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Abstract

This paper presents a novel deep learning framework for estimating multivariate joint extremes of metocean
variables, based on the Semi-Parametric Angular-Radial (SPAR) model. When considered in polar coordinates, the
problem of modelling multivariate extremes is transformed to one of modelling an angular density, and the tail of
a univariate radial variable conditioned on angle. In the SPAR approach, the tail of the radial variable is modelled
using a generalised Pareto (GP) distribution, providing a natural extension of univariate extreme value theory to the
multivariate setting. In this work, we show how the method can be applied in higher dimensions, using a case study
for five metocean variables: wind speed, wind direction, wave height, wave period and wave direction. The angular
variable is modelled empirically, while the parameters of the GP model are approximated using fully-connected
deep neural networks. Our data-driven approach provides great flexibility in the dependence structures that can be
represented, together with computationally efficient routines for training the model. Furthermore, the application
of the method requires fewer assumptions about the underlying distribution(s) compared to existing approaches,
and an asymptotically justified means for extrapolating outside the range of observations. Using various diagnostic
plots, we show that the fitted models provide a good description of the joint extremes of the metocean variables
considered.

1 Introduction

Many problems in offshore and coastal engineering require estimation of joint extremes for metocean variables. Re-
sponses of offshore and coastal structures are dependent on multiple variables, such as wind speed and direction, wave
height, period and direction, current speed and direction. Providing accurate and reliable estimates of the joint ex-
tremes in this setting is a challenging problem for metocean engineers. Various design standards recommend the use of
the environmental contour method [1]. Some types of contour can be estimated without an explicit model for the joint
distribution of variables [2, 3]. However, environmental contour methods typically make simplifying assumptions and
only give approximate estimates of long-term extreme responses [4, 5]. Full probabilistic analysis of long-term extreme
responses requires a model for the joint density of the relevant metocean variables. A wide range of approaches have
been proposed for estimating joint densities. In the offshore engineering literature, the two most popular approaches
are global hierarchical models and copula models – see, e.g. [6, 7].

Let X = (X1, ..., Xd) ∈ Rd denote a continuous random vector with joint density function fX, and marginal density
and distribution functions fXj

and FXj
, respectively, for j = 1, ..., d. In the global hierarchical approach [8–10], the

joint density is written as

fX(x) = fX1(x1) fX2|X1
(x2|x1) · · · fXd|(X1,...,Xd−1)(xd|(x1, ..., xd−1)), (1)

where fXj |(X1,...,Xj−1) is the density of Xj conditional on (X1, ..., Xj−1) for j ∈ {2, . . . , d}. Inference typically involves
selecting parametric forms for fX1

(x1), fX2|X1
, ..., fXd|(X1,...,Xd−1) and estimating relations between the parameters
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of the conditional densities and the conditioning variables. There are various problems with this approach. Firstly,
there is no a priori reason to suppose that variables follow any particular parametric distribution, and misspecified
models can have dramatic consequences when approximating dependence structures. Secondly, a model fit to all of the
observations does not guarantee a good fit to the tail, which is the region of interest for extremes. Finally, the models
for the parameters of the conditional densities are usually based on ad hoc assumptions, and provide no rationale for
extrapolating outside the range of observations. In many cases, it has been shown that such models provide a poor
fit to observed data [11].

For copula modelling, the joint density is written as

fX(x) = fX1(x1) · · · fXd
(xd)c(FX1(x1), · · · , FXd

(xd)), (2)

where c : [0, 1]d 7→ [0,∞) is the copula density of X [12]. In this case, inference involves choosing parametric models for
both the marginal densities and for c. As with the global hierarchical approach, there are no a priori reasons to choose
particular models. Similarly, fitting to all observations does not guarantee a good fit to the tails. Moreover, different
copula models have very different behaviours in the joint tail regions, meaning extrapolation can vary substantially
for different choices of copula model [12].

There are also a wide range of methods in the statistical literature for modelling joint extremes (e.g. [13–15]).
However, many of these approaches make strong assumptions about the dependence structure, or copula, which are
often not supported by environmental datasets [16]. The most popular choice for metocean variables is the conditional
extremes model [17], which describes the joint distribution of variables conditional on at least one variable being large.
The key limitation of this approach is that it only characterises the region of variable space where the conditioning
variable is large, and inferences made using different conditioning variables are not necessarily consistent [18]. A
further limitation of this method (and other methods in the multivariate extremes literature) is that it requires a
transformation of the margins to a standard scale. This requires first estimating the marginal distributions for each
variable – a process which is subject to uncertainty. Furthermore, it has been demonstrated that poor marginal
estimates greatly affect the quality of the resulting multivariate inference [19].

