the sampling properties of order statistics. We show that the sampling

distributions of the exceedance probabilities, return periods and quantiles are all linked by a simple relation, that makes

the use of the median value appropriate for all cases. This relation is then used to derive some results about the confidence

intervals associated with extreme observations. The results are of interest either when using diagnostic plots for assessing

the fit of an extreme value model, or when Monte Carlo simulation is used to estimate extreme events.

The work is organised as follows. The sampling distributions of exceedance probabilities, return periods and quantiles

are discussed in Section 2 and the definition of the EDF is discussed in Section 3. The impact of sampling variability and

the definition of the EDF on diagnostic plots for extreme value models is discussed in Section 4. Finally, some properties

of confidence intervals for empirical estimates of extreme events are derived in Section 5. Conclusions are presented in

Section 6.

2. Sampling distributions of exceedance probabilities, return periods and quantiles

To derive the sampling distribution of Pk, first note that the probability that an individual observation, xk, has

FX(xk) ≤ p is a Bernoulli trial with probability of success p. As the observations are independent, the cumulative

distribution function (CDF) of Pk, denoted FPk
(p), is simply the probability that at least k observations have FX(x) ≤ p:

FPk
(p) =

n∑
j=k

 n

j

 pj(1− p)n−j . (5)

For the smallest and largest observations we have FP1(p) = (1 − p)n and FPn(p) = pn. From the relationship between

binomial sums and the regularised incomplete beta function, I, [33], we can write

FPk
(p) = I(p, k, n− k + 1) =

n!

(n− k)!(k − 1)!

∫ p

0

sk−1(1− s)n−kds. (6)

So Pk follows a beta distribution, Pk ∼ beta(k, n−k+1). Taking the derivative, we obtain the probability density function

(PDF) as

fPk
(p) =

n!

(n− k)!(k − 1)!
pk−1(1− p)n−k. (7)

Examples of the PDF fPk
(p) for a sample size of n = 49 and various values of k are shown in Figure 1. For 1� k � n the

PDF is approximately symmetric, with exact symmetry for k = (n + 1)/2. For k close to 1 the distribution is positively

skewed and for k close to n the distribution is negatively skewed.
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Figure 1: PDF of non-exceedance probability, Pk, associated with order statistic X(k) for a sample size of n = 49 and various values of k.

To derive the sampling distributions of the order statistics and their return periods, we note that since F−1X (p) and

T (p) are monotonically increasing functions we have

FPk
(p) = FTk

(T (p)) = FX(k)
(F−1X (p)). (8)

The PDF of Tk is therefore given by

fTk
(t) =

dFTk
(t)

dt
=
dFPk

(p)

dp

dp

dt
=

n!

(n− k)!(k − 1)!
pk−1(1− p)n−kt−2 =

n!

(n− k)!(k − 1)!
(t− 1)k−1t−n−1. (9)

The PDF of X(k) is given by

fX(k)
(x) =

dFX(k)
(x)

dx
=
dFPk

(FX(x))

dFX(x)

dFX(x)

dx
=

n!

(n− k)!(k − 1)!
(FX(x))k−1(1− FX(x))n−kfX(x). (10)

It is important to note that the PDFs of Pk and Tk do not depend on the data-generating distribution FX , so these can

be calculated without having to estimate FX . However, obviously, the PDF of X(k) does depend on FX . In practice, the

data-generating distribution FX is not known. Instead, we can substitute an estimate, F̂X , into (10) to obtain an estimate

f̂X(k)
(x).

3. Definition of the empirical distribution function and empirical return periods

From the properties of the beta distribution, the expected value, mode, median and quantiles of Pk are given by

E(Pk) =
k

n+ 1
, (11a)

mode(Pk) =
k − 1

n− 1
, (11b)

median(Pk) = I−1(0.5, k, n− k + 1), (11c)

Pk,α
def
= F−1Pk

(α) = I−1(α, k, n− k + 1), for α ∈ [0, 1]. (11d)

Apart from the special cases of k = 1 and k = n, it is not possible to write down an explicit expression for the median

or quantiles Pk,α. It is possible to derive various approximations for the median (see Appendix A), although it appears
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that there are no corresponding approximations for the quantiles. However, efficient algorithms to compute I and I−1

are available in most software languages (MATLAB, Python and R all have built-in functions, and various libraries are

available for Fortran and C++), so the lack of an explicit formula is not restrictive.

