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ABSTRACT
This paper presents the application of a new model for multi-

variate extremes, to the problem of estimating joint distributions
of metocean variables. The model requires fewer assumptions
about the forms of the margins and dependence structure than
are required in existing methods, and provides a flexible and
rigorous framework for estimating multivariate extremes. The
method involves a transformation of variables to polar coordi-
nates. The tail of the radial variable is then modelled using the
generalised Pareto distribution, with parameters conditional on
angle. This provides a natural extension of univariate extreme
value theory to multivariate problems. The resulting model is re-
ferred to as the semi-parametric angular-radial (SPAR) model.
We consider the estimation of the joint distributions of (1) wave
height and wave period, and (2) wave height and wind speed.
We show that the SPAR model provides a good fit to the observa-
tions, in terms of both the marginal distributions and dependence
structures. The use of the SPAR model for estimating long-term
extreme responses of offshore structures is discussed, using some
simple response functions for floating structures and an offshore
wind turbine with monopile foundation. We show that the SPAR
model is able to accurately reproduce response distributions, and
provides a realistic quantification of uncertainty.

1 INTRODUCTION
Many design problems in offshore engineering require esti-

mates of the joint extremes of metocean variables, such as winds,
waves, currents and water levels. Joint extremes of metocean
variables are often quantified in terms of environmental con-

tours [1]. Some types of environmental contours can be esti-
mated without knowing the joint density of the variables [2, 3].
However, in other applications, such as full long-term extreme
response analysis (e.g. [4]), a model is needed for the joint den-
sity. Estimating the joint density in extreme regions of the vari-
able space is subject to large uncertainties [5, 6]. A wide range
of methods have been proposed for estimating the joint density
function of metocean variables. A relatively recent review is pre-
sented in [7]. At present, the most commonly-used approaches
are global hierarchical models and copula models. These models
can be applied in any number of dimensions, but for simplicity
we shall restrict the discussion to two-dimensional cases. In the
conditional modelling approach, the joint density function fX ,Y
of variables X , Y is written in conditional form as

fX ,Y (x,y) = fX (x) fY |X (y|x), (1)

where fX (x) is the marginal density of X and fY |X (y|x) is the
density of Y conditional on X = x. Usually, a parametric form
is assumed for both fX and fY |X , with popular choices being
Weibull and log-normal models [8, 9]. The parameters of the
conditional distribution are then modelled as a function of the
independent variable X . There are several drawbacks to this ap-
proach. Assuming a model for the bulk of the observations does
not guarantee a good fit to the tail of the distribution, which is the
region of interest when estimating extreme responses. Secondly,
the model for the conditional dependence structure is not based
on any physical or mathematical principles, and hence provides
no rationale for extrapolating outside the range of observations.
These limitations mean that the fitted models are often in poor
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agreement with observations [6].

In copula-based approaches, the joint density function is ex-
pressed as fX ,Y (x,y)= fX (x) fY (y)c(FX (x),FY (y)), where fX , fY ,
FX , FY are the marginal density and distribution functions, and c
is the copula density function (e.g. [10, 11]). As well as as-
suming a form for the margins, a parametric form for the cop-
ula is also assumed. Common choices for the copula include
Frank, Gumbel, Gaussian and Student-t [12–14]. Examples of
the joint density functions for the four copulas mentioned above
are shown in Figure 1, for standard Laplace margins with den-
sity fX (z) = fY (z) = 1

2 exp(−|z|), z ∈R. In each case, the copula
parameters have been selected so that the Pearson correlation co-
efficient is ρ = 0.6. It is evident that different choices of copula
can lead to large differences in joint tail probabilities. Moreover,
usually there is no a-priori reason to suppose that the dependence
structure in observations follows a particular parametric form.

Various methods based on multivariate extreme value theory
have been proposed; see [15, 16] for an overview of the applica-
tions in an oceanographic context. Possibly the most popular
choice for metocean variables is the conditional extremes model
[17], which can be used to estimate the joint distribution of vari-
ables conditional on at least one variable being large. Example
metocean applications include [18, 19]. The key limitation of
this approach is that it only characterises the region of variable
space where the conditioning variable is large, and inferences
made using different conditioning variables are not necessarily
consistent [20].

