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Abstract

We assess the strength of evidence in favour of changes in the distributional tail characteristics of wind, solar irradiance
and temperature variables available as output of CMIP6 climate models, due to climate forcing. We estimate global
and climate zone annual maximum and annual mean data for the period (2015, 2100) from daily output of seven
CMIP6 GCMs for the daily wind speed (sfcWind) and maximum wind speed (sfcWindmax), solar irradiance (rsds)
and near-surface temperature (tas) variables. We also calculate the corresponding annualised data for individual
locations within neighbourhoods of the North Atlantic and Celtic Sea region. For each data source we access output
corresponding to three climate scenarios and multiple climate ensemble runs. We then estimate non-stationary extreme
value models (GEVR) for annual extremes, and perform non-homogeneous Gaussian regression (NHGR) for annual
means, using Bayesian inference. We use the estimated statistical models to quantify the distribution of (i) the change
in the 100-year return value for annual extremes, and (2) the change in annual mean level, over the period (2025, 2125).
To summarise results, we estimate linear mixed e�ects models for the observed variation of (i) and (ii). Evidence for
changes in the 100-year return value for annual maxima of wind variables over time and with climate scenario is weak,
in marked contrast to our �ndings for rsds and tas. For annual means, there is stronger evidence for changes over
time for wind variables, especially in the Northern Hemisphere, but the extent of the changes is small.

Keywords: structural design; climate; CMIP6; wind speed; Bayesian inference; return value; generalised extreme
value; non-homogeneous Gaussian regression; linear mixed e�ects model;

1. Introduction

The Summary for Policymakers from the 6th assessment report of the Intergovernmental Panel on Climate Change
(IPCC 2021) states unequivocally that human activity has warmed the Earth, resulting in changes to the atmosphere
and oceans in particular. It is likely that global average precipitation has increased, that near-surface ocean salinity
patterns have changed, that global mean sea level has increases, that mid-latitude storm tracks have shifted poleward,
that sea ice has retreated in the Arctic (but not in the Antarctic), and that the surface of the Greenland Ice Sheet
has melted, all due to human activity. The rate of occurrence of temperature extremes has increased, as has that of
Category 3-5 tropical cyclones, as a result of human activity.
Numerous numerical studies (e.g. Young and Ribal 2019, Meucci et al. 2020, Meucci et al. 2022, Ewans and Jonathan

2023) reporting likely changes in wind and wave climate, have been summarised in Ewans and Jonathan (2023). Most
historical studies are based on global or regional analysis of output from Coupled Model Intercomparison Project
(CMIP) General Circulation Models (GCMs). Output is available from multiple institutions (including e.g. the UK
Meto�ce, the Norwegian Climate Centre, the Chinese Meteorological Administration and the Japanese Meteorological
Research Institute) for a large set of climate variables. For the 6th phase of CMIP (CMIP6), daily values of climate
variables are provided for the period 2015-2100, under di�erent assumptions combining future Shared Socioeconomic
Pathways (SSPs) and Representative Concentration Pathways (RCPs); see Section 2 for further details.
GCMs behave somewhat di�erently to each other, due to di�erent modelling assumptions made (e.g. IPCC 2013,

Chapter 8). Moreover, just as wave hindcast and forecast model output is generally calibrated (e.g. Sung and Tuo 2024)
to provide better in-situ agreement with measurements, it is to be expected that GCM output should be calibrated
similarly for better agreement with measurements (e.g. Bellprat et al. 2012, Lemos et al. 2023, Lavoie et al. 2024,
Meucci et al. 2024). There is a di�erence however. For calibration of a hindcast, both hindcast and measurement
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data are typically available for a relatively large proportion of the period of the hindcast. For calibration of short-
term forecasts similarly, historical forecasts and corresponding measurements are both available over a relatively long
period, with which to perform a reasonable calibration. For GCM output, by de�nition, the proportion of the total
time interval of the GCM output for which measured data are available is relatively small, and focussed on the early
years of GCM output by de�nition; speci�cally, for CMIP6 GCMs, there is no means by which we can be con�dent
that a calibration developed for the years 2015-2024 would be appropriate in 2100. Nevertheless, we note the work of
Tett et al. (2022) regarding reduction of GCM variability using calibration, and recently produced guidance (IOGP
Report 662 2024) from the International Association of Oil and Gas Producers on potential climate change e�ects on
metocean design and operating criteria.
Some authors (e.g. Severino et al. 2024, Waidelich et al. 2024) seek to couple the output of CMIP6 models with

climate risk assessment models, to obtain predictions of future impacts (e.g. cost of damage to infrastructure).
Severino et al. 2024 in particular emphasise the importance of incorporating climate model uncertainty in predictions.
From the perspective of wind energy resources, Miao et al. (2023) �nd that wind speeds generally decrease under
CMIP6 scenarios in the Northern Hemisphere; again, the variability in estimates due to climate model uncertainty is
emphasised. Ibarra-Berastegui et al. (2023) �nd that climate-related changes in electricity generating capacity from
wind and wave occur in at most 15% of coastal locations studied under CMIP6 SSP126 and SSP585 scenarios.
We are interested in assessing how informative CMIP6 output is regarding future extremes of climate variables.

Speci�cally, how much consistency is there between predictions of extreme quantiles (e.g. the 100-year level) for
variables such as solar irradiance, wind speed and temperature?

Objectives and outline

The objective of the current work is to examine key output from CMIP6 global coupled models at site-speci�c,
regional and global scales, to form a view of what state-of-the-art science is telling us about climate change e�ects.
We focus on assessing the change in extreme quantiles of annual distributions of climate variables, speci�cally the
change in the 100-year return value for a climate variable over the next 100 years (from 2025 to 2125), for surface
downwelling short wave radiation, near-surface wind speed, daily maximum near-surface wind speed and near-surface
air temperature. For the global and climate zone analyses considered, we think it interesting to compare inferences
for extremes with those for changes in the spatial means (e.g. global and climate zone averages) also.
The layout of the paper is as follows. The GCM output considered in the current study is introduced and summarised

in Section 2, for both global and climate zone analysis (Section 2.1) and North Atlantic-Celtic Sea point location analysis
(Section 2.2). Section 3 outlines the statistical methodology adopted to estimate the change in the 100-year return
value for each climate variable over the next 100 years (i.e. the period 2025-2125), and changes in global and climate
zone means over the same period. Extreme value analysis of annual maxima data is achieved by �tting non-stationary
generalised extreme value (GEV) models, described in Section 3.1. Trends in spatial means over time are quanti�ed
using non-homogeneous Gaussian regression (NHGR, Section 3.2). Results of applying the models from Section 3 to
the data from Section 2 are presented in Section 4. Section 4.1 provides a summary of the analysis for global annual
extreme and mean data, Section 4.2 for climate zone annual extreme and mean data, and Section 4.3 for annual
maxima from speci�c locations in the North Atlantic and Celtic Sea neighbourhoods. Discussions and conclusions are
given in Section 5. Supporting illustrations are provided in the accompanying online Supplementary Material (SM),
and referenced e.g. by Figure SM3. All data used in this work (global and climate zone annual maximum, minimum
and mean data, and all North Sea and Celtic Sea annual maximum data) is accessible at Leach (2024). The software
used for the analysis is provided at Leach and Jonathan (2024).

2. Global coupled model output

Output for 7 GCMs from CMIP6 was accessed via the UK Centre for Environmental Analysis (CEDA) archive during
the Spring of 2024. For each of these GCMs, gridded output for the whole globe is generally available daily for the time
period 2015-2100. We choose to examine annualised data for a total of 4 environmental variables of engineering interest:
surface downwelling shortwave radiation (rsds, Wm−2), near-surface wind speed (sfcWind, ms−1), daily maximum
near-surface wind speed (sfcWindmax, ms−1) and near-surface air temperature (tas, K). In addition, we examine three
climate scenarios (or climate experiments): SSP126, SSP245 and SSP585. Each of these scenarios combines a SSP with
a RCP. Experiment SSP126 follows SSP1, a storyline with low climate change mitigation and adaptation challenges,
and RCP2.6 which leads to (additional) radiative forcing of 2.6 Wm−2 by the year 2100. Analogously, experiment
SSP245 (SSP585) follows SSP2 (SSP3), a storyline with intermediate (high) climate change mitigation and adaptation
challenges, and RCP4.5 (RDC8.5) which leads to (additional) radiative forcing of 4.5 (8.5) Wm−2 by the year 2100.
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Daily data are accessed directly from the CEDA archive. For rsds, sfcWind and tas, output corresponds to daily
averages over higher-frequency underlying model time-steps over the past 24 hours. For sfcWindmax, the data cor-
responds to the maximum over higher-frequency model time-steps over the past 24 hours. Annual maxima are then
extracted for each calendar year, and annual arithmetic means calculated, for all 4 climate variables; annual minima
are also extracted per calendar year for tas.
Then, for each combination of GCM, climate scenario and variable, we examine output for �ve climate model ensemble

members where available; these correspond to a common initialisation, physics and forcing per GCM, and are listed
in Table 1. For each combination of GCM, climate scenario, variable and ensemble member, we therefore have access
to four time-series each of 86 values of annual maximum, mean and tas minimum for the period 2015-2100, for each
spatial grid location on the surface of the Earth.