In this paper, we discuss the application of a new method, introduced in [20], which overcomes the limitations
of existing approaches and provides a general, flexible framework for modelling multivariate extremes. The model
is referred to as the Semi-Parametric Angular-Radial (SPAR) model. The SPAR model provides a framework for
estimating multivariate extremes that does not require strong assumptions about the form of the margins or dependence
structure, and provides a justified means of extrapolating outside the range of observations. Moreover, the model is
only fitted to extreme observations, meaning that no assumptions are required about the bulk of the distribution.
Theoretical aspects of the SPAR model are presented in [21], and an inference approach in a two-dimensional setting
is provided in [22, 23]. The purpose of this paper is to extend the modelling method to the general multivariate
setting.

The paper is organised as follows. Section 2 describes a brief overview of the theoretical aspects of the model.
Our deep learning approach for estimating SPAR model parameters is introduced in Section 3. Section 4 presents
an example application of the model to a five-dimensional problem: estimating the joint extremes of wind speed,
wave direction, wave height, wave period and wave direction. We discuss the challenges that arise for these particular
variables, and how well the model assumptions are satisfied in this setting. We conclude in Section 5 with a discussion
and outlook on future work.

2 Theory

The SPAR model is an extension of the univariate peaks-over-threshold (POT) method to the multivariate setting. It
involves a transformation of variables to angular-radial coordinates, and then models the upper-tail of the radial
variable, conditional on angle, using a non-stationary generalised Pareto (GP) model. Suppose that we have a
continuous random vector X = (X1, ..., Xd) ∈ Rd with joint density function fX. We define radial and angular
variables as

R = ∥X∥2, W = X/R, (3)

where ∥ · ∥2 is the L2 or Euclidean norm, defined by ∥(x1, ..., xd)∥2 = (x2
1 + · · · + x2

d)
1/2. Note that R ∈ [0,∞) and

W ∈ Sd−1, where Sd−1 = {x ∈ Rd : ∥x∥2 = 1} is the unit hypersphere in Rd. The joint density function of (R,W) is
related to fX via

fR,W(r,w) = rd−1 fX(rw), (4)
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where rd−1 is the Jacobian determinant for the transformation X → (R,W). As for global hierarchical models, the
angular-radial joint density can be written in conditional form as:

fR,W(r,w) = fW(w) fR|W(r|w). (5)

Noting that X = RW, and that W lies on the surface of the unit hypersphere, we can see that the ‘extreme’ parts
of the distribution of X correspond to large values of the radial variable at any given angle. Therefore, the problem
of modelling multivariate extremes is transformed to that of modelling an angular density fW and the tail of the
conditional radial density fR|W. For a given angle w, the density fR|W(r|w) is univariate. Univariate extreme value
theory suggests that a suitable model for the tail of fR|W is the GP distribution, with parameters conditional on angle
(e.g., [24]). This motivates the SPAR model, whereby parametric and non-parametric models are used to model the
conditional radial and angular distributions, respectively. Define a threshold function u(w) > 0 to be the quantile of
R|(W = w) at exceedance probability ζ ∈ (0, 1), with ζ close to 0, i.e., the solution of ζ = Pr(R > u(w)|W = w).
The SPAR model can be written as

fR,W(r,w) = ζfW(w)fGP (r − u(w); ξ(w), σ(w)), r > u(w), (6)

where fGP is the GP density function, and ξ(w) ∈ R and σ(w) > 0 are shape and scale parameters, respectively,
given as functions of the angle w. The GP density function is given by

fGP (r; ξ, σ) =


1

σ

(
1 + ξ

r

σ

)−1− 1
ξ
, ξ ̸= 0,

1

σ
exp

(
− r

σ

)
, ξ = 0,

(7)

which is supported on 0 ≤ r ≤ rF , where rF = ∞ for ξ ≥ 0 and rF = −σ/ξ for ξ < 0.
Many non-parametric methods for estimation of densities assume that the density is finite and continuous. Simi-

larly, many representations for non-stationary modelling of parametric distributions assume that the parameter func-
tions are finite and continuous. Therefore, to simplify our inference, we assume that the angular density fW, threshold
function u(w), and GP parameter functions, ξ(w) and σ(w) are finite and continuous with respect to the angle w.

After estimation of the angular density and GP parameter functions, (4) and (6) can be combined to obtain the
SPAR estimate of the joint density in the original variable space for observations satisfying r > u(w), i.e.,

fX(rw) = ζ r1−d fW(w) fGP (r − u(w); ξ(w), σ(w)). (8)

Calculating marginal and joint probabilities using the SPAR model then involves either integration of the joint density
over specified angular and radial domains, or via Monte Carlo techniques, i.e., by simulating from the estimated model
and deriving probability estimates empirically. To simulate from the SPAR model, we first draw an angle w from
fW, then use inversion sampling to generate a corresponding radial value z from the GP distribution with parameter
vector (ξ(w), σ(w)), and finally define r = u(w) + z. The pair (r,w) is then a random sample from the SPAR model.
This can be converted back to the original variable space using the inverse transformation x = rw. As the SPAR
model is only fitted to observations for which r > u(w), one can create a sample (of the original random vector X) of
size N by simulating ζN points from the SPAR model, and then resampling (1− ζ)N points from observations with
r < u(w). The rationale for this is that there should be a sufficient number of observations within the body of the
distribution to obtain a reasonable estimate from resampling.