In this paper, we discuss the application of a new method,
which overcomes these limitations and provides a general frame-
work for modelling multivariate extremes. The model is referred
to as the Semi-Parametric Angular-Radial (SPAR) model. The
SPAR model provides a method for estimating multivariate ex-
tremes that does not require any assumptions about the form of
the margins or dependence structure of the variables, and pro-
vides a rational means for extrapolating outside the range of ob-
servations. Moreover, the model is only fitted to extreme ob-
servations, meaning that no assumptions are required about the
distribution of the bulk of the observations. Theoretical aspects
of the SPAR model have been presented recently in [21], and a
detailed discussion of inference for SPAR is presented in [22].
The purpose of this paper is to demonstrate the application of the
SPAR model for estimating joint extremes of metocean variables
and extreme responses of offshore structures.

The paper is organised as follows. A brief overview of the
theory is presented in Section 2, and inference is discussed in
Section 3. In Section 4, we discuss the application of the SPAR
model to the estimation of the joint extremes of (1) wave height
and wave period, and (2) wave height and wind speed. In Sec-
tion 5, we consider estimates of extreme responses for some sim-
ple response functions, based on estimates from the fitted SPAR
models. Finally, discussions and conclusions are presented in 6.

2 THEORY
2.1 Model definition

The SPAR model is an extension of the univariate peaks-
over-threshold (POT) method to the multivariate setting. The
method involves a transformation of the variables to polar co-
ordinates. In the present work, we will restrict our attention to
standard polar coordinates in two dimensions, but more general
polar coordinate systems can also be used (see [21] for a discus-
sion). Define radial and angular variables as R = (X2 +Y 2)1/2,
Θ = atan2(X ,Y ), where atan2 is the four-quadrant inverse tan-
gent function. Suppose that random vector (X ,Y ) has continuous
joint density function fX ,Y , with simply connected support, con-
taining the point (0,0). Then the joint density of (R,Θ) is given
by

fR,Θ(r,θ) = r · fX ,Y (r cos(θ),r sin(θ)). (2)

The angular-radial joint density can be written in conditional
form, in the same manner as the Cartesian joint density in global
hierarchical models (1):

fR,Θ(r,θ) = fΘ(θ) fR|Θ(r|θ) (3)

In this form, the problem of modelling multivariate extremes is
transformed to that of modelling an angular density fΘ(θ) and
the conditional radial density fR|Θ(r|θ). For a given angle θ , the
density fR|Θ(r|θ) is univariate. Moreover, for the joint extremes
of (X ,Y ), it is only the tail of fR|Θ(r|θ) that is of interest. Uni-
variate extreme value theory suggests that a suitable model for
the tail of fR|Θ(r|θ) is the generalised Pareto (GP) distribution,
with parameters conditional on angle (e.g. [23]). This motivates
the SPAR model, first introduced in [24], whereby parametric
and non-parametric models are used to model the conditional ra-
dial and angular distributions, respectively. Define a threshold
function u(θ)> 0 to be the quantile of R|(Θ = θ) at exceedance
probability ζ ∈ (0,1) (where ζ is close to 1), i.e. the solution of
ζ = Pr(R > u(θ)|Θ = θ). Then the SPAR model can be written

fR,Θ(r,θ) = ζ fΘ(θ) fGP(r;ξ (θ),σ(θ),u(θ)), r > u(θ), (4)

where fGP is the GP density function, and ξ (θ) ∈R and σ(θ)>
0, are the shape and scale parameters, given as functions of angle
θ . The GP density function is given by

fGP(r;ξ ,σ ,u) =


1
σ

(
1+ξ

r−u
σ

)−1− 1
ξ

, ξ ̸= 0

1
σ

exp
(

r−u
σ

)
, ξ = 0.

(5)
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FIGURE 1. CONTOUR PLOTS OF JOINT DENSITIES OF VARIOUS COPULAS ON LAPLACE MARGINS. ALL COPULAS HAVE PEARSON CORRELA-
TION COEFFICIENT ρ = 0.6. STUDENT-T COPULA HAS ν = 2 DEGREES OF FREEDOM. SOLID LINES: TRUE ISODENSITY CONTOURS AT LOGARITHMIC
INCREMENTS. DASHED LINES: ISODENSITY CONTOURS OF SPAR APPROXIMATIONS AT THE SAME DENSITY VALUES.