GCM Variable SSP126 SSP245 SSP585

ACCESS-CM2
(AC)

rsds r1i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r4i1p1f1, r5i1p1f1

sfcWind r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

sfcWindmax r4i1p1f1, r5i1p1f1 r4i1p1f1, r5i1p1f1 r4i1p1f1, r5i1p1f1

tas r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

CAMS-CSM1-0
(CA)

tas r2i1p1f1 r2i1p1f1 r2i1p1f1

CESM2
(CE)

sfcWind r4i1p1f1, r10i1p1f1,r11i1p1f1 r4i1p1f1, r10i1p1f1,r11i1p1f1 r4i1p1f1, r10i1p1f1,r11i1p1f1

tas r4i1p1f1, r10i1p1f1,r11i1p1f1 r4i1p1f1, r10i1p1f1,r11i1p1f1 r4i1p1f1, r10i1p1f1,r11i1p1f1

rsds r4i1p1f1, r10i1p1f1,r11i1p1f1 r4i1p1f1, r10i1p1f1,r11i1p1f1 r4i1p1f1, r10i1p1f1,r11i1p1f1

EC-Earth3
(EC)

rsds r1i1p1f1,r4i1p1f1 r1i1p1f1,r4i1p1f1 r1i1p1f1,r4i1p1f1

sfcWind r1i1p1f1,r4i1p1f1 r1i1p1f1,r4i1p1f1 r1i1p1f1,r4i1p1f1

sfcWindmax r1i1p1f1,r4i1p1f1 r1i1p1f1,r4i1p1f1 r1i1p1f1,r4i1p1f1

tas r1i1p1f1,r4i1p1f1, r9i1p1f1, r11i1p1f1 r1i1p1f1,r4i1p1f1, r9i1p1f1, r11i1p1f1 r1i1p1f1,r4i1p1f1, r9i1p1f1, r11i1p1f1

MRI-ESM2-0
(MR)

rsds r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

sfcWind r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

sfcWindmax r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

tas r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, r5i1p1f1

NorESM2-MM
(No)

rsds r1i1p1f1 r1i1p1f1, r2i1p1f1 r1i1p1f1

sfcWind r1i1p1f1 r1i1p1f1, r2i1p1f1 r1i1p1f1

tas r1i1p1f1 r1i1p1f1, r2i1p1f1 r1i1p1f1

UKESM1-0-LL
(UK)

rsds r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2

sfcWind r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2

sfcWindmax r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2

tas r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, r8i1p1f2

Table 1: Summary of global coupled model (GCM) output considered. A total of 7 GCMs are used, listed in alphabetical order together
with two-letter acronym (column 1). For each GCM, up to four climate variables are used, depending on their availability (column 2), for
each of three climate scenarios (row 1, columns 3-5). A total of up to 5 ensemble members are considered for each combination of climate
variable and scenario, again depending on availability (columns 3-5).

2.1. Compilation of spatial summaries: global and climate zone data

We consider analysis of spatial maxima, minima and means of corresponding location-speci�c annual maximum,
minimum and mean data, for spatial domains corresponding to the whole globe and its partition into 5 climatic zones.
We also present analysis of annual maximum data for speci�c locations in the North Atlantic and the Celtic Sea
neighbourhood; see Section 2.2.
Global annual maximum data are calculated over the complete set of global grid locations G available for each GCM.

Thus, given annual maximum output {y(i, j)} for year i = 1, 2, ..., 86 at grid location j ∈ G, the global (spatial)
maximum time series {yG,max(i)}, i = 1, 2, ..., 86 is extracted from the location-speci�c maximum using

yG,max(i) = max
j∈G

{y(i, j)}. (1)

In a similar fashion, we also calculate the annual maximum for each of the Antarctic, Temperate South, Tropical,
Temperate North and Arctic climate zones, de�ned by the latitudinal intervals (−90◦,−66.5◦), (−66.5◦,−23.5◦),
(−23.5◦, 23.5◦), (23.5◦, 66.5◦) and (66.5◦, 90◦) respectively. This calculation is made using Equation 1 (with G replaced
by Gk), for the appropriate choice of set Gk of climate zone locations, k = 1, 2, ..., 5. For variable tas, it is also interesting
to consider global and climate zone annual minimum time-series, which are calculated in the analogous fashion from
location-speci�c annual minimum data.
Illustrations of global annual maximum time-series for 5 ensemble members of sfcWindmax and tas from ACCESS-CM2

are given in the left and right hand panels of Figure 1. Colours distinguish climate scenarios: SSP126 (green), SSP245
(orange) and SSP585 (grey); and line styles distinguish individual ensemble member output. It is apparent that the
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Figure 1: Illustrations of global annual maxima time-series for sfcWindmax (left) and tas (right) from ACCESS-CM2, for di�erent climate
scenarios (SSP126, green; SSP245, orange; SSP585, grey). Line styles distinguish di�erent ensemble members.

e�ect of climate scenario is more pronounced for tas than for sfcWindmax. There is some evidence also under scenario
SSP126, that global maximum tas asymptotes to a constant value with time (to around 320K for the ACCESS-CM2

GCM illustrated in the right hand panel of Figure 1), and that perhaps tas under scenario SSP245 asymptotes also
(to around 322K); however similar trends are rarely seen for other climate variable, or for tas under SSP585 for the
period (2015,2100). Supporting illustrations for all other combinations of climate variables and GCMs are provided in
Figure SM1 (of the SM); this �gure also provides illustrations of generally reducing trends in global annual maximum
rsds, and increasing trends in global annuam minimum of tas. Again, trends with time or the e�ect of climate
scenario are di�cult to discern for sfcWind and sfcWindmax relative to tas (in particular) and rsds.
We also calculate climate zone and global annual mean time-series from the corresponding location-speci�c annual

mean data. To simplify the calculation per climate zone, we assume it reasonable to approximate the climate zone mean
using the arithmetic mean over locations within the climate zone. With {y(i, j)}, i = 1, 2, ..., 86, j ∈ Gk, k = 1, 2, ..., 5
now representing location-speci�c annual mean time-series per climate zone, the climate zone annual mean time-series
is calculated using

yGk,mean(i) = mean
j∈Gk

{y(i, j)}. (2)

We then estimate the global mean as a weighted average of climate zone means, with weight equal to the surface area
Ak, k = 1, 2, ..., 5 of the climate zone, using

yG,mean(i) =
∑
k

Ak yGk,mean(i) /
∑
k′

Ak′ . (3)

Each climate zone surface area Ak is estimated assuming a spherical Earth. The resulting time-series of global annual
mean data for the four climate variables are shown in Figure SM2. Obvious time trends and scenario e�ects are
visible for tas; corresponding e�ects for rsds are clearer for global annual means than for global annual maxima (in
Figure SM1). Regardless of GCM, rsds exhibits a positive slope in time under scenario SSP126, with more negative
slope for SSP245 and especially for SSP585; this results in a negative gradient for rsds under SSP585 for three GCMs.
sfcWind and sfcWindmax again show much weaker trends in time and with scenario; no scenario e�ect is discrenable,
but both ACCESS-CM2 and UKESM1-0-LL GCMs (which share some modelling components) suggest a minor increase in
sfcWind and sfcWindmax of approximately 0.1ms−1 over the 86 years. In contrast, EC-Earth3 suggests that sfcWind
and sfcWindmax reduce by the same amount in general over the same period.
Figure 2 illustrates time-series of annual maximum and minima data for the climate variables (rows) across climate

zones (columns) for the UKESM1-0-LL GCM. To emphasise trends here, data have been smoothed using a moving ±
10-year median �lter. Rows 1-4 represent annual maxima for rsds, sfcWind, sfcWindmax and tas, and row 5 annual
minima of tas. Columns represent the Antarctic, Temperate South, Tropical, Temperate North and Arctic climate
zones. Within each panel, colour distinguishes scenarios, and line style ensemble members, as described in the �gure
caption. Obvious di�erences in level are apparent across climate zones for all climate variables. Temporal trends are
clearer for tas then for rsds than for sfcWind and sfcWindmax, although there are stronger time trends for sfcWind
and sfcWindmax in the Arctic zone. Di�erences due to climate scenario are clearer for tas and then for rsds than for
sfcWind and sfcWindmax. rsds shows a generally decreasing level across climate zones from the Antarctic. As would
be expected due to reduced Coriolis e�ect, sfcWind and sfcWindmax are smaller in the Tropical zone. For tas, similar
trends with climate zone are seen for both annual maxima and annual minima. The corresponding data (without
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Figure 2: Time-series plots of smoothed annual maximum rsds, sfcWind, sfcWindmax and tas (rows 1-4) and annual minimum tas (row
5), for each of 5 climate zones (columns), for UKESM1-0-LL. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey)
with di�erent line style for each ensemble member. Smoothing performed using moving 10 year median �lter.