As described in [23], the SPAR model provides an explicit means for calculating a contour with a specified ex-
ceedance probability. However, this contour is defined in terms of the probability of an observation falling anywhere
outside the region, or the ‘total exceedance probability’. As such, these contours are more conservative than those
defined in terms of marginal exceedance probabilities, such as IFORM contours (or variants thereof), with the conser-
vatism increasing with the number of dimensions [25]. If the primary interest of the analysis is to estimate environmen-
tal contours, then the use of the SPAR model is not necessary. Instead, we recommend the use of the Direct-IFORM
method [2, 3], which does not require a model for the joint density or any assumptions about the dependence structure
between the variables.

3 Inference

Inference for the SPAR model involves estimating the angular density, and the GP threshold and parameter functions.
These problems are separable: inference for fW can be conducted independently of that for (u(w), σ(w), ξ(w)). In
this section, we discuss inference for the angular density in Section 3.1, then discuss modelling of the conditional radial
variable in Section 3.2. Code for fitting our model is available upon reasonable request.
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3.1 Angular modelling

Estimation of densities on the hypersphere Sd−1 is part of a discipline known as directional statistics [26–28]. The
key difference from estimation of densities on Rd is that the surface of the hypersphere is periodic and bounded, and
so distributions defined on Sd−1 must conserve these constraints. Various parametric and non-parametric approaches
have been developed for estimating densities on the hypersphere, which are directly analogous to approaches used in
Euclidean space. These include kernel density estimation [29, 30], mixture models [31, 32], and spline-based methods
[33]. See [28] for a recent review of non-parametric approaches.

Previous uses of SPAR in two dimensions adopted a kernel density method for estimating the angular density.
Although this approach can be applied in higher dimensions, simulation from the estimated density can be very
slow, as it requires transformation to hyperspherical coordinates and numerical integration to obtain conditional
distributions. The use of parametric mixture models instead results in faster simulation. However, for the application
described in Section 4, we found that a mixture of d-variate von Mises distributions [34] was not flexible enough to
capture the complex structure in the angular data, even with hundreds of mixture components. Moreover, spline-based
approaches have only been proposed for d ≤ 3, and are therefore not applicable for the setting we consider.

As noted in Section 2, an estimate of the angular density function fW is required to approximate the joint density
of the random vector X. However, to simulate from the SPAR model, one only requires a means of simulating from
the angular variable W; an explicit form for the density is not a necessity. Consequently, for our approach, we opt to
sample the angular component empirically, i.e., we draw from the observed sample {w1, . . . ,wn} with replacement.
Since the angular variable lies in a bounded domain (the surface of the hypersphere), values of W are never ‘extreme’.
Therefore, given a sufficiently large sample size n, empirical resampling should provide a representative sample of
the angular variable W for all regions of Sd−1 where this variable has probability mass. Providing that we can also
simulate from the conditional radial variable, R|W = w, we can generate new, representative data in the joint tail of
X. However, as discussed further in Section 4, in regions where angular observations are sparse, resampling does not
give us a method of simulating unobserved, but plausible angles. Alternative methods of modelling angular density
will be examined in future work.

3.2 Conditional radial modelling

Viewing the angular variable W as a ‘covariate’ for the radial variable R, inference for the SPAR model is analogous to
a non-stationary POT analysis, for which many parametric and semi-parametric approaches have been proposed [35–
39]. Non-stationary POT can be performed using GP regression (modelling GP parameters as functions of covariates),
which proceeds by first estimating the threshold function, u(w), and then estimating the GP scale and shape parameter
functions, σ(w) and ξ(w) respectively, via likelihood-based inference procedures. The choice of the functional forms
for u(w), σ(w), and ξ(w) determine the flexibility of the overall model. As the dimension d grows, these mappings
become increasingly complex, and so models that represent the functions via semi-parametric models (such as the
splines used in initial work with the SPAR model [22] and other similar angular-radial approaches [40, 41]) are unlikely
to offer sufficient flexibility. Moreover, they become increasingly computationally-demanding to estimate for large d.
Consequently, we adopt a deep learning approach, whereby the threshold and GP parameter functions are represented
using artificial neural networks (ANN); for details on GP regression with deep learning, see [42]. Although the
representation of the SPAR parameter functions via ANNs differs from previous approaches in this framework, the
‘loss function’ used for optimisation of the model, is the same. That is, we estimate the threshold and GP parameter
functions that maximise the likelihood evaluated on a hold-out dataset, as described in Section 3.2.2. This work builds
upon the approach of [43], who use deep learning to estimate the extremal dependence structure of random vectors on
standardised marginal scales via a similar angular-radial decomposition. In contrast, our approach does not require
marginal transformation, and is thus not subject to marginal estimation uncertainty.