The support is 0 ≤ r ≤ rF , where the upper end point is rF = ∞

for ξ ≥ 0 and rF = u−σ/ξ for ξ < 0.
For the purposes of inference, it is also assumed that both

the angular density fΘ and GP parameter functions ξ (θ), σ(θ)
and u(θ) are finite and continuous with angle. It was shown in
[21] that these assumptions are valid for a wide range of copu-
las on Laplace margins. For parametric copulas, the asymptotic
values of the GP parameter functions can be derived and used
to compare the SPAR model for the density to the true values.
This is shown in Figure 1 for the cases of the Frank, Gumbel,
Gaussian and Student-t copulas on Laplace margins (see [21] for
details). The SPAR representation is in good agreement with the
theoretical values, showing that the model can represent a wide
range of distributions, without having to make prior assumptions
about a particular parametric form for the copula. The SPAR ap-
proach has the advantage over the conditional extremes method
in that it can characterise all extreme regions of the variable space
in a single inference, whereas separate inferences are required to
model extreme values of Y |X and X |Y in the conditional extremes
method. It can also be shown that various other methods for es-
timating multivariate extremes, such as [25–27] are special cases
of the SPAR method, and that SPAR provides a more flexible
framework than existing methods [21].

2.2 Use of the model
Once the angular density and GP parameter functions have

been estimated, equations (2) and (4) can be combined to obtain
the SPAR estimate of the joint density in the original variable
space in the region r > u(θ):

fX ,Y (r cos(θ),r sin(θ)) =
ζ

r
fΘ(θ) fGP(r;ξ (θ),σ(θ),u(θ)).

(6)
The SPAR model also provides an explicit means for calcu-

lating a contour which has exceedance probability β ≤ ζ . The
radius of this contour is simply the quantile of the GP distribution

at exceedance probability β/ζ , given by

rβ (θ) = u(θ)+
σ(θ)

ξ (θ)

(
(β/ζ )−ξ (θ)−1

)
(7)

This contour is defined in terms of the probability of an observa-
tion falling anywhere outside the region, or the ‘total exceedance
probability’. As such, these contours are more conservative than
those defined in terms of marginal exceedance probabilities, such
as IFORM contours (or variants thereof) [28].

Calculating marginal and joint probabilities from the SPAR
model involves integrating the joint density over various angu-
lar and radial ranges. However, probabilities can be estimated
empirically by simulating from the estimated model. Simulation
under the SPAR model is straightforward. We start by generating
a random number p, uniformly-distributed in [0,1]. A random
angle θ ∈ [0,2π) can then be calculated by applying the prob-
ability integral transform so that θ = F−1

Θ
(p). A corresponding

radial value r, is then simulated as a random value from the GP
distribution with parameter vector (ξ (θ),σ(θ),µ(θ)). The pair
(θ ,r) is then a random sample from the SPAR model. This can
be converted back to the original variable space using the inverse
transformation (x,y) = (r cos(θ),r sin(θ)).

3 INFERENCE
Inference for the SPAR model can be viewed as a non-

stationary POT analysis, for which there are many examples in
the literature [29–33]. The parameter functions of the GP model
for the tail of the conditional radial density, are estimated using
the EVGAM package [31]. This approach uses generalised addi-
tive models (GAMs) to represent the variation of the GP thresh-
old, scale and shape parameters as functions of angle. GAMs
are a flexible class of regression models that allow for com-
plex, non-linear relationships between response and predictor
variables [34]. Full details of this inference method are given in
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[22] and a GitHub repository of the associated code is available
at https://github.com/callumbarltrop/SPAR. In
this section we provide high-level details only. We start by dis-
cussing inference for the angular density in Section 3.1, then dis-
cuss inference for the conditional radial density in Section 3.2.
The selection of tuning parameters for the model is discussed in
Section 3.3.

3.1 Angular density
As the angular density is assumed to be finite and contin-

uous, it is readily amenable to non-parametric estimation meth-
ods. In the present work we use kernel density (KD) estimation.
Given a sample {θ1, ...,θn}, the KD estimate of the angular den-
sity at angle θ ∈ [0,2π) is

f̂Θ(θ) =
1
n

n

∑
i=1

Kh(θ ,θi), (8)

where Kh denotes some kernel defined on a circular domain, with
bandwidth parameter h. The bandwidth controls the smoothness
of the estimate with smoothness increasing with bandwidth. For
the examples considered in Section 4, we have used a von Mises
kernel, given by

Kh(θ ,θi) =
1

2πI0(1/h)
exp

(
cos(θ −θi)

h

)
,

where I0 is the modified Bessel function of the first kind of order
zero. As h → 0, the von Mises kernel converges to a Gaussian
kernel with variance h. This choice of kernel was shown to work
well for the theoretical examples considered in [22].