smoothing) are illustrated in Figures SM3-SM9 for each of the seven GCMs in turn, for comparison, showing generally
consistent features.
Note however that MRI-ESM2-0 (Figure SM7) o�ers dubious values (≫ 100ms−1) for sfcWindmax in the Temperate

North, considered unreasonable. For this reason, MRI-ESM2-0 data for sfcWindmax is not admitted into the analysis.
Note also the large growth in sfcWind and sfcWindmax under scenario SSP126 for EC-Earth3 in the Tropical zone
(Figure SM6); these values (≈ 35ms−1) are not unusual compared to values in other zones, and for this reason they are
retained for the analysis. Note also a suspect value in r1i1p1r1 for NorESM2-0-LL tas minimum for scenario SSP245

in the Antarctic (and hence Global), see Figures SM1 and SM8 for illustration: we have ignored this run for analysis
of annual minima, but included for analysis of means and maxima (since the o�ending point is of negligible in�uence).
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Regarding the trends observed in rsds across climate zones, physically we know that the Antarctic typically has
clearer skies, especially during the summer months, whereas the Arctic often has more persistent cloud cover. Further,
during the respective summer seasons, the sun angle in the Antarctic can be slightly higher on average due to the
Earth's tilt. Moreover, the Antarctic ozone hole can lead to higher UV radiation levels reaching the surface during
the spring and early summer. Downward trends with time per climate zone re�ect increase concentrations of aerosols.
For tas, lower values in the Antarctic compared to the Arctic occur due to the moderating in�uence of oceans in the
latter.
In summary, climate scenario e�ects on wind speed variables are less pronounced than on rsds and tas, with the

exception of the Arctic zone; physically, perhaps this is related to the occurrence of polar lows and cyclonic systems
there, but it not clear why these e�ects would also in�uence the Temperate North, at least to some extent.
Figures SM10-SM16 show corresponding global annual mean time-series for the seven GCMs in turn, for further

comparison. Again, there is good general consistency across GCMs. However, trends across climate zones for global
annual means are quite di�erent to those for global annual maxima; e.g. compare rsds across climate zones in
Figures SM9 and SM16. This suggests that the shape of the distribution of climate zone annual rsds in particular
changes with climate zone.
In an attempt to summarise temporal trends and scenario trends for all GCMs and climate zones concisely, Figure 3

reports the linear trend slope found in the annual maximum data calculated for each combination of climate variable,
ensemble member, climate zone and GCM, from a linear regression analysis. We omit uncertainty bars on slope
estimates for clarity. Note that the �gure summarises the change in value of a climate variable within a climate zone,
rather than the general level of a climate variable in that zone (for which illustrations like those in Figure 2 and
Figures SM3-9 are more useful). Note also that the �tting of a linear model is performed only to provide a statistic
to summarise temporal trends. More suitable approaches to model �tting for annual extremes and annual means are
discussed in Sections 3. Again, clearest trends with scenario are observed for tas and then for rsds, particularly in

Figure 3: Slopes of linear regression lines �tted directly to the annual maximum data for each climate variable, given climate zone, GCM,
climate scenario and ensemble member. Rows indicate di�erent climate variables. Columns indicate climate zone. Discs indicate slopes for
(multiple) ensemble members, and disc colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey). Units of slopes are
rates of change of value per annum.

the Arctic zone. Here, for tas under SSP585, some GCMs indicate a rate of increase of temperature of > 0.1K per
annum; the UKESM1-0-LL GCM appears to produce particularly high annual rates of temperature increase. The Arctic
zone also provides the clearest trends with scenario for sfcWind and sfcWindmax, with a small decrease in wind speeds
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(of ≈ 0.05ms−1a−1) with increased climate forcing. Outside the Arctic, scenario trends in sfcWind and sfcWindmax

are negligible. As noted previously, MRI-ESM2-0 GCM output is suspect for sfcWindmax in the Temperate North zone
and not admitted into the analysis. Corresponding linear slope estimates for climate zone minima of tas and climate
zone means for all climate variables are summarised in Figures SM17 and SM18. Trends in sfcWind and sfcWindmax

are negligible in magnitude, but again it is interesting to observe e.g. consistent downward (upwards) trends with
increasing climate forcing in the Temperate North (Arctic) across GCM.

2.2. North Atlantic and Celtic Sea data

From an engineering perspective, it is interesting to examine the impact of climate change on speci�c locations, as
well as more globally. For this reason, we also undertake statistical analysis of location-speci�c annual maxima of
rsds, sfcWind, sfcWindmax and tas for two neighbourhoods of locations in the North Atlantic and in the vicinity
of the Celtic Sea, illustrated in Figure 4. The North Atlantic neighbourhood corresponds to one of the stormiest
regions on the planet, whereas the Celtic Sea neighbourhood encompasses sheltered locations in shallow water and
on land. We might expect therefore that the characteristics of extreme events would be materially di�erent in the
two neighbourhoods, despite their geographic proximity. In the �gure, note that GCMs use di�erent spatial grids in

Figure 4: Discs showing grid locations of CMIP6 data accessed in the North Atlantic and the neighbourhood of the Celtic Sea. Disc colours
represent climate model grids: ACCESS-CM2 and UKESM1-0-LL (white), CAMS-CSM1-0 and MRI-ESM2-0 (orange), CESM2 and NorESM2-0-LL

(red), EC-Earth3 (black). Background bathymetry-topography data accessed from GEBCO (2023); blue bathymetry palette on [-5000,0]m,
and green-yellow topography palette on [0,1500]m.

general, but that some GCMs share a common grid; for the 7 GCMs considered here, in fact only 4 di�erent spatial
grids are employed, with GCM pairs ACCESS-CM2 and UKESM1-0-LL, CAMS-CSM1-0 and MRI-ESM2-0, and CESM2 and
NorESM2-0-LL using common grids.
Illustrations of time-series of annual data for centre locations of the North Atlantic and Celtic Sea neighbourhoods

considered, for the four climate variables from each of the seven GCMs, and given in Figures SM19-20. For both
neighbourhoods, there are no obvious temporal or scenario trends visible of variables other than tas. Even for tas,
there is no consistency in trends across GCM in the North Atlantic; indeed, MRI-ESM2-0 and NorESM2-0-LL suggest
decreasing trends in time under scenarios SSP126 and SSP245. In the Celtic Sea however, trends for tas across GCMs
appear more similar.

3. Methodology

We consider two statistical models in the current work. The �rst uses generalised extreme value regression (GEVR)
to estimate models for (temporal and spatio-temporal) block maxima (BM) of climate variables, and is outlined in
Section 3.1. The second uses non-homogeneous Gaussian regression (NHGR) to estimate models for (temporal and
spatio-temporal) means of climate variables, outlined in Section 3.2. For both GEVR and NHGR, temporal blocks

7



correspond to years, and spatial blocks to the whole globe or to one of �ve climate zones, as set out in Section 2.1.
For both models, following Ewans and Jonathan (2023), we assume that all model parameters vary linearly over the
period of observation, unless stated otherwise. That is, for any model parameter η, we assume that

ηt = η(t) = η0 +
t− 2015

P − 1
η1, for t = 2015, 2016, ... (4)

in year t, where η0 is the parameter value at the start year (i.e. t = 2015), and η1 is the change in η over the period
(2015, 2100) of length P = 86 years to be estimated. Further, we assume access to a sample of annual observations
{xi}Pi=1 of events from Xt for analysis, for di�erent choices of CMIP6 GCM output.