3.2.1 Neural network representation of conditional radial parameters

Several recent approaches have used deep learning for GP regression; see, e.g. [44–47]. In these approaches, ANNs
are used to model the relationships between covariates and GP parameter and threshold functions. Our approach is
analogous, with the covariates taken to be angles on the hypersphere. Note that the hypersphere is compact (i.e.,
closed and bounded), and that this is a desirable property for extrapolation in deep learning.

Here, we design two neural network models; one for the threshold function u(w) and one for the parameter vector
(ν(w), ξ(w)), where ν(w) = σ(w)(ξ(w)+1) is the modified scale parameter. Unlike σ(w), the modified scale parameter
ν(w) is orthogonal to ξ(w), which helps to mitigate numerical instabilities during model fitting [35, 48, 49]; [47] show
that this is particularly helpful when estimating deep GP regression models. Both u(w) and (ν(w), ξ(w)) are modelled
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Figure 1: Example schematic of an MLP model with L = 2 hidden layers. The inputs are the components of the angle
w = (w1, w2, ..., wd) and the outputs are the GP parameter functions (ν(w), ξ(w)).

by multi-layer perceptrons (MLPs), which are a standard class of fully-connected ANN that compose multiple layers
of ‘neurons’ [50]. Each neuron passes a linear combination of input variables through a nonlinear ‘activation function’,
and the output is then passed to the subsequent layer; detailed discussions and illustrative figures can be found in
[42], and an example schematic for an MLP representation of (ν(w), ξ(w)) is presented in Figure 1. Inference for
the parameter functions then involves estimating the linear coefficients (the ‘weights’ and ‘biases’) in each neuron of
the corresponding MLP. Prior to inference, the architecture of the MLP must be defined, i.e., the number of hidden
layers, denoted by L, the number of neurons in each hidden layer, denoted by h1, . . . , hL, and the type(s) of activation
function(s). The resulting set of estimable parameters for the MLP contains all of the weights and biases in each
hidden layer, as well as the final (L + 1)-th layer; we denote this by W =

{(
al, bl

)
; l = 1, . . . , L+ 1

}
, with weights

al ∈ Rhl×hl−1 and biases bl ∈ Rhl . Note that the estimable sets of parameters differ between the MLPs for u(w)
and (ν(w), ξ(w)); we denote their respective parameter sets by Wu and W(ν,ξ). For both MLPs, we take all hidden
layer activation functions to be the rectified linear unit function, ReLU(x) = (max{x1, 0},max{x2, 0}, . . . ). The final
layers of the MLPs make use of an exponential transformation to ensure that the scale ν(w) and threshold u(w) are
strictly positive, that is, ν(w) > 0, u(w) > 0 for all w. For numerical stability, we also ensure that ξ(w) satisfies
ξ(w) ∈ (−0.5, 0.1) for all angles w. Selection of the remaining tuning parameters is discussed in Section 3.2.3.

3.2.2 Estimating the neural network parameters

To obtain estimates of the MLP parameter sets, Wu and W(ν,ξ), we optimise specified loss functions. Suppose that we
have a set of radial and angular observations {(ri,wi); i = 1, ..., n}. Recall from Equation (6) that the threshold u(w)
is taken to be the 1− ζ quantile of R|W = w. We thus can estimate u(w) (and its corresponding parameter set Wu)
using techniques from quantile regression [51]. In this case, the most appropriate loss function for u(w) is the tilted
loss,

Lu(Wu) :=

n∑
i=1

ρ1−ζ {ri − u (wi)} , (9)

where ρα(t) := t(α − 1{t < 0}) for indicator function 1 and where dependency of u(w) on Wu has been suppressed
from notation.

After estimation of u(w), we define Iu := {i : ri > u(wi)} as the set of indices of radial threshold exceedances.
The MLP that defines the GP parameter functions can be considered as a ‘conditional density estimation network’,
with the negative log-likelihood function used for optimisation; see, e.g. [52, 53]. In this case, we perform maximum
likelihood estimation, and thus the loss function is given by

LGP (W(ν,ξ)) := −
∑
i∈Iu

log

[
fGP

(
ri − u(wi); ξ(wi),

ν(wi)

ξ(wi) + 1

)]
. (10)