We note that the angular density could also be estimated us-
ing GAMs, using a similar approach to that in [30]. Whilst this
is more elegant in that the same approach is used to model both
the angular and radial components, we have opted to use a KD
model in the present work due to its simplicity.

3.2 Conditional radial density
In the GAM framework, an arbitrary function g(θ) (which

could represent the threshold, scale or shape parameter), is rep-
resented as a sum of smooth basis functions, specified at a finite
number of locations, known as knots:

g(θ) =
k

∑
j=1

β j B j(θ), θ ∈ [0,2π), (9)

where B j(θ) are the basis functions, β j = g(φ j) is the value of
the function at knot location φ j ∈ [0,2π), and k ∈N is the number

of knots (also referred to as the basis dimension). A wide variety
of smooth basis functions exist [35]. In the present application
we have used cyclic cubic regression splines, which ensure that
the GP parameter function estimates are periodic with angle. In
practice, the values of β j are not known, and are estimated as part
of the inference. EVGAM uses a penalised maximum likelihood
method to estimate the coefficients β j for the GP parameter func-
tions. The penalty terms are defined in terms of the roughness of
the solution and avoid over-fitting. The optimal choice of rough-
ness penalties are estimated using a cross-validation procedure.
As with univariate POT analysis, the threshold is selected prior
to fitting the GP distribution. In the multivariate case, threshold
function is estimated using quantile regression [36, 37], with a
GAM representation for the model parameters.

The GP parameter functions estimated from EVGAM can
also be compared to estimates from a local stationary inference,
to check the plausibility. The local stationary inference is con-
ducted for a grid of angular values. At each angle a stationary
GP model is fitted to the m nearest observations (in terms of an-
gle). The assumption that the local distribution is stationary is
an approximation. The choice of m is a bias-variance trade-off:
smaller values lead to higher estimation variance, while larger
values make the assumption of stationarity less valid. In prac-
tice, the local stationary inference is only used for verification of
the GAM estimates, since it is deemed less accurate.

3.3 Selection of tuning parameters
Application of the SPAR model requires the selection of the

following tuning parameters:

1. kernel bandwidth, h, for the angular density;
2. threshold exceedance probability, ζ ;
3. spline basis dimension, k, and knot locations φ1, ...,φk.

In principle, optimal values of all of these tuning parameters
could be estimated from the data. However, to simplify the in-
ference, we have opted to select these manually in the present
implementation. For the kernel bandwidth, as with any applica-
tion of kernel density estimation, the goal is to select h as small
as possible, while avoiding over-fitting. In the examples pre-
sented in Section 4, it was found that a bandwidth of h = 0.02
was sufficient to represent the observed angular densities (ap-
proximately equivalent to using a Gaussian kernel with standard
deviation of 8.1◦). The choice of threshold exceedance probabil-
ity is directly analogous to the case in univariate analyses. That
is, the threshold must be sufficiently high that the asymptotic ar-
gument used to motivate the use of the GP model is a reasonable
approximation. Using too low a threshold will risk the model
being misspecified, whilst too high a threshold will reduce the
number of exceedances, increasing variance in the parameter es-
timates. A wide range of methods have been proposed for thresh-
old selection (see [38] for a review and [39] for more recent de-
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FIGURE 2. COMPARISON OF OBSERVATIONS (DOTS) AND ISODENSITY CONTOURS FROM FITTED SPAR MODELS (COLOURED LINES). THRESH-
OLDS ARE SHOWN IN THICK BLACK LINE. ISODENSITY CONTOURS ARE AT EQUAL LOGARITHMIC INCREMENTS: 10−3, 10−4, ...,10−8.

velopments). In the present work, the SPAR model was fitted for
various threshold choices and diagnostic plots (discussed below)
were checked to assess quality of fit. For the examples consid-
ered here, we found that a threshold exceedance probability of
ζ = 0.7 was reasonable.