3.1. Non-stationary generalised extreme value regression

Asymptotic extreme value theory (e.g. Coles 2001, Jonathan and Ewans 2013) shows that block maxima of random
draws from a max-stable distribution follow the GEV distribution for su�ciently large block length. We therefore
assume that the sample {xi}Pi=1 of (temporal or spatio-temporal) BMXt (t = 1, 2, 3, ..., P ) follows the GEV distribution
with non-stationary location parameter µt ∈ R, scale σt > 0, shape ξt ∈ R and log density function

log fGEVR(x|µt, σt, ξt) =

{
− [1 + (ξt/σt) (x− µt)]

−1/ξt ξt ̸= 0

exp(−(x− µt)/σt) ξt = 0.
(5)

Model parameters ηt ∈ {µt, σt, ξt} vary with t as described in Equation 4. The T -year return value Qt for year t is
estimated as the p = 1− 1/T quantile of the corresponding GEVR distribution function FGEV R(x; t), so that

Qt =

{
(σt/ξt)

[
(− log p)

−ξt − 1
]
+ µt ξt ̸= 0

µt − σt log (− log p) ξt = 0.
(6)

Note that we only consider the case T = 100 years in the current work for de�niteness.
Parameter estimation is performed using Bayesian inference as described in Appendix A, yielding a sample of nI

joint posterior estimates {µ̂0
(k), µ̂

1
(k), σ̂

0
(k), σ̂

1
(k), ξ̂

0
(k), ξ̂

1
(k)}

nI

k=1 where nI = 10, 000. These can be used to estimate the
empirical distribution of quantities of interest, such as return values Q2025, Q2125, and the di�erence

∆Q = Q2125 −Q2025 (7)

in return value over the 100 years from 2025 to 2125. Discussion and illustration of estimated posterior cumulative
distribution functions of parameters, Q2025, Q2125 and∆Q is provided in Section 4 below, in panels (a) of Figures SM21-
24, and in Figure SM25. Note that extreme value analysis for annual minimum data for tas (over some spatial domain)
is performed via characterisation of the right hand tail of the distribution of negated data.

3.2. Non-homogeneous Gaussian regression

Here we assume that the sample {xi}Pi=1 of (temporal or spatio-temporal) means Xt (t = 1, 2, 3, ..., P ) follows a
non-homogeneous Gaussian distribution with non-stationary mean parameter αt ∈ R, scale βt > 0 and log density
function

log fNHGR(x|αt, βt) = − log
(
2πβ2

t

)
/2− (x− αt)

2
/(2β2

t ). (8)

Model parameters ηt ∈ {αt, βt} again vary with t as described in Equation 4. Using the Bayesian inference scheme

outlined for GEVR, we are able to estimate a chain of posterior estimates {α̂0
(k), α̂

1
(k), β̂

0
(k), β̂

1
(k)}

nI

k=1 for parameters

with which to estimate empirical distributions of any quantities of interest, such as the change in mean (100/86)α1

over any 100-year period, and speci�cally for the period (2025, 2125). The predicted value of Xt in year t is given by

Mt ∼ N(αt, β
2
t ). (9)

Discussion and illustration of estimated posterior cumulative distribution functions of model parameters and the change

∆M = M2125 −M2025 (10)

in mean over the period (2025, 2125) is provided in Section 4 below and panels (b) of Figures SM21-24.

A synoptic analysis (using linear mixed e�ects models) and discussion of �ndings for variation of both ∆Q and
∆M with climate variable, climate scenario, climate model and its consistent ensembles is provided in Section 5 and
Section SM6.
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4. Results

In this section, we apply the GEVR methodology from Section 3.1 to estimate changes in 100-year return values over
the period (2025,2125) for samples of spatio-temporal extremes (e.g. global or climate zone annual maxima or annual
minima) for climate variables corresponding to di�erent choices of GCM, climate scenario and ensemble member. We
also apply the NHGR methodology from Section 3.2 to estimate changes in annual global and climate zone means over
the same period. Inferences for global and climate zone annual means and extremes are interesting to characterise risk
over large spatial scales. However, metocean design is usually performed for speci�c locations. For this reason we also
consider GEVR inferences for annual maxima from individual locations in the neighbourhoods of the North Atlantic
and Celtic Sea. As outlined in Section 3 and Appendix A, all GEVR and NHGR inferences are made using Markov
chain Monte Carlo (MCMC). The section is structured as follows. In Section 4.1, we consider inferences for global
maxima, means and minima. In Section 4.2, inferences for maxima, means and minima partitioned by climate zone
are discussed. Finally, in Section 4.3, results for annual maxima at multiple individual locations in the North Atlantic
and Celtic Sea neighbourhood are compared.

4.1. Global

Here we consider GEVR analysis of annual global maximum and minimum data, and NHGR analysis of annual global
mean data, prepared from the underlying location data using the approach described in Section 2.1. We summarise
results in terms of box-whisker plots for the posterior distribution of the change in 100-year return value∆Q, aggregated
over all relevant climate ensemble members, for each climate variable over the period (2025, 2125), for di�erent climate
scenarios. Results are illustrated in Figure 5. For rsds, the GCMs generally indicate a small decrease in the 100-year

Figure 5: Box-whisker plots for the posterior distribution of the change ∆Q in 100-year return value Qt of global annual maximum and
minima over the next 100-years, for each of ACCESS-CM2, CESM2, EC-Earth3, MRI-ESM2-0, NorESM2-0-LL and UKESM1-0-LL GCMs; the �rst
two characters of the GCM name are used for concise labelling. Columns 1-4 correspond to change ∆Q for global annual maxima of rsds,
sfcWind, sfcWindmax and tas. Column 5 corresponds to change ∆Q for global annual minima of tas; �Mxm� and �Mnm� in titles refer
to maximum and minimum respectively. For each GCM, colour distinguishes climate scenarios (SSP126, green; SSP245, orange; SSP585,
grey). For each box-whisker, the box represents the central (25%, 75%) interval for the posterior distribution, and the whisker the central
(2.5%, 97.5%) interval. The posterior median is shown as a thin horizontal line (of the same width as the box), and the posterior mean as a
thicker horizontal line. Vertical extents of panels have been restricted so that all central (25%, 75%) intervals are relatively clear. Relevant
samples from posterior distributions for each of multiple ensembles are aggregated to estimate box-whisker structures.

return value of the global annual maximum over next 100 years. Generally, there is also some indication that ∆Q

reduces with increased climate forcing. For sfcWind, all central (25%, 75%) box intervals for SSP126 and SSP245

scenarios include zero, suggesting no strong evidence for a change in return value. For the SSP585 scenario, the CESM2
and NorESM2-0-LL GCMs in particular provide stronger evidence for a small reduction in return value of around 3ms−1

(but the central (2.5%, 97.5%) whisker intervals nevertheless include zero). For sfcWindmax, there is weak evidence
for a trend of increasing change in ∆Q with climate forcing, of the order of 5ms−1. The least ambiguous inferences
can be drawn for global annual maxima for tas in the fourth panel, which generally show an increasing trend in ∆Q

for all GCMs, with values of around 9K under scenario SSP585. Results for global annual minima for tas in the last
panel are noisier, but generally similar: the �gure indicates that the change in the 100-year return value for annual
minimum of tas is generally positive with increasing climate forcing; that is, extremely low temperatures occur less
often in 2125 than 2025. In summary, results for tas are considerably clearer than those for other climate variables.
For sfcWind and sfcWindmax, of most interest for o�shore and coastal design, results are somewhat contradictory:
there is some evidence that return values for sfcWind reduce under SSP585, whereas there is more consistent evidence
across GCMs that sfcWindmax increases with climate forcing.
To understand the nature of the change in the tail of the distribution of global annual maxima further, Figures 6 and

7 show estimated posterior cumulative distribution functions for the parameters of the GEVR models (see Section 3.1)
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Figure 6: Estimated posterior cumulative distribution functions for GEVR model parameters and 100-year return values (Q2025, Q2125,
for years 2025 and 2125), for the global annual maximum of sfcWindmax from UKESM1-0-LL. Colours indicate climate scenario (SSP126,
green; SSP245, orange; SSP585, grey). Dashed line styles indicate inferences for di�erent ensemble members; a solid line corresponds to
the ensemble mean cumulative distribution function. Model parameters are the GEV location µ0, scale σ0 and shape ξ0 in 2015, and the
changes µ1, σ1 and ξ1 in those parameters over the period (2015,2100).

Figure 7: Estimated posterior cumulative distribution functions for GEVR model parameters and 100-year return values (Q2025, Q2125,
for years 2025 and 2125), for the global annual maximum of tas from UKESM1-0-LL. For other details, see Figure 6.

for sfcWindmax and tas from the UKESM1-0-LL GCM. In Figure 6, it is di�cult to discern any systematic trends
between climate scenarios; indeed the variability between inferences for di�erent ensemble members for the same
scenario appears to be of the same order as that for di�erent scenarios. In Figure 7 however, the e�ect of scenario on
µ1 is most obvious; this indicates a change of around 2K in the 100-year return value for global annual tas over the
period (2015,2100) under scenario SSP126, rising to around 4K under SSP245 and 8K under SSP585. That is, changes
in the general level of tas lead to clear di�erences in Q2125 shown in the bottom right panel. In contrast, there is
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considerably less evidence for clustering with respect to scenario for variables σ and ξ, responsible for the shape of the
distributional tail. That is, there is little evidence in the data that the shape of the distributional tail changes in time.
We also note a change in µ0 (the value of GEV �level� in 2015, with posterior medians varying by around 1K from
around 317.2k to 318.2K under the di�erent scenarios) which provides a minor counter-e�ect for the change in µ1.
Figure 8 summarises the change ∆M in the global mean of each of the four climate variables over the next 100 years.