Optimisation of both losses, (9) and (10), proceeds via stochastic gradient descent and the ADAM algorithm [54].
To mitigate overfitting, data are split into training (80%) and validation (20%) sets, with the latter used to check for
parameter convergence. We refer the reader to [43] for a more detailed overview of the fitting procedure.
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As noted in Section 2, when the GP shape parameter ξ(w) is negative, the distribution of R|w = w has a finite
upper endpoint. Training of a deep GP regression model which permits negative shape parameter values can be
computationally troublesome; see discussion by [55]. At a given angle wi, if ξ(wi) < 0 and the radial observation ri
exceeds the upper endpoint, i.e., ri > u(wi)− σ(wi)/ξ(wi), then the loss function in (10) will evaluate to a non-finite
value. Consequently, the loss surface over which we optimise W(ν,ξ) is highly irregular, and iterative gradient descent
methods (like ADAM) may have trouble finding global maxima, or may predict out-of-sample parameter estimates
that are infeasible, i.e., the loss is non-finite. To circumvent these issues during training, we initialise the MLP to
ensure that the shape parameter function ξ(w) is non-negative for all angles w; in this way, at the outset of the
training procedure, the loss function is guaranteed to be finite for all wi, i = 1, . . . , n. Then, if the gradient descent
optimisation algorithm produces non-finite loss values during training, we restart training (from the last iteration with
finite loss values) with a smaller learning rate. Note that the fully-trained MLP may still provide negative values of
ξ(w). This training procedure was found to produce reliable estimates in our application.

3.2.3 Selecting an architecture

An important choice when fitting a neural network model is the choice of architecture: this corresponds to the set of
hyperparameters introduced in Section 3.2.1. There is no ‘best practice’ for this selection within the deep GP regression
literature [42], and the appropriate architecture is likely to be domain specific; see [50]. Selecting a model with more
hidden layers and more neurons results in higher flexibility, but at the cost of increased parameter variability and
computational expense. In the spirit of parsimony, we wish to select the simplest model possible while still capturing
the observed variability in the threshold and GP parameter functions over the angular domain.

To select our ‘optimal’ architecture for the application detailed in Section 4, we perform a grid-search over ar-
chitecture choices. For each configuration, we estimate a range of model fit diagnostics; these are discussed below.
The optimal architecture is then chosen as the configuration which visually provides the best model diagnostics. We
found that for both MLPs, a simple architecture is preferable: L = 3 hidden layers, with hl = 16 neurons per layer.
This results in two MLPs, each comprising approximately 650 estimable parameters; inference for these models is not
computationally demanding, and can be conducted on a standard laptop.

As with univariate POT models, selecting a suitable threshold for our model is critical. Too low a threshold will
result in the asymptotic arguments motivating the use of the GP model not being applicable, causing bias; whereas
too high a threshold will result in few observations to fit to, resulting in higher variance. The process of threshold
selection for our model is directly analogous to that in univariate problems. That is, we fit the model for a range of
threshold exceedance probabilities ζ, and check for stability of inferences and goodness of fit. The threshold is then
selected as the largest value of ζ for which inferences are approximately stable for ζ0 < ζ. In our application, we found
that ζ = 0.1 was suitable.

We remark that while our selected architecture works well for our application, we do not advocate the general
use of these hyperparameters. Instead, we recommend that practitioners who apply our framework perform a similar
grid-search, and and use post-fit diagnostics to select the optimal architecture.

4 Application to five-dimensional problem

4.1 Dataset

In this section, we consider the application of the SPAR model to a hindcast dataset consisting of 31-years of wind and
wave variables from 01/01/1990 to 31/12/2020, for a site in the Celtic Sea, off the south-west coast of the UK, which
has been identified for development of floating wind farm projects. The dataset consists of hourly values of significant
wave height (Hs), mean wave period (Tm), mean wave direction (θwave), hourly mean wind speed at 10 m above sea
level (U10), and wind direction (θwind). These variables all influence the motion and loading of floating wind turbines,
and understanding their joint extremes is important for design. Since directional variables are periodic, it does not
make sense to talk about ‘extreme directions’. Instead, we work with the x- and y-components of wave height and
wind speed, defined as Hx = Hs cos(θwave), Hy = Hs sin(θwave), Ux = U10 cos(θwind), and Uy = U10 sin(θwind).

Unlike many classical modelling approaches, the SPAR approach extrapolates in all directions, allowing one to
perform inference in any extreme region of interest. When variables have a defined lower bound at zero, as is the case
for many physical quantities, the SPAR model should be able to infer this directly from the data, and these physical
limits should correspond to the upper bounds of the GP model for the radial variable at the relevant angles. However,
inferences at end points are highly uncertain since they correspond to zero exceedance probability, and consequently
the model may infer a slightly negative bound in some directions. It is therefore safer to work with variables that do
not have hard lower bounds at zero, so that uncertainties in the radial end point do not result in estimates that are

6



Figure 2: Upper right plots: Scatter of pairwise relations between normalised variables for simulated (black) and
observed (grey) data. Dashed red lines in plots of (x3, x5) and (x4, x5) are lines of constant wave steepness s = 0.08.
Plots on diagonal are QQ plots of simulated vs observed data. Lower left plots: Empirical density of pairs of angular
components of observed data (yellow = high density, blue = low density).
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not physically possible. The directional variables Hx, Hy, Ux, and Uy are all defined on (−∞,∞), although clearly
they will have some upper and lower bounds due to physical constraints (in general, we would expect the region of
variable space in which the density is non-zero to be bounded, due to physical limits). For the period variable, we
address the problem of the lower bound by defining LT = log(Tm) ∈ (−∞,∞) and using this variable in the model.