We denote empirical estimates of the return period Tk as t̂k. If the standard definition of the EDF, given in (3), is

used to estimate return periods, then we have

t̂k =
1

1− E(Pk)
=

n+ 1

n+ 1− k
. (12)

From the sampling distribution of Tk, (9), and the relation to FPk
, (8), we can derive expressions for the expected value,

mode and quantiles of Tk as

E(Tk) =
n

n− k
, (13a)

mode(Tk) =
n+ 1

n+ 2− k
, (13b)

Tk,α
def
= F−1Tk

(α) =
(
1− I−1(α, k, n− k + 1)

)−1
. (13c)

Note that for largest observation we can approximate the quantiles of the distribution of Tk as

Tn,α =
(

1− α1/n
)−1
≈ − n

log(α)
. (14)

(This approximation can be obtained by expanding
(
1− α1/n

)−1
as a Laurent series). Moreover, from (13a) we can see

that the expected value of the return period of the largest observation is E(Tn) =∞. This has led some authors to dismiss

the use of return periods for graphical assessments of extreme value models [34]. However, in Section 5, it will be shown

that if a logarithmic scale is used, then return periods are as useful as exceedance probabilities for model diagnostics,

despite the infinite expected value for the largest observation.

Nevertheless, it is important to note that for the largest observations there are large differences between (1− E(Pk))
−1

,

E(Tk), mode(Tk) and median(Tk). Table 1 lists the values of these quantities for the largest two observations. Both the

exact expressions and approximate values for large n are listed. If E(Pk) is used to define an empirical estimate of the

return period (or empirical return period, ERP), then the ERPs for the two largest observations are approximately n/2

and n. In contrast, the expected values of Tk for the two largest observations are n and ∞, so there is a factor of 2

difference for the second largest observation, whereas the expected value of Tn is infinite. For the mode of Tk we have

mode(Tn) = (1− E(Pn−1))
−1

. Finally, for the median value, we have median(Tn) ≈ 1.44n compared to (1− E(Pn))
−1

=

n+ 1.

So, if empirical estimates of return periods are defined in terms of E(Pk), then the values obtained do not correspond

to the mean, mode or median of Tk. However, from (8), we see that the quantiles of Tk and X(k) are given directly in

terms of the quantiles of Pk:

Tk,α = F−1Tk
(α) = (1− Pk,α)−1, (15a)

X(k),α = F−1X(k)
(α) = F−1X(k)

(Pk,α). (15b)

Therefore, if we define empirical estimates of probabilities, return periods and quantiles in terms of the medians of the

sampling distribution, then this gives a consistent framework that can be used in all types of model diagnostic plots, as
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Quantity k = n− 1 k = n

Exact Approx. Exact Approx.

(1− E(Pk))
−1 n+1

2 0.5n n+ 1 n

E(Tk) n n ∞ ∞

mode(Tk) n+1
3 0.33n n+1

2 0.5n

median(Tk)
(
1− I−1(0.5, n− 1, 2)

)−1
0.60n

(
1− 0.51/n

)−1
1.44n

Table 1: Various statistics of the return periods for the largest two observations. Approximate expressions are for large sample size, n.

discussed further in the next section. It is therefore recommended that the EDF and ERP are defined as

p̂k = median(Pk) = I−1(0.5, k, n− k + 1), (16a)

t̂k = median(Tk) = (1− p̂k)−1. (16b)

Using this definition, we then have

median(X(k)) = F−1X(k)
(p̂k). (17)

The variation of the different statistics of Pk and Tk with sample size is shown in Figure 2, plotted against the ratios

Tk,50/Tn,50. Logarithmic scales are used for the ordinates of both plots. From (11b), we see that 1 −mode(Pn) = 0, so

this can not be plotted on a logarithmic scale, since log(0) = −∞. The 5% and 95% quantiles of Pk and Tk are also shown

in Figure 2. It is apparent that, when plotted on a log scale, the width of the 90% confidence interval is similar between

sample sizes and similar for both exceedance probabilities and return periods. Moreover, the width of the confidence

interval for the largest observation is appears not to vary with sample size. This is considered further in the Section 5.