Results re�ect data characteristics mentioned in Section 2. For rsds, there is agreement across GCMs that increased
climate forcing will reduce mean value. Findings for tas are consistent across GCM. Relative to the size of change
indicated by tas, changes in global mean sfcWind and sfcWindmax are very small (≪1ms−1 in magnitude), with some
evidence for minor climate scenario e�ect.

Figure 8: Box-whisker plots for the change ∆M in global mean over the next 100-years, for each of the four climate variables. For details,
see Figure 5.

Supporting Figures SM21-24 (panels (b)) provide estimated posterior cumulative distribution functions for parameters
of NHGR models for all four climate variables from UKESM1-0-LL GCM; panels (a) of the same �gures report the
corresponding estimates for GEVR parameters. The most obvious feature of these �gures for GEVR models of global
annual maxima and minima, is again evidence for a scenario-related change in level µ1 (rather than for tail parameters
σ1 and ξ1), for rsds and tas. For NHGR models of global mean data, evidence for scenario-related change in level α1

is present for both rsds and tas. For the latter, there is also evidence for change in standard deviation β1. Smaller
competing changes in α0 and β0 are present, particular for tas, suggesting that the modelling assumption of a linear
trend in NHGR parameters with time may not always be reasonable for tas.

4.2. Climate zones

Physical intuition, together with the exploratory analysis in Section 2, suggests that there may be considerable
variation in changes ∆Q and ∆M across climate zones. For this reason, we extend the GEVR analysis of global annual
extremes and NHGR analysis of global annual means to the corresponding climate zone annual extremes and means,
for the Antarctic, Temperate South, Tropical, Temperate North and Arctic climate zones (see Section 2.1). Results of
the analysis are summarised in Figure 9 in terms of the change ∆Q in 100-year return value, and Figure 10 in terms
of the change ∆M in mean for NHGR.
Results in Figure 9 are generally similar to those for global annual extremes in Figure 5. The estimated posterior

distributions for ∆Q are wider that the corresponding global estimates, possibly due to the reduction in size of spatial
domain over which annual maxima are taken per climate zone. For sfcWind and sfcWindmax, the central (25%,75%)
box region typically includes zero for all combinations of GCM and climate scenario, indicating no obvious change
in 100-year return values over the next 100 years for all climate zones, with the exception of the Arctic: here, there
is weak evidence for more negative ∆Q under SSP585. For rsds, there is general evidence for reduction of ∆Q with
increased forcing. For annual maxima and minima of climate zone tas, there is strong evidence for a scenario e�ect,
with the UKESM1-0-LL GCM suggesting considerably more Arctic heating than other models and other climate zones.
There is also surprisingly consistent evidence across GCMs for large ∆Q ≈20K for tas minima in the Temperate North
under SSP585. The anomalous behaviour of some estimates in Figure 9 (e.g. for sfcWindmax from EC-Earth3 in the
tropics under SSP585) is to be expected given similar anomalous behaviour in the underlying climate zone annual
maximum data (e.g. Figure SM6 for sfcWindmax in the tropics).
Corresponding estimates for change ∆M in the climate zone annual mean values are given in Figure 10. Here, it is

noticeable that trends with scenario are clearer across GCM than for changes in 100-year return value; this is due in
part at least to the relative e�ciency of estimating sample means rather than sample tails. However, the trends also
appear to be more consistent across GCM. The exaggerated extent of changes in the Arctic climate zone is also clear,
presumably related to a reduction in the extent of surface ice. Visually at least, partitioning the globe into climate
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(a) Maximum.

(b) Minimum.

Figure 9: Box-whisker plots for the estimated posterior distribution of the change ∆Q in (a) the 100-year return value of the climate
zone annual maximum, and (b) the 100-year return value of the climate zone annual minimum for tas. Columns provide results for the
Antarctic, Temperate South, Tropical, Temperate North and Arctic climate zones. For other details, see Figure 5. Results from analysis of
one ensemble member for global minima of NorESM2-0-LL tas under scenario SSP245 omitted; see notes in Section 2.1.

zones appears to improve the consistency of trends with scenario across GCMs for rsds. In the Antarctic, there is
evidence for a reduction in annual mean rsds under all scenarios, with the amplitude of reduction increasing with
climate forcing. The climate scenario e�ect is strongest in the Arctic. For sfcWind and sfcWindmax, changes in mean
climate zone values are small with magnitudes ≪1ms−1 everywhere except the Arctic. In the Arctic, a number of
GCMs suggest that the annual mean for both sfcWind and sfcWindmax will increase with climate forcing. For tas, we
again see consistent trends across GCMs, with largest e�ects of climate forcing amounting the changes ∆M of around
10K in the Arctic.
It is interesting that in general changes ∆Q re�ect changes ∆M . That is, in broad terms, change in 100-year return

value over the next 100 years is largely driven by change in the general level of the climate variable, rather than
change to the shape of the tail of the distribution of the climate variable; a similar observation was made in Section 4.1
regarding the importance of µ1 in the analysis of global annual maxima.
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Figure 10: Box-whisker plots for the change ∆M in the climate zone annual mean value over the next 100-years. Rows indicate di�erent
climate variables. Columns indicate climate zone. For other details, see Figure 5.

4.3. North Atlantic and Celtic Sea

For annual maximum data from locations in the North Atlantic and Celtic Sea neighbourhoods, we estimate the
posterior distribution of the change ∆Q in 100-year return value over the next 100-years independently for each
combination of location, GCM, climate variable, scenario and ensemble member. For conciseness of presentation,
we then aggregate estimates for the posterior distribution of ∆Q over location (within neighbourhood) and climate
ensemble, resulting in distributional estimates for ∆Q from each combination of climate variable, GCM, geographic
neighbourhood and climate scenario. These are summarised in Figure 11 in terms of box-whisker plots. Inspection
of the �gure suggests that changes ∆Q in rsds are somewhat more positive in the North Atlantic compared with the
Celtic Sea neighbourhood, although the central (25%,75%) box region often includes zero, indicating little evidence for
a change in 100-year return value. There is also some evidence for reduction of rsds with increased forcing, particularly
for the Celtic Sea neighbourhood; a reduction by as much as 10Wm−2 is suggested under scenario SSP585. There are
no trends at all of interest for sfcWind and sfcWindmax, with almost all central (25%,75%) box regions including zero.
There is evidence for increasing tas with climate forcing in both the North Atlantic and Celtic Sea neigbourhoods,
and that changes in the Celtic Sea neighbourhood are likely to be somewhat larger than in the North Atlantic.
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Figure 11: Box-whisker plots for the change ∆Q in 100-year return values over the next 100-years for the North Atlantic and Celtic Sea
neighbourhoods. Panels show results for di�erent climate variables. Within each panel, inferences per climate model are given as a cluster
of 6 box-whiskers: left-hand box-whiskers (with means in red) for the North Atlantic and right-hand (with means in blue) for the Celtic
Sea. Box-whisker outline colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey).

5. Discussion and conclusions

There is a wealth of evidence that climate change is occurring (IPCC 2013, IPCC 2021). It is pertinent therefore to
assess what evidence is present in output of the latest climate models for changing characteristics of extremes of wind,
surface solar irradiance and temperature.
We estimate global and climate zone annual maximum and annual mean data for four climate variables (sfcWind,

sfcWindmax, rsds and tas) and annual minimum also for tas, for the period (2015,2100) from output of seven CMIP6
GCMs. We also calculate the corresponding annual data for neighbourhoods of locations in the North Atlantic and
the Celtic Sea region. For each data source we access output corresponding to three climate scenarios and multiple
climate ensemble runs. We then estimate non-stationary extreme value models (GEVR) for annual extremes, and
perform non-homogeneous Gaussian regression (NHGR) for annual means. Using the estimated statistical models, we
further estimate (i) the change ∆Q in the 100-year return value for annual extremes, and (ii) the change ∆M in the
annual mean level over the period (2025, 2125).
Inspection of results from Section 4 reveals inconsistencies in estimates of ∆Q and ∆M across GCMs, but in general

we can draw the following conclusions. Unsurprisingly, but importantly, inference for mean trends is more e�cient
than for extreme quantiles. That is, it is easier to identify trends in means than in extreme quantiles with con�dence.
For climate zone annual means, there is evidence for small changes in ∆M for wind variables as a function of climate
scenario, but the direction of these changes di�ers by GCM and climate zone. For extremes of wind variables, the
estimated posterior distribution of ∆Q is considerably broader and centred near zero; there is no consistent evidence
for change in return value (except perhaps in the Arctic zone), and changes in posterior mean of around ± 5ms−1

are typical across GCMs. In contrast, estimated changes for rsds and tas are considerably more convincing. For
rsds there is clear evidence for a reduction in mean of around 10Wm−2 when comparing SSP585 with SSP126 in the
Antarctic, and even larger reductions in Arctic. There is some evidence for reduction in ∆Q for climate zone annual
maxima with increased climate forcing. For tas there is clear evidence for increase in global and climate zone annual
means, maxima and minima with increased forcing. Inspection of estimated posterior distributions of extreme value
model parameters reveals that changes in ∆Q for rsds and tas can be explained by a change in level µ1 rather than
changes in the tail characteristics of the distribution of climate variable quanti�ed by σ1 and ξ1 in the GEVR model.
For single location analysis of annual maxima in the North Atlantic and Celtic Sea region, uncertainties in inferences
for ∆Q are large. Hence it is di�cult to be con�dent about the presence of climate change e�ects even for changes in
the 100-year return values of wind variables and rsds; systematic climate e�ects in tas are nevertheless present.
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5.1. Expected changes in return value, and probability of return value increase