Selecting an appropriate basis dimension is essential for en-
suring accuracy and flexibility in spline modelling procedures.
Selecting too few knots may result in functional estimates that
do not capture the underlying covariate relationships. Provided
the basis dimension is sufficiently large, the resulting functional
estimates should be relatively insensitive to the exact value. This
is due to the roughness penalties, which prevent over-fitting,
thus dampening the effect of adding additional basis knots to the
spline formulations [34]. For the examples considered here, we
found that using k = 35 knots was sufficient for the threshold
and scale functions, and k = 12 knots was used for the shape
parameter functions. The knot locations have been defined at
equally spaced empirical quantiles of Θ. This ensures that the
knot spacing is closer in regions where more data has been ob-
served. Moreover, assuming the basis dimension is large enough,
model fit should be relatively insensitive to the precise location
of knot locations [34].

4 JOINT EXTREMES OF METOCEAN VARIABLES

In this section we demonstrate the application of the SPAR
model to the datasets provided as part of the recent benchmark-
ing exercise for environmental contours [5]. This comprises three
datasets of wave buoy measurements of significant wave height
(Hs) and zero-crossing period (Tz) from wave buoys around the
US coastline, and three datasets of wind speed (Wspd) and sig-
nificant wave height for locations in the North Sea from the
coastDat-2 hindcast [40]. All datasets have 1-hour timesteps.
Dataset C from [5] was from a buoy in the Gulf of Mexico,
an area affected by hurricanes. These types of datasets typi-
cally require careful treatment of hurricane-generated waves (see
e.g. [41]). Therefore, for the present study we have replaced
Dataset C with another wave buoy record from the US West
coast, NDBC buoy number 46014. Details of the datasets are
given in Table 1. As different variables can have very differ-
ent scales, we begin by centring and scaling the variables. For
random variables X and Y , define normalised variables (X̃ ,Ỹ ) =
((X −mX )/sX ,(Y −mY )/sY ), where mX , mY , sX and sY are the
sample mean and standard deviation of X and Y respectively. We
define our polar coordinates in terms of the normalised variables,
thus ensuring that the origin is within the body of the data.

For each dataset the SPAR model was fitted using the in-
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FIGURE 3. COMPARISON OF CONDITIONAL RADIAL EXCEEDANCE PROBABILITIES AT VARIOUS ANGLES, FROM OBSERVATIONS (CIRCLES)
AND SPAR MODELS (RED LINES) FOR DATASET B. DASHED LINES INDICATE 95% BOUNDS FOR MODEL QUANTILES. TOP LEFT PLOT SHOWS ALL
OBSERVATIONS (DOTS) AND THRESHOLD EXCEEDANCES USED AT EACH ANGLE (CIRCLES).

Dataset Source Variables Start End

A NDBC buoy 44007 Hs, Tz 16/02/1982 31/12/2022

B NDBC buoy 44024 Hs, Tz 29/04/1991 31/12/2022

C NDBC buoy 46014 Hs, Tz 01/04/1981 31/03/2023

D, E, F coastDat-2 hindcast Hs, Wspd 01/01/1965 31/12/1989

TABLE 1. DESCRIPTION OF METOCEAN DATASETS.

ference procedure described in Section 3. To quantify the un-
certainty, the datasets were resampled 200 times, and the SPAR
model was fitted to each resampled dataset. As the hourly-
observations are serially correlated, a block bootstrap [42] was
used, with a block length of 4 days. Here we consider various di-
agnostic plots to assess the quality of the fitted models. Compar-
isons of the observations with isodensity contours from the fitted
SPAR models are shown in Figure 2. In general, the isodensity
contours provide a good description of the location of the ob-
servations. Although no information about physical constraints
has been used to inform the model fitting, the models are able to
capture various constraints on the data. Firstly, the lower bounds
on all variables is zero – this is captured in datasets A-E, but the

model for dataset F does predict slightly negative wind speeds
at higher values of Hs. This could potentially be prescribed as
a hard constraint in the model. However, given that this part of
the distribution is of less interest, and any negative data can eas-
ily be removed from estimates, we have not attempted to apply
this constraint in the present work. Secondly, the SPAR models
for the wave height-period data capture the limiting effect of the
wave steepness (defined as s = 2πHs/(gT 2

z ), where g is accelera-
tion due to gravity). When the steepness exceeds a certain value,
waves break, limiting the wave height at a given period. The
limiting value of s is dependent on wind speed and water depth
(among other factors), but values exceeding s = 0.1 are rare. The
ability of the SPAR models to capture the limiting steepness is
evident in the tight grouping of isodensity contours on the upper
left side of the distributions.