4. Diagnostic plots for extreme value models

Four types of diagnostic plots that are commonly-used to assess the fit of an extreme value model are listed in Table

2. The plots all involve quantities derived from the observed order statistics, x(k), and quantities derived from either

the EDF or ERP. Probability plots and quantile-quantile (QQ) plots both just involve a single set of points, relating the

observations and fitted model. In contrast, exceedance probability plots and return period plots both involve two sets of

points, one corresponding to the observations and the other corresponding to the fitted model.

Examples of the plots listed in Table 2 are shown in Figure 3. In these plots, 50 independent observations have been

simulated from a generalised Pareto (GP) distribution with shape parameter ξ = 0, scale parameter σ = 1. The data

have been fitted with a GP model using maximum likelihood. In this case, we know that the fitted model is the same as

the data-generating model, so any differences are due to sampling effects and any bias due to the parameter estimation

method (see e.g. [35, 36]). The plots are shown using various definitions of the EDF and ERPs.

The various type of plot show the correspondence between the fitted model and observations in different ways. Prob-

ability plots give an indication of the agreement over the full range of observations. For extreme value models, we are

typically interested in the fit of the model in the tail. This can be difficult to assess from a probability plot, as the tail

is compressed in the upper right corner of the plot. For this type of plot, there is little difference in defining the EDF as
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Figure 2: Values of various statistics of Pk and Tk against normalised empirical return period Tk,50/Tn,50 for various sample sizes, n.
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Description Variables Axes scales

Probability plot
{(
p̂k, F̂X(x(k))

)
: k = 1, ..., n

}
Linear

Quantile-quantile (QQ) plot
{(
x(k), F̂

−1
X (p̂k)

)
: k = 1, ..., n

}
Linear

Exceedance probability plot
{(
x(k), 1− p̂k)

)
: k = 1, ..., n

}
Ordinate on log-scale{(

x, 1− F̂X(x)
)

: x0 ≤ x ≤ x1
}

Return period plot
{(
t̂k, x(k)

)
: k = 1, ..., n

}
Abscissas on log-scale{(

(1− F̂X(x))−1, x
)

: x0 ≤ x ≤ x1
}

Table 2: Diagnostic plots used to assess the fit of extreme value models, involving the fitted distribution function, F̂X , order statistics, x(k),

empirical distribution function, p̂k, and empirical return period, t̂k.

p̂k = E(Pk) or p̂k = Pk,50. However, substituting p̂k = Pk,±α/2 gives a 1− α confidence interval for p̂k, which is useful for

judging if the fitted model differs from the observations at a given significance level.

QQ plots give an assessment of the fit of the model on the scale of the data, which gives a better indication of the fit

in the tail. For QQ plots, the alternative definitions of p̂k = E(Pk) or p̂k = Pk,50 result in only small differences for most

observations, but do lead to a visible difference for the largest value. However, the difference is relatively small compared

to the width of the 90% CI.

In a QQ plot there two types of uncertainty in the model quantiles: the sampling uncertainty in the estimate of the

empirical non-exceedance probability, p̂k, and the uncertainty in the estimated distribution F̂X . The uncertainty in F̂X

is related to sampling effects, but also includes uncertainty due to model misspecification and any bias introduced by

the inference method. In exceedance plots and return period plots, these two types of uncertainty can be considered

separately. For exceedance plots, the difference in the definition of p̂k is, again, relatively small compared to the width of

the confidence interval. For the return period plot, three alternative definitions of ERPs are used. In this case, defining

t̂k = E(Tk) results in slightly larger values than the other definitions. However, since E(Tn) = ∞, this value cannot be

plotted.