It is important to consider the practical implications of the �ndings of this work, particularly for changes in the
100-year return value of the annual maximum over the next 100 years of wind variables. Despite the large variability
of inferences for ∆Q for wind variables, if we are prepared to assume that all GCMs are equally informative, we can
estimate the expected change ∆Q in return value for each of the climate variables empirically, simply by aggregating
the samples of estimates for the return value di�erences from Section 4. We can also estimate the probability that an
increase in return value will occur. Results per climate zone and scenario are given in Table 2. Empirical probabilities

Variable Zone
E(∆Q) P(∆Q > 0)

SSP126 SSP245 SSP585 SSP126 SSP245 SSP585

rsds

[Wm−2]

GL -4.89 -6.06 -12.15 0.15 0.13 0.04

AN -4.93 -6.02 -12.54 0.14 0.12 0.04

TS 2.78 -2.54 -6.46 0.49 0.27 0.18

TR 0.24 2.37 -6.12 0.51 0.49 0.21

TN 0.09 -3.62 -7.47 0.41 0.27 0.21

AR 1.46 -4.51 -9.18 0.52 0.2 0.18

sfcWind

[ms−1]

GL 0.21 1.41 0.23 0.42 0.58 0.47

AN 0.45 1.85 1.21 0.47 0.59 0.51

TS 0.55 0.05 -1.16 0.47 0.48 0.32

TR 0.1 0.98 2.05 0.44 0.53 0.54

TN 0.28 -0.08 -1.25 0.5 0.4 0.32

AR -1.4 -0.97 -4.64 0.36 0.35 0.19

sfcWindmax

[ms−1]

GL -1.71 -0.16 1.52 0.33 0.44 0.63

AN 0.68 0.15 2.19 0.52 0.47 0.6

TS -1.05 -0.46 -0.39 0.34 0.41 0.43

TR 0.14 1.67 5.83 0.45 0.62 0.69

TN -0.5 -0.02 0.96 0.39 0.46 0.42

AR -1.68 -0.21 -3.75 0.36 0.43 0.23

tas

[K]

GL 2.0 4.1 9.32 0.75 0.97 1.0

AN 1.05 2.26 5.07 0.63 0.83 0.97

TS 1.52 4.24 8.2 0.75 0.93 1.0

TR 1.81 4.1 8.83 0.8 0.95 1.0

TN 1.9 4.05 9.2 0.73 0.96 1.0

AR 4.75 5.75 10.62 0.72 0.84 0.95

Table 2: Estimated expected change E(∆Q) and probability of increase P(∆Q > 0) of 100-year return values over the period (2025,2125)
for annual maxima of four climate variables over 6 climate zones (GL: global; AN: Antarctic; TS: Temperate South; TR: Tropical; TN:
Temperate North; AR: Arctic). Columns under �E(∆Q)� show expected changes per scenario, in the units of the variable; thus we estimate a
reduction in 4.64ms−1 in the return value for sfcWind under scenario SSP585 in the Arctic. Columns under �P(∆Q > 0)� show corresponding
probabilities of increasing return value. Estimates are calculated assuming equal weighting for each climate model. Note that the �rst
(year 2015) observation for rsds in all CESM2 runs is spurious and has been omitted. Multiple values for sfcWindmax from MRI-ESM2-0 are
also suspect (with some values > 100 ms−1; see Figure SM7); for this reason MRI-ESM2-0 output is ignored for variable sfcWindmax only.

P(∆Q > 0) near zero or unity are indicative of agreement between climate models (and their constituent ensembles)
regarding a change in ∆Q = Q2125 − Q2025. For sfcWind and sfcWindmax, we therefore see that only in the Arctic
under scenario SSP585 is there evidence of agreement between models regarding a change in return value: speci�cally,
values of P(∆Q > 0) /∈ (0.25.0.75) are observed only in the Arctic zone under scenario SSP585. Here, mean reductions
of ∆Q ≈ 4ms−1 are estimated for sfcWind and sfcWindmax. For comparison, rsds shows signi�cant reduction in the
Antarctic and hence globally under SSP585; there is also a consistent pattern of larger reductions in polar zones than
elsewhere under both SSP245 and SSP585. For tas, P(∆Q > 0) is near unity under SSP245 and SSP585 for all climate
zones.
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The ocean engineer is typically interested not in summary statistics for large spatial regions such as climate zones, but
rather in analysis for speci�c locations. To illustration the latter, Table 3 provides estimates for the expected change
∆Q, and the probability that Q2125 exceeds Q2025, for the central locations of the North Atlantic and Celtic Sea regions
in Figure 4. Relative to the probability estimates in Table 2, probabilities in Table 3 for sfcWind, sfcWindmax and

Variable Zone
E(∆Q) P(∆Q > 0)

126 245 585 126 245 585

rsds

[Wm−2]

NA 12.58 6.83 -6.93 0.74 0.59 0.26

CS 0.76 -1.15 -7.77 0.53 0.27 0.16

sfcWind

[ms−1]
NA -0.73 1.68 -0.12 0.24 0.57 0.52

CS 1.98 0.3 1.42 0.52 0.38 0.62

sfcWindmax

[ms−1]
NA -2.8 -0.01 0.94 0.36 0.44 0.57

CS 2.83 2.7 1.67 0.64 0.53 0.43

tas

[K]
NA 2.14 2.18 4.06 0.68 0.67 0.96

CS 1.92 4.43 5.95 0.68 0.89 0.92

Table 3: Estimated expected change E(∆Q) and probability of increase P(∆Q > 0) of 100-year return values over the period (2025,2125)
for annual maxima of four climate variables at the central locations of the North Atlantic (NA) and Celtic Sea (CS) neighbourhoods. For
further description, see Table 2.

rsds are nearer 0.5 than zero or unity. Moreover, the expected values ∆Q are small in magnitude. For comparison,
there is evidence under SSP585 that climate models agree on an increasing tas for both North Atlantic and Celtic Sea
regions. Clear trends are present with climate scenario for both rsds and tas, but not for sfcWind and sfcWindmax.
Table SM1 of the SM estimates E(∆Q) and P(∆Q > 0) for change ∆Q in annual tas minima from global and climate

zones, quantifying the information already visualised in Figure 9(b). Similarly, Table SM3 quanti�es E(∆M ) and
P(∆M > 0) for change ∆M = M2125 −M2025 in the annual means for global and climate zones, showing clear trends
with climate zone and climate scenario, already visualised in Figure 10.