4.2 Normalisation and choice of origin

As different physical variables have different scales, we normalise each variable by its standard deviation. If we did not
do this, then angles would tend to be clustered in the plane of whichever variable has the largest scale (wind speed in
this case). We also need to define an origin in order to transform to polar coordinates. In previous work using SPAR,
[22, 23] defined the origin at the mean of each variable. In our application, more care must be taken when defining
an appropriate origin. For the model to provide a useful description of the extremes at all angles, the support of the
density, supp(fX) := {x ∈ Rd : fX(x) > 0}, must be star-shaped with respect to the chosen origin [56]. That is, given
an origin x0 ∈ Rd and any point x ∈ supp(fX), the line segment from x0 to x is contained in supp(fX). Under this
assumption, all rays from the origin reach the ‘edges’ of the distribution without passing through regions which have
zero density. In this way, the data-cloud has a well-defined ‘inside’ and ’outside’, with the ‘outer’ region considered
‘extreme’, and the representation of the radial component in this region by a GP distribution is reasonable. This
assumption can be verified by checking plots of the density of observations along various rays from the origin, e.g.,
histograms of the observed radial variable within small angular ranges. However, as discussed further below, in higher
dimensional spaces, a large number of angles are required to obtain a reasonable coverage of the surface of Sd−1, and
visual inspection of plots of the radial density over each angular range is time consuming. Ultimately a data-driven
approach for selecting an optimal choice of origin would be best.

In this example, we use some physical insights to define an appropriate origin. Firstly, wave breaking limits
the maximum possible wave height for a given wave period, with the limit related to wave steepness given by s =
2πHs/(gT

2
m). In the three-dimensional subspace containing the variables (Hx, Hy, Tm), this results in a conical-shaped

bound on the data, centred along the axis Hx = Hy = 0, with the radius of the cone given by Hs,max = smaxgT
2
m/(2π),

where smax is the limiting steepness. The limit value of smax depends on the water depth and wind speed (among
other factors), but the maximum value was found to be around smax ≈ 0.08 for our dataset. This conical shape to
the distribution (see Figures 2 and 7) suggests that an appropriate choice of origin should be somewhere on the axis
Hx = Hy = 0. Due to the physical dependence of wave height on wind speed, we also locate the origin at Ux = Uy = 0.
The choice of origin for LT is somewhat arbitrary, but experimentation showed that using the mean value of LT gave
satisfactory results.

The angular and radial variables are therefore defined with respect to the normalised variables given by X1 =
Ux/STD(Ux), X2 = Uy/STD(Uy), X3 = Hx/STD(Hx), X4 = Hy/STD(Hy), and X5 = (LT −mean(LT ))/STD(LT ),
where STD(·) denotes the standard deviation function. The pairwise relations between these normalised variables
are shown in Figure 2. A radial grid has been overlaid to illustrate that these two-dimensional projections are
approximately star-shaped with respect to this origin. Lines of bounding steepness s = 0.08 are shown in the plots
of (X3, X5) and (X4, X5) as dashed lines. It can be seen that there is far less scatter in the variables close to these
bounds due to the physical limitations. Another feature of the data that is evident is the strong positive correlation
between the x- and y-components of the wave height and wind speed.

4.3 Exploratory data analysis

Before assessing the model fit, it is useful to consider various visualisations of the data, in order to understand how it
is distributed over the five-dimensional space. The plots below the diagonal in Figure 2 show the empirical densities
of pairs of angular components (Wi,Wj). By definition, these variables must fall within the unit circle. Any large
gaps in the observed values indicate that it is not possible to fit the model at these angles. The objective of using the
MLP model of the angular variation of the radial distribution is to estimate a relatively smooth variation with angle.
The model should therefore be able to smooth over small angular ranges with no observations. However, the model is
unlikely to be able to accurately estimate the behaviour of the radial component over large angular ranges with little
or no data.

Consider the joint occurrence of wave direction and wind direction, illustrated in Figure 3. Note that the wind
direction is θwind = atan2(W1,W2) and θwave = atan2(W3,W4), where atan2(x, y) is the four-quadrant inverse tangent
function. So the angles shown in Figure 3 are a subset of S3 where w2

1 + w2
2 = w2

3 + w2
4 = 1/2 (known as the Clifford

torus). As discussed above, wind and wave directions tend to be roughly aligned, although there is some scatter.
However, there are large areas of the variable space with very sparse observations. So attempting to model the
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conditional joint distribution of three other variables (wind speed, wave height, wave period), let alone their joint
extremes, is likely to be very challenging in these regions.