A more localised assessment of the quality of the fitted
model can be made by comparing the tails of the observed and
modelled radial distributions over small angular ranges. Figure 3
shows an example for dataset B. Five angles have been selected
to illustrate various features of the data. For each angle observa-
tions are selected within a ±2◦ range. At 13.5◦ and 40.5◦, the
model agrees well with the observations, within the estimated
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FIGURE 4. ANALYSIS OF UNCERTAINTIES IN SPAR CONTOURS FOR DATASET B. TOP LEFT: CONTOURS (SOLID LINES) AND 95% BOUNDS FOR
EXCEEDANCE LEVELS OF 10−2 AND 10−4. TOP MIDDLE: OBSERVATIONS WITH THREE 12-HOUR EVENTS HIGHLIGHTED (COLOURED POINTS). TOP
RIGHT: OBSERVATIONS WITH THREE 12-HOUR EVENTS EXCLUDED. LOWER PLOTS: TIME SERIES OF Hs AND Tz WITH THREE 12-HOUR EVENTS
HIGHLIGHTED.

uncertainty. At 90◦ and 135◦, there is some small discrepancy
between the model and observations, although the uncertainty
range is much smaller, due to the limiting effects of wave steep-
ness at these angles. At 67.5◦, which corresponds to the largest
wave heights, there is a larger discrepancy between the model
and largest observations. Although there are a number of hourly
observations exceeding the upper 95% bound on the model, these
come from only two storms. This is illustrated in Figure 4, which
highlights two 12-hour periods (blue and red points), centred on
these two storm peaks. Similarly, the largest observations of
wave period all come from a single event (highlighted green).
For comparison, the observations with these three 12-hour peri-
ods removed are shown in the upper right plot. As the model
uncertainty is estimated using a block bootstrap, it accounts for
these hourly observations coming from discrete events. The up-
per left plot of Figure 4 shows exceedance contours calculated
using (7) at probability levels 10−2 and 10−4 together with 95%

bounds. There is very low uncertainty on the high-steepness side
of the contour, whilst on the upper side and right side the uncer-
tainty range is wider, reflecting the longer tails of the conditional
radial distribution in these ranges. Similar behaviour was ob-
served for datasets A and C (not shown).

Finally, we compare the marginal exceedance probabilities
from the SPAR models and observations. To ensure consistency,
both observed and simulated data are restricted to exceedances
of the highest value along the threshold contour in the relevant
dimension. Figure 5 shows exceedance probabilities for Hs, Tz
and steepness for each dataset, for observations and fitted mod-
els. Generally, the models and observations are in good agree-
ment. As discussed above, for dataset B, all observations with
Hs > 7.5 m come from two storms. Similarly, for dataset A,
the observations with Hs > 10 m come from a single storm.
The SPAR models are in good agreement with the observations
for the largest values of Tz for all datasets. For the steepness,
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FIGURE 5. COMPARISON OF MARGINAL EXCEEDANCE PROBABILITIES FROM OBSERVATIONS (CIRCLES) AND SPAR MODELS (RED LINES) FOR
WAVE HEIGHT-PERIOD DATASETS. DASHED LINES INDICATE 95% BOUNDS ON MODEL QUANTILES.

the model slightly over-predicts the steepness for dataset A, al-
though the model values are still realistic. For dataset C, the
model slightly under-predicts the largest values of wave steep-
ness. However, for this dataset, all values of steepness exceeding
0.08 occur prior to 1985 – it appears that a change in the wave
spectral processing after this time reduced the wave steepness.
Moreover, the largest values of steepness occur in smaller wave
heights, with Hs < 4 m, so these conditions are less likely to
structural design. Figure 6 shows marginal exceedance probabil-
ities for datasets D-F. In these cases the agreement is generally
very good, with the fitted models agreeing with observations to

within the estimated uncertainty.