5.2. Quantifying the e�ect of climate scenario, and uncertainty due to climate model and ensemble member on ∆Q

and ∆M

We can summarise sources of variability in our data for changes in 100-year return values ∆Q and annual means
∆M more precisely by estimating another statistical model. Here we estimate a linear mixed e�ects model (LMM,
e.g. West et al. 2022) using ∆Q (or ∆M ) as a response, with climate scenarios as so-called �xed e�ects, and climate
models and nested climate ensemble members (for a given model) as random e�ects. The advantage of this approach
over linear regression (for all of scenario, model and ensemble) is that we assume that the climate model and ensemble
output available to us are drawn randomly from large families of models and their ensemble members. We can therefore
estimate the variability in ∆Q (or ∆M ) which can be attributed to our random choices of climate model and their
ensemble members; that is, we can estimate how much of the variability in ∆Q (or ∆M ) is due to (apparently) random
e�ects from di�erent climate models, and from di�erent ensemble members for a given climate model.
Using estimates of ∆ ∈ (∆Q,∆M ) for a given climate variable in a given climate zone, we can express the linear

mixed e�ects model as

∆ijkℓ = ι+ γj + δk + ζk(ℓ) + ϵijkℓ (11)

where ∆ijkℓ ∈ R is the ith observation of ∆ from the extreme value model output, for climate scenario j (j = 1, 2, 3,
corresponding to scenarios SSP126, SSP245 and SSP585), for climate model k (k = 1, 2, ...) and ensemble member ℓ
(ℓ = 1, 2, ...) of model k. Parameter ι ∈ R is the intercept. Parameter γj ∈ R represents the �xed e�ect of scenario j
on response. Parameter δk ∈ R represents the random e�ect of climate model k on response, and ζk(ℓ) ∈ R the nested
random e�ect of climate ensemble member ℓ for model k. Parameters ϵijkℓ ∈ R are model error terms. For �tting, we
assume that each of δk, ζk(ℓ) and ϵijkℓ are independently normally-distributed with zero means and variances τ2δ ≥ 0,
τ2ζ ≥ 0 and τ2ϵ ≥ 0. The objective of the analysis is to estimate the set {γj}3j=1 of �xed e�ects, the variances τ2δ and τ2ζ
of random e�ects, and the error variance τ2ϵ . Inference was performed using algorithms from the MATLAB Statistics
toolbox and checked using equivalent functionality in Julia, with scenario SSP126 (j = 1) as reference category for the
�xed climate scenario e�ect. That is, to avoid issues of multicollinearity, we actually undertake estimation of the sum
ι+ γ1, together with that of scenario di�erence e�ects γ2 − γ1 and γ3 − γ1.
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Results for analysis of change ∆Q in the 100-year return value annual maxima per climate variable and zone are given
in Table 4. For sfcWind and sfcWindmax, R2

ME values for the full mixed e�ect model are < 0.3 (except for sfcWind in

Variable Zone
SSP e�ect Model standard deviations R2

ι+ γ1 γ2 − γ1 γ3 − γ1 τR τFE τϵ τδ τζ R2
FE R2

ME

rsds

[Wm−2]

GL -4.47 -1.27 -7.26 7.62 6.93 6.25 1.56 2.51 0.17 0.33

AN -4.62 -1.38 -7.29 7.6 6.85 6.12 1.48 2.76 0.19 0.35

TS 3.83 -6.43 -9.61 10.29 9.62 8.32 1.36 5.1 0.12 0.35

TR 1.6 1.25 -7.02 10.92 10.3 9.16 0.0 6.43 0.11 0.3

TN 0.22 -3.91 -7.95 12.06 11.68 10.17 3.04 4.69 0.06 0.29

AR 2.44 -6.83 -11.48 10.23 9.34 8.22 2.48 4.19 0.17 0.35

sfcWind

[ms−1]

GL 0.25 1.16 0.02 4.73 4.7 4.31 0.0 1.84 0.01 0.17

AN 0.59 1.4 0.62 5.34 5.31 4.95 0.0 1.94 0.01 0.14

TS 0.73 -0.58 -1.81 4.8 4.74 4.38 0.45 1.76 0.02 0.17

TR -0.58 1.06 2.48 6.1 6.05 5.5 0.0 3.13 0.02 0.19

TN 0.38 -0.57 -1.43 4.74 4.69 4.46 0.0 1.65 0.02 0.11

AR -0.44 -0.17 -3.16 6.83 6.63 5.6 2.45 3.28 0.06 0.33

sfcWindmax

[ms−1]

GL -1.5 1.55 3.23 4.31 4.1 3.71 0.76 1.58 0.09 0.26

AN 0.68 -0.53 1.51 4.94 4.87 4.54 0.0 1.74 0.03 0.15

TS -1.05 0.6 0.66 4.93 4.92 4.57 0.0 1.83 0.0 0.14

TR 0.96 1.53 5.69 7.11 6.69 6.05 2.91 1.07 0.11 0.28

TN -0.33 0.47 1.45 4.74 4.71 4.12 0.73 2.16 0.02 0.25

AR -1.68 1.47 -2.11 6.72 6.56 5.65 0.0 3.35 0.05 0.29

tas

[K]

GL 1.78 2.12 7.33 3.93 2.46 2.17 0.86 0.82 0.61 0.69

AN 0.54 1.52 4.11 3.53 3.13 2.27 1.73 1.57 0.22 0.59

TS 1.06 3.22 6.74 3.97 2.94 2.46 1.17 1.22 0.45 0.62

TR 1.09 2.79 7.13 3.76 2.46 2.04 1.04 1.3 0.57 0.7

TN 1.8 2.19 7.4 3.91 2.52 2.23 0.68 0.95 0.59 0.68

AR 4.01 1.31 6.27 8.2 7.8 4.82 4.83 3.05 0.09 0.65

Table 4: Summary of linear mixed e�ects modelling for the change ∆Q in the 100-year return value of annual maxima for four climate
variables over 6 climate zones (GL: global; AN: Antarctic; TS: Temperate South; TR: Tropical; TN: Temperate North; AR: Arctic).
Columns under �SSP e�ect� show intercept ι and �xed e�ect parameter estimates γj for the change in 100-year return value of the given
variable over the period (2025,2125) under scenario j, in the units of the variable; thus we estimate a reduction in 3.16ms−1 in the return
value for sfcWind under scenario SSP585. Columns under �Model standard deviations� provide estimates of the various standard deviations
of model �tting. τR: the (full unconditional) standard deviation of the response R; τFE: the model error standard deviation after �tting
only the �xed e�ects (FE, of climate scenario); τϵ: the model error standard deviation after �tting the full mixed e�ects model. τδ: standard
deviation of climate model random e�ect; τζ : standard deviation due to nested random e�ect of climate ensemble within climate model. R2

statistics are also provided, from �tting only the �xed e�ects (FE), and from �tting the full mixed e�ects (ME) model. Note that the �rst
(year 2015) observation for rsds in all CESM2 runs is spurious and has been omitted. See also notes about suspect values for sfcWindmax
under model MRI-ESM2-0 in the caption of Table 2. Further, since sample size for model �tting is huge, estimates of uncertainties and
�signi�cance� are of little practical value, and are omitted.

the Arctic), and R2
ME values are lower than those for rsds and (in particular) tas. This indicates that the variation

in ∆Q explainable by the e�ects of scenario, model and ensemble is relatively small for sfcWind and sfcWindmax. The
same feature can be seen by comparing the reduction in standard deviation (from τR to τϵ) from �tting the full mixed
e�ects model for di�erent variables; the reduction is generally rather modest for sfcWind and sfcWindmax. Of course
this also results in relative large values of error standard deviation τϵ for wind variables. Values of R2

FE indicate the
quality of model �t using �xed scenario e�ects only. For sfcWind and sfcWindmax, R2

FE ≈ 0, indicating that scenario
has little skill in explaining variation of ∆Q of wind variables; it is instructive again to compare these R2

FE values
with those for rsds and tas. Further, we see that values of τζ are relatively large for wind variables, indicating large
variability between estimates of ∆Q from ensemble members; values of τζ for wind variables tend to be larger than
those of τδ, indicating that the e�ect of variability between ensembles is (much) larger than that of variability between
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climate models. This feature is illustrated in Figures SM28-31, showing box-whisker plots of the posterior distribution
of ∆Q for individual ensemble members, per climate variable and spatial zone. For sfcWind in the Temperate North
e.g., variation in ∆Q is dominated by ensemble e�ects, and the variation between climate models is small (leading to
estimated τδ = 0); for sfcWind in the Arctic in contrast, variation between climate models is relatively large (leading
to estimated τδ ≈ τζ). Note in comparison that the values of τδ and τζ are also of similar magnitudes for rsds and
tas; for the latter, these are also of similar magnitude to τϵ. The Arctic, exhibiting an interestingly large climate
model random e�ect for tas, is an exception.
Corresponding results for single location analyses of annual maxima from the centre points of the North Atlantic

and Celtic Sea region are given in Table 5. Unsurprisingly, we see that the estimates for �xed scenario e�ects γj
(j = 1, 2, 3) in Tables 4 and 5 are similar in sign and general magnitude to the expected changes E(∆Q) estimated in
Tables 2 and 3. R2

FE values in Table 5 indicate that �xed scenario e�ects are poorer in explaining variation in return

Variable Zone
SSP e�ect Model standard deviations R2

ι+ γ1 γ2 − γ1 γ3 − γ1 τR τFE τϵ τδ τζ R2
FE R2

ME

rsds

[Wm−2]