Figure 3: Empirical joint density of wind direction and wave direction.

To assess the variation in the density of angles around a circle, we could plot the number of observations within
discrete angular ranges as a histogram. In higher dimensions, visualisation becomes more difficult, but a similar
approach can be taken. We count the number of observations within a small angular range of a pseudo-regularly spaced
grid of points on the sphere. It is not possible to define evenly-spaced points on the surface of a (hyper) sphere in three
or more dimensions. To address this issue, we take the approach proposed in [3], and define a regular grid of points on
the L1 sphere and project this onto the surface of the L2 sphere. This is computed by creating a regular grid of points in
the cube [−1, 1]d, with 2m+1 points along each dimension: Ugrid = {(i1/m, ..., id/m) : ij ∈ {−m, ...,m}, j = 1, ..., d}.
Then, we define U1 = {u ∈ Ugrid : ∥u∥1 = 1}, where ∥ · ∥1 is the L1 norm given by ∥(u1, ..., ud)∥1 = |u1|+ · · ·+ |ud|.
Finally, we compute a set of direction vectors U ⊂ Sd−1 by U = {u/∥u∥2 : u ∈ U1}. This is illustrated in Figure 4 for
the case m = 5 and d = 3.

Figure 4: Illustration of the mapping of regularly spaced vectors on the surface of the L1 unit sphere (left) onto the
L2 unit sphere (right).

The dot product of two unit vectors is the cosine of the angle between them. Therefore, for each uj ∈ U we count
the number of observed angles with arccos(wi ·uj) < θmax, where θmax is some prescribed range. Although there may
be some overlap between the ranges defined above, this analysis still gives an indication of how the density of angles
varies over the sphere.

Figure 5 shows the empirical CDF of the number of observations in a cell chosen at random, for a cell radius
of θmax = 15◦ and a set of 1002 direction vectors (generated using m = 5 in the definition of Ugrid above). One
feature that is evident is that over 50% of angular cells contain no observations. This is due to the particular choice
of origin, which was selected to meet the assumption of a star-shaped distribution. Figure 5 also shows the number of
observations in each of the 32 orthants in R5 (an orthant is the d-dimensional analogue of a quadrant of the plane).
There are five orthants which contain no observations, and a further five which contain fewer than 100 observations
(out of a total of 271,704 observations). The SPAR model estimates of the extremes in these regions will therefore
be highly uncertain in the orthants with little data. However, Figure 6 shows scatter plots of the maximum observed
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values of Hs and U10 in each of the 1002 angular cells against the corresponding number of observations in the cell,
indicating that larger values of these variables tend to coincide with higher angular densities. The higher uncertainties
associated with the lower occurrence regions should therefore have less effect on the global extremes.

Figure 5: Left: Empirical distribution of the number of points within a 15◦ radius of each direction vector. Right:
empirical distribution of the number of points in each of the 32 orthants of R5.

Figure 6: Maximum observed Hs and U10 in each local angular cell vs. number in cell.

Figure 7 shows a scatter plot of Tm against Hx and Hy. (A plot of the normalised variables (X3, X4, X5) would look
similar, but the non-normalised variables are shown here to aid physical interpretation). The conical shaped bound
imposed by the limiting wave steepness is evident. Another feature that is apparent is that the data cloud is hollow
on the side Hx < 0. This is because of fetch limitations in this direction, meaning that waves propagating towards
the west are steeper wind-driven waves, so that Hs and Tm are strongly correlated in this region. This violates the
assumption of the distribution being star-shaped with respect to the choice of origin. However, the ‘edge region’ that
is not modelled corresponds to low values of Hs at a given Tm and wave direction, which is less critical for extreme
responses.

For the present choice of origin at (Hx, Hy, Tm) = (0, 0, 6.2), it appears that there are some sharp changes in the
distribution with the vertical angle, for rays towards the negative x direction. This might be hard to capture with an
ANN. Nevertheless, we can assess how well the model performs, given these challenges.

4.4 Diagnostic plots

Creating diagnostic plots to assess goodness-of-fit is challenging in multivariate problems. Assessing pairwise relations,
as described above, is one option, where observed and simulated data can be overlaid to visually assess the plausibility
of the fitted model, as shown in Figure 2, where the simulated sample from the fitted SPAR model is of equal size to
the observed sample. Overall, the simulated relationships between variables closely follow those of the observations.
Figure 8 shows scatter plots of the data transformed back to the original scale, to assess the modelled relationship
between Hs, Tm, and U10. Again, the simulated data is a good representation of the observations. The model predicts
some larger values of steep waves than observed. However, these occur at lower wave heights, so are less critical for
design purposes.