5 LONG-TERM EXTREME RESPONSES
The analysis in the previous section has considered the fit of

the SPAR model to observations. From an engineering perspec-
tive, it is usually the response of a structure that is of primary
interest, rather than the environmental conditions themselves. To
provide a further assessment of the fit of the SPAR model, we
consider how well the model can represent response distribu-
tions for some simple response functions. In the case of the joint
distributions of Hs and Tz, we consider three response functions
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FIGURE 6. COMPARISON OF MARGINAL EXCEEDANCE PROBABILITIES FROM OBSERVATIONS (CIRCLES) AND SPAR MODELS (RED LINES) FOR
WIND-WAVE DATASETS. DASHED LINES INDICATE 95% BOUNDS ON MODEL QUANTILES.

used in [6], for the vertical bending moment (VBM) on various
vessels. The normalised responses are shown in Figure 7 (a) as
functions of Tz, and responses are assumed to vary linearly with
Hs. The peak responses occur at approximately 5.9 s, 8.5 s and
11.8 s and are relatively broad-banded. Although the responses
are for VBM on particular vessels, they can be considered as
representative of a wider range of responses of offshore struc-
tures. For the joint distributions of Hs and Wspd , we consider
the mudline overturning moment on a 5 MW offshore wind tur-
bine, using the response function derived in [43], and illustrated
in Figure 7 (b). The response function given in [43] is also de-
pendent on wave period, but we have removed this dependence
by assuming a constant steepness of 0.03. The response function
is also stochastic, so to avoid adding additional random effects
to the comparison, we have used the median value for each en-
vironmental condition. There is a discontinuity in the response
surface at Wspd = 25 m/s, which corresponding to the cut-out
wind speed of the turbine. For winds above this speed, the tur-
bine is shut down and the blades are feathered to reduce loading.
At lower wave heights this causes a reduction in loading. How-
ever, at very high wave heights an increased response is observed
above the cut-out speed, as the rotor is no longer damping the
wave-induced motions of the tower.

Figure 8 compares exceedance probabilities for responses
calculated from observations and simulations from the fitted
SPAR models for datasets A-C. As the SPAR model is only fitted
to threshold exceedances, the observed sample is restricted to the
same range. We have also restricted both samples to values ex-
ceeding the mean Hs, to avoid including smaller responses in the
comparison. For dataset C the responses from models and obser-
vations are in good agreement. For datasets A and B there are
generally good, but with some discrepancies, which are broadly
inline with those shown for the marginal quantities in Figure 5.
Figure 9 compares exceedance probabilities for the wind turbine
response function, from observations and models for datasets D-
F. In all cases, the models agree well with observations, indi-
cating that they provide an accurate representation of the joint
distribution in the relevant areas of the variable space.

6 DISCUSSION AND CONCLUSIONS
This paper has demonstrated the application of the SPAR

model for estimating the joint distribution of metocean variables.
The SPAR model has several advantages over existing methods.
Firstly, no assumptions are required about either the form of the
margins or dependence structure (copula). Secondly, the model
provides a rigorous basis for extrapolating outside the range of
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(a) (b)

FIGURE 7. EXAMPLE RESPONSE FUNCTIONS. LEFT: NORMALISED RESPONSES FOR FLOATING STRUCTURES (RESPONSES INCREASE LIN-
EARLY WITH Hs). RIGHT: RESPONSE SURFACE FOR OFFSHORE WIND TURBINE.

FIGURE 8. COMPARISON OF RESPONSE EXCEEDANCE PROBABILITIES FROM OBSERVATIONS (CIRCLES) AND SPAR MODELS (RED LINES) FOR
WAVE HEIGHT-PERIOD DATA. COLOUR OF POINTS CORRESPONDS TO RESPONSE FUNCTION SHOWN IN FIGURE 7 (a).

FIGURE 9. COMPARISON OF WIND TURBINE RESPONSE EXCEEDANCE PROBABILITIES FROM OBSERVATIONS (CIRCLES) AND SPAR MODELS
(RED LINES). DASHED LINES INDICATE 95% BOUNDS ON MODEL QUANTILES.
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observations, based on extreme value theory. And thirdly, in
contrast to existing methods, the same model formulation is ap-
plicable in different applications, removing the need for ad hoc
assumptions. By transforming the variable space to polar coor-
dinates, the SPAR approach reframes multivariate extreme value
modelling as a natural extension of univariate extremes, with an-
gular dependence.

The SPAR model was shown to provide a good representa-
tion of the joint extremes of wave heights and periods, and wave
heights and wind speeds, using data for several locations. Ac-
curacy of the fitted SPAR models was also assessed using simple
response functions, relevant to offshore engineering applications.
In the examples considered, the response distributions calculated
from the models were in good agreement with those from obser-
vations, giving confidence in the use of the models in engineering
applications.