Gumbel plots are used by practitioners in some fields of extreme value analysis, such as estimation of extreme wind

speeds. These plots consist of the points
{(
− log(− log(p̂k)), x(k)

)
: k = 1, ..., n

}
with both axes on linear scales. This

is similar to a QQ plot if the fitted model is a Gumbel distribution, since − log(− log(P )) = (x − µ)/σ are normalised

quantiles of the Gumbel distribution, where µ and σ are the location and scale parameters. Due to the similarity with

QQ plots, the comments on QQ plots above, also apply to Gumbel plots.

5. Confidence intervals

In this section we derive three simple results about the width of confidence intervals (CIs) for the exceedance proba-

bilities and return periods of observations. The results are useful when interpreting either model diagnostic plots or when

considering the accuracy of extreme quantities estimated through Monte Carlo simulation.
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Figure 3: Examples of model diagnostic plots for GP fit to data generated from GP distribution.

5.1. CIs for exceedance probabilities and return periods have equal widths on a log scale

It is convenient to denote the quantiles of the exceedance probabilities as

Qk,α = 1− Pk,1−α. (18)

Then, using (15a), the width of the 1− 2α CI for Qk, when plotted on a log scale, is given by

log(Qk,1−α)− log(Qk,α) = − log(Q−1k,1−α) + log(Q−1k,α) = log(Tk,1−α)− log(Tk,α). (19)

Therefore, the width of CIs for exceedance probabilities and return periods are equal on a log scale. So, provided that a

log scale is used for both exceedance plots and return period plots, then the width of the CI for the empirical estimates

is equal. This was apparent in Figures 2 and 3.

9



5.2. Width of CI for return period of largest observation is asymptotically independent of sample size

Using (14), the width of the 1− 2α CI for the largest observation, when plotted on a log scale tends to an asymptotic

limit for large n:

log(Qn,1−α)− log(Qn,α) = log(1− α1/n)− log(1− (1− α)1/n),

→ log

(
− log(α)

n

)
− log

(
− log(1− α)

n

)
, n→∞

= log

(
log(α)

log(1− α)

)
. (20)

This limit is independent of sample size, n. This means that for a large enough sample size, when exceedance plots or

return period plots are used to assess the fit of a model, the width of the CI for the largest observation will always be the

same on a log scale, regardless of sample size. This was apparent in Figure 2. This provides a quantification of the intuitive

notion that there is a large sampling uncertainty associated with the most extreme observation in a sample. The result

tells us that no matter how much data we gather, the exceedance probability and return period of the largest observation is

highly uncertain. However, the uncertainty in the exceedance probabilities and return periods of less extreme observations

does decrease with sample size. This is quantified by the next result.

5.3. Asymptotic approximation for width of CI

To derive an approximation for the width of the CI as a function of the rank, it is useful to start by considering

E(Qk) = 1− E(Pk) =
n+ 1− k
n+ 1

. (21)

Since Qk follows a beta distribution, the variance of Qk can be written explicitly, as

var(Qk) =
k(n+ 1− k)

(n+ 1)2(n+ 2)
=

E(Qk)E(Pk)

n+ 2
. (22)

For large n and low exceedance probabilities we have

var(Qk) ≈ E(Qk)

n
. (23)

For large n and 1 � k � n, the beta distribution of Qk can be approximated by a normal distribution [37] with mean

E(Qk) and variance given above. Using the normal approximation to the beta distribution we can write the quantiles as

Qk,α ≈ E(Qk) + Φ−1(α)
√

E(Qk)/n, (24)

where Φ is the CDF of the standard normal distribution. For 1� k � n the difference between the mean and median is

small and we can write Qk,α ≈ Qk,50 − Φ−1(α)
√
Qk,50/n. We can use this to derive an approximation for the width of

the CI for return periods as follows:

Tk,1−α − Tk,α
Tk,50

≈ Qk,50

(
1

Qk,50 + Φ−1(α)
√
Qk,50/n

− 1

Qk,50 − Φ−1(α)
√
Qk,50/n

)

= −2Φ−1(α)

√
Qk,50/n

Qk,50 − (Φ−1(α))2/n

≈ −2Φ−1(α)
√
Tk,50/n.