As the SPAR model does not model the tails of the marginal variable directly, it is also useful to assess how well
the simulated data matches the observed marginal tails. Quantile-quantile (QQ) plots of the observed and simulated
marginal variables are shown along the diagonal in Figure 2. The agreement appears good. However, it is difficult
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Figure 7: Scatter plot of observations of x-y components of Hs and Tm. Colour indicates value of Hs =
√
H2

x +H2
y

(blue=low, yellow=high).

Figure 8: Scatter plots of pairwise relations between simulated (black) and observed (grey) data in original variable
space.

to assess the quality of fit on this scale. Instead, Figure 9 shows exceedance and non-exceedance probabilities on a
logarithmic scale for the five variables used in the model, as well as the derived variables Hs, U10, and s. Overall,
the model performs well and provides a good match for both the upper and lower observed tails. There is a slight
tendency to underestimate the upper tail of Hx, which results in a slight underestimation of the upper tail of Hs. The
over-prediction of steep waves mentioned above is also evident.

Finally, to give an indication of the variation in model performance over the angular domain, Figure 10 shows QQ
plots of simulated against observed threshold exceedances, binned over small angular ranges. As above, we have used
a grid of 1002 fixed angles and a radius of 15◦ to define the angular bins. Only bins with 200 or more observations
have been used, so that there are approximately 20 or more threshold exceedances per bin. The local threshold is
taken as the average of the empirical 90th percentile of observed and simulated values in each bin (this approximates
an average of the non-stationary threshold over the bin). There is some scatter between the observed and simulated
values. However, the aggregated trend shows good agreement, although with a slight tendency to underestimate at
larger values. This may be related to the use of maximum likelihood estimation, which is known to produce a slight
negative bias in quantile estimates for small sample sizes [57].
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Figure 9: Exceedance and non-exceedance probabilities of marginal and related variables for observed (grey circles)
and simulated (black lines) data.

5 Discussion and conclusions

In this work, we have introduced a deep learning framework for inference with the SPAR model. The computational
scalability and robustness of neural networks result in a modelling approach which requires very few assumptions,
offers a high degree of flexibility, and can be applied in higher-dimensional settings compared to existing techniques.
We use our approach to approximate the complex joint tail behaviour of a five dimensional metocean dataset, with
diagnostics indicating our model is able to accurately represent the observed dependence structure. Given the complex
dependence structures observed in the data, the MLP model for the angular variation of the GP parameters performs
very well in representing the ‘extremes’ of the dataset. By ‘extremes’, we are referring not just to the largest and
smallest values of each observed variable, but anywhere on the outer part of the data cloud. Moreover, the SPAR
model provides an asymptotically justified basis for extrapolating outside the range of observations. Simulation from
the fitted SPAR model subsequently allows ones to generate large, physically-realistic event sets, allowing practitioners
to easily perform robust risk assessments and estimate probabilities of structural failure.

We note that selecting an architecture for any neural network is non-trivial, and care must be taken to ensure
the resulting model offers sufficient flexibility without overfitting. We also remark that, in general, neural networks
require a large amount of data for accurate model fitting [50]; this is generally a challenge for modelling extremes
since, by definition, very little data are available. It is currently not clear what sample sizes, tuning parameters, or
architectures are required to accurately fit the SPAR model via deep learning, and this should be explored in further
work. In the present approach, we have used 80% of the data for training and 20% for validation. The validation data
are used to avoid overfitting. It is possible that using only 20% of observations for validation is insufficient to force a
sufficiently smooth solution in regions of sparse angular observations. An alternative is to use a full cross-validation
scheme, in which the model results are averaged over e.g., five fits using a different 20% of the data for testing. This
would make better use of the limited observations, although with increased computational cost.

One notable observation from Section 4 was that the choice of origin for defining the SPAR model was non-trivial.
Initially, we naively assumed that the componentwise mean was a suitable origin, but this resulted in issues when
fitting the model, as the data cloud was not star-shaped with respect to this initial choice of origin. Selecting an
appropriate origin for the SPAR model beyond the lower dimensional (d ≤ 3) setting remains a challenge as full data
visualisation is not possible, and inappropriate choices can invalidate the modelling assumptions. Future work could
explore the robust selection of the origin in a data-driven manner, removing the need for domain specific knowledge.

From Section 4, it was also clear that as the dimension of the data increases, so too does the sparsity. This is
particularly apparent in Figure 5, where we observed some orthants containing just a handful of observations. Inference
within such regions is problematic, since there is very little data to train the neural network model. We also noted
that in sparse regions, the resulting parameter estimates did not always respect the physical features of the data, e.g.,

12



Figure 10: QQ plots of simulated vs observed threshold exceedances in bins of 15◦ radius from a grid of points on S4.
Grey lines are individual bins; red line is aggregated value over all bins; black dashed line is equality.

upper bounds of the variables. Such issues are not unique to the SPAR model, and one would expect to encounter the
same problems with alternative modelling approaches when applied in high dimensions. Future work could explore
whether notions of sparsity can be incorporated into the SPAR framework to improve the robustness and efficiency of
the model.
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