The examples considered here are for two-dimensional
problems. The SPAR approach is also applicable in higher
dimensions. However, extending the inference to higher di-
mensions becomes more computationally challenging due to the
number of parameters involved. The present work has not con-
sidered including covariate effects such as seasonality or direc-
tionality. However, as inference for the SPAR model can be
viewed as non-stationary POT, where radius is the response vari-
able and angle is the covariate, periodic covariates such as season
and direction can be included as additional ‘angles’, treated in the
same way as in existing models (e.g. [44, 45]).

A limitation of the current inference method is that by using
a spline representation, the model implicitly assumes that the GP
parameter functions are smoothly-varying with angle. In certain
theoretical cases, discussed in [21, 22], the scale function ex-
hibits sharp cusps at certain angles. However, even in these cases,
inferences made using the spline-based inference were shown to
be reasonable. Moreover, the assumption of smoothly-varying
parameter functions appears reasonable in the applications con-
sidered here.

A further limitation of the present model is that it does not
provide information about serial correlation in the observations
(although serial correlation is accounted for in the uncertainty
calculations). This is usually accounted for by ‘declustering’ the
data, and only modelling peak values. However, in multivariate
applications, what constitutes a ‘peak value’, depends on which
variable is of interest, since extremes of each variable do not nec-
essarily occur simultaneously (see [3, 46] for further discussion).
Modelling of the distribution of other values, conditional on a
peak value in a similar manner to [47] may provide a suitable
solution, but this will require further investigation.

Finally, the sensitivity of the inference to the choice of ori-
gin and polar coordinate system has not been considered in the
present study, but will be considered in future work.

ACKNOWLEDGMENT
EM was funded by the EPSRC Supergen Offshore Renewable En-

ergy Hub, United Kingdom [grant no: EP/Y016297/1].

References
[1] S. R. Winterstein, T. C. Ude, C. A. Cornell, P. Bjerager, and S. Haver,

“Environmental parameters for extreme response: Inverse FORM with
omission factors,” in 6th International Conference on Structural Safety
& Reliability (ICOSSAR)., 1993.

[2] Q. Derbanne and G. de Hauteclocque, “A new approach for environ-
mental contour and multivariate de-clustering,” in 38th International
Conference on Ocean, Offshore and Arctic Engineering, Glasgow, 2019,
OMAE2019/95993. DOI: 10.1115/OMAE2019-95993.

[3] E. Mackay and G. de Hauteclocque, “Model-free environmental contours
in higher dimensions,” Ocean Engineering, vol. 273, p. 113 959, 2023.
DOI: 10.1016/j.oceaneng.2023.113959.

[4] A. Naess and T. Moan, Stochastic dynamics of marine structures. Cam-
bridge University Press, 2013, pp. 1–410.

[5] A. F. Haselsteiner et al., “A benchmarking exercise for environmental
contours,” Ocean Engineering, vol. 236, p. 109 504, 2021. DOI: 10.
1016/j.oceaneng.2021.109504.

[6] G. de Hauteclocque, E. Mackay, and E. Vanem, “Quantitative compari-
son of environmental contour approaches,” Ocean Engineering, vol. 245,
p. 110 374, 2022. DOI: 10.1016/j.oceaneng.2021.110374.

[7] E. Ross et al., “On Environmental Contours for Marine and Coastal De-
sign,” Ocean Engineering, vol. 195, p. 106 194, 2020. DOI: 10.1016/
j.oceaneng.2019.106194.

[8] S. Haver, “Wave Climate Off Northern Norway,” Applied Ocean Re-
search, vol. 7, pp. 85–92, 1985. DOI: 10.1016/0141-1187(85)
90038-0.

[9] J. Mathisen and E. Bitner-Gregersen, “Joint distributions for signifi-
cant wave height and wave zero-up-crossing period,” Applied Ocean Re-
search, vol. 12, no. 2, pp. 93–103, 1990. DOI: 10.1016/S0141-
1187(05)80033-1.

[10] R. B. Nelsen, An introduction to copulas. Springer, 2006.
[11] H. Joe, Dependence modeling with copulas. CRC Press, 2015, pp. 1–

457.
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