(25)
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Figure 4: Width of 90% confidence interval for Tk,50 against n/Tk,50 for various samples sizes and asymptotic approximation (25).

Figure 4 shows the width of the 90% CI for Tk against n/Tk,50 for various sample sizes, together with the asymptotic

approximation (25). The agreement is good for 10 < Tk,50 < n/10.

So, if we want to estimate the T -year return value (RV) based on Monte Carlo simulations using a sample of length

100T years, then the 90% CI for the return period of the observation estimated to be the T -year RV is ≈ 0.33T . And if

we generate 1000T years, then the width of the CI is ≈ 0.1T . Of course, the quantity that is probably of greater interest

is the CI for the RV rather than the RP of the estimated RV. As discussed in Section 2, this CI is dependent on the

data-generating distribution. However, given that the quantiles of X(k) are directly related to the quantiles of Qk through

(15b), an approximation to the width of the CI can easily be generated by substituting the approximation (24) into the

quantile function for the fitted distribution.

6. Conclusions

In this work it is argued that defining the empirical distribution function in terms of the median value of the non-

exceedance probability of the order statistics, provides a consistent framework for making empirical estimates of exceedance

probabilities, return periods and quantiles of extreme events. It is shown that the median value of the return period of the

largest observation is 44% larger than the return period calculated using the common definition of the EDF in terms of

the expected value of the non-exceedance probability of the order statistics. Although the definition of the EDF influences

model diagnostic plots for assessing extreme value models, arguably, a more important consideration is adding confidence

bounds to these plots. Some simple results concerning the size of confidence intervals for exceedance probabilities and

return periods are derived. These can aid the interpretation of model diagnostic plots and quantify the uncertainty related

to Monte Carlo estimates of extreme events.

Acknowledgements

EM was funded by the EPSRC Supergen Offshore Renewable Energy Hub [grant no: EP/S000747/1] Flexible Fund

project “Improved Models for Multivariate Metocean Extremes (IMEX)”.

11



Figure A.1: Ratio of return periods calculated using various methods to the median return period, Tk,50, for various sample sizes n. .

Appendix A. Approximations for the beta median

Various authors have derived approximations for the median value of Pk. Bernard and Bos-Levenbach [11] derived

Pk,50 ≈
k − 0.3

n+ 0.4
, (A.1)

while Jenkinson [38] derived a very similar approximation (for the derivation see [32]):

Pk,50 ≈
k − 0.31

n+ 0.38
. (A.2)

Yu and Huang [22] used numerical simulation to derive

Pk,50 ≈
k − 0.326

n+ 0.348
. (A.3)

Finally, Lepore [39] used a slightly different analytical approach, to derive

Pk,50 ≈
k − a

n+ 1− 2a
, a = n+

n− 1

21/n − 2
. (A.4)

Figure A.1 shows the ratio of return periods calculated using various methods to the median return period, Tk,50, for various

sample sizes n. Despite the relatively small differences, it was found that Jenkinson’s approximation was more accurate

than Bernard and Bos-Levenbach’s or Yu and Huang’s approximations, so these are not shown in Figure A.1. The figure

compares return periods derived using the EDF defined in terms of the expected non-exceedance probability (12), or using

Jenkinson’s approximation for the median non-exceedance probability, denoted Tk,J , or using Lepore’s approximation,

denoted Tk,L. There is a large difference between return periods calculated using expected non-exceedance probability,

with a difference of around 30% for the largest value. Both Jenkinson’s and Lepore’s approximations give errors less than

1% over all values of k and n considered. Jenkinson’s approximation gives a slightly smaller errors for Tk,50/Tn,50 < 0.7,

whereas Lepore’s method is exact for k = 1 or n. For practical purposes, both Jenkinson’s and Lepore’s approximations

appear adequate if an exact method for calculating the inverse incomplete beta function is not available.
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