NA 7.86 -3.9 -10.44 22.55 22.17 20.44 0.0 8.8 0.03 0.18

CS 1.35 -3.13 -7.23 10.88 10.49 9.1 2.46 4.81 0.07 0.3

sfcWind

[ms−1]
NA -0.61 2.25 -0.08 5.08 4.98 4.48 1.26 1.95 0.04 0.22

CS 0.91 -0.64 0.5 4.33 4.29 4.11 0.0 1.51 0.02 0.1

sfcWindmax

[ms−1]
NA -1.67 0.79 2.22 6.83 6.77 6.24 0.0 3.11 0.02 0.17

CS 2.76 0.64 -4.23 8.09 7.85 6.97 2.67 2.87 0.06 0.26

tas

[K]
NA 0.46 0.89 3.29 3.61 3.33 2.21 2.05 1.18 0.15 0.62

CS 1.72 1.84 4.42 4.35 3.96 3.46 1.26 1.45 0.17 0.36

Table 5: Summary of linear mixed e�ects modelling for the change ∆Q in the 100-year return value of annual maxima for four climate
variables at the central locations of the North Atlantic (NA) and Celtic Sea (CS) neighbourhoods. For further description, see Table 4.

value di�erences ∆Q for the central locations of the North Atlantic and Celtic Sea regions, than for the climate zones
considered in Table 4; again, tas shows the most obvious �xed e�ect.
Table SM2 of the SM estimates a LMM for change ∆Q of annual minima from global and climate zones, and similarly

Table SM4 estimates a LMM for change ∆M in the annual means for global and climate zones. Table SM4 illustrates
clearly that changes ∆M in annual mean are more predictable than changes ∆Q of annual spatial maxima in Table 4,
even for sfcWind and sfcWindmax in the Temperate North and Arctic zones. However, the magnitudes of the changes
∆M in wind variables (see Table SM3) are very small.

5.3. Concluding remarks

As noted in Section 1, climate model output requires calibration to spatio-temporally local conditions to reduce its
bias and potentially its variance. Given the obvious absence of measurement data for the future to 2100, any calibration
is problematic, requiring the assumption that the characteristics of the estimated calibration model persist into the
future. In this work we choose not to calibrate, preferring to estimate changes in key distributional characteristics of
the climate variables directly from the climate model output. Diagnostic plots for GEVR (Figures 6 and 7, and those
of Section SM5) suggest that when present, climate-related changes in 100-year return value are generally explainable
by a change in GEVR location parameter (i.e. µ1) rather than changes in tail characteristics (σ1 and ξ1).
It is important to consider why obvious climate e�ects in both annual mean di�erences ∆M and return value dif-

ferences ∆Q are visible in global and climate zone annual means and extremes for rsds and in particular tas, but
not for wind variable sfcWind and sfcWindmax. Does this re�ect inadequacy of the physical climate models for wind
characterisation, or a genuine lack of climate e�ect on spatio-temporal extremes of wind variables? Perhaps the more
probable explanation is the limited spatio-temporal resolution of current climate models, which are therefore unable to
capture local changes in atmospheric pressure �elds driving winds (but see e.g. Ewans and Jonathan 2023 regarding
tropical cyclones around Madagascar). Presumably the spatio-temporal scales of climate-related changes to rsds and
tas are considerably larger. It is also interesting to consider why there is most consistency in estimates for the distri-
butions of both ∆M and ∆Q for tas. Does this indicate that tas is inherently easier to forecast in a climate model
than other variables, or that more e�ort has been devoted to modelling tas well, or perhaps that di�erent modelling
institutions make similar physical assumptions in their climate models regarding tas?
For statistical modelling of annual extremes and means of tas, particularly under scenario SSP126 and sometimes

SSP245, we observe di�erences in estimates for posterior distributions of the 2015 base year model parameters (µ0, σ0,
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ξ0 of GEVR, and α0, β0 for NHGR) given GCM and climate ensemble member. These di�erences, although relatively
small, point a level of inadequacy in the assumed linear form for the variation of GEVR and NHGR model parameters
in time, and suggests it might be appropriate to consider a non-linear parameter variation (especially for GEVR level
µ). An additional step might be to estimate models for all scenarios (using data for a given combination of GCM,
climate variable and ensemble member) simultaneously, imposing a common starting tail for the distribution of climate
variable in 2015.
Previous studies (e.g. Meucci et al. 2020, Ewans and Jonathan 2023) of climate e�ects on the return value for

signi�cant wave height HS derived from CMIP5 and CMIP6 output, have claimed more con�dence in inferences.
For example, in broad terms, Meucci et al. 2020 claims a 10% increase in return values for HS in the Southern
Ocean. Ewans and Jonathan (2023) claims weak e�ects with climate scenario and location o�shore Southern Australia
and Madagascar, the trends of which are consistent with Meucci et al. 2020. However, other studies (e.g. Kumar
et al. 2015) have found little evidence for trends in extreme wind speeds from climate model output. Nevertheless is
important to consider why the current study does not �nd compelling evidence for climate change e�ects on sfcWind

and sfcWindmax which drive HS . One possible explanation is the analysis of annual maxima in the current work,
compared with a peaks-over-threshold analysis in the two articles mentioned; although Ewans and Jonathan (2023)
also consider some analysis of temporal block maxima and comment on its ine�ciency relative to peaks-over-threshold.
In the current work, annual maximum analysis was adopted since it provided a straightforward pre-processing route
to compile temporal and spatio-temporal block maxima, possibly at the expense of statistical e�ciency. Another
possibility is that taking maxima over large spatial domains (e.g. over climate zone or the whole globe) has the
e�ect of mixing di�erent extreme value tails together, thereby complicating estimation of tail characteristics. In this
situation, it would be advisable to restrict spatial domains so that the locations they contain are likely to exhibit the
same tail behaviour. However, results for single location analysis for the North Atlantic and Celtic Sea region also
do not show obvious return value trends for wind variables. Another source of increased uncertainty in the current
work is our consideration of not only multiple climate models, but also of multiple ensemble runs for those climate
models. As shown in Section 5.2, uncertainty in estimating changes in return value is related at least to some degree
to variability between estimates from di�erent climate models and their constituent ensembles.
Characterising changes in large-scale spatio-temporal mean characteristics of wind variables (sfcWind and sfcWindmax),

irradiance (rsds) and near-surface temperature (tas) in output of CMIP6 GCMs is relatively straightforward. Esti-
mating changes in extreme quantiles of the distributions of large-scale spatio-temporal maxima is considerably more
challenging. The current analysis shows that CMIP6 output is informative for changes in extremes of annual spatial
maxima of tas and rsds (over large spatial domains and at speci�c locations in the North Sea and Celtic Sea regions).
Further, the e�ect of climate scenario, climate model and constituent ensemble member variability on the change in
100-year value over the next 100 years can be quanti�ed to a reasonable degree. For sfcWind and sfcWindmax however,
there is less evidence in the CMIP6 output in general supporting changes in return value. Moreover, the observed
variability in return value change is dominated by sources other than climate scenario.
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Appendix A. Bayesian inference

Inference for the GEV regression and NHGR models described in Section 3 is performed using Markov chain Monte
Carlo (MCMC, see e.g. Gamerman and Lopes 2006) following the method of Roberts and Rosenthal (2009). This
procedure was reported previously in Ewans and Jonathan (2023), but is summarised here for completeness and ease of
reference. All the parameters θ of the model are jointly updated for a sequence of nB +nI MCMC iterations. At each
iteration, a new set of parameter values is proposed, and accepted according to the Metropolis-Hastings acceptance
criterion based on (a) the sample likelihood evaluated at the current and candidate states, and (b) the values of the
prior densities for parameters at the current and candidate states. Following nB burn-in iterations, the Markov chain
is judged to have converged, so that the subsequent nI iterations provide a valid sample from the joint posterior
distribution of parameters. Prior distributions were speci�ed as ξ ∼ U(−1, 0.2); σ ∼ U(0,∞); µ ∼ U(−∞,∞).
Likelihoods for the models are available from the distributions given in the main text. An appropriate starting
solution θ1 for the MCMC inference was obtained by random sampling from the prior distributions of parameters,
ensuring a valid likelihood.
For the �rst nS < nB iterations, candidate parameter values θc

k are proposed (independently) from θc
k ∼ N(0, 0.12I)

following Roberts and Rosenthal (2009). Thereafter θc
k ∼ (1 − β)N

(
θk−1, 2.38

2Σk

)
+ βN

(
θk−1, 0.1

2/4
)
, where
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β = 0.05, Σk is the empirical variance-covariance matrix of parameters from the past k iterations, and θk−1 is
the current value of parameters. Throughout, a candidate state is accepted using the standard Metropolis-Hasting
acceptance criterion. Since prior distributions for parameters are uniform, and proposals symmetric, this criterion is
e�ectively just a likelihood ratio. That is, we accept the candidate state with probability min(1, L(θc)/L(θ)), where
L(θ) and L(θc) are the likelihoods evaluated at the current and candidate states respectively, with candidates lying
outside their prior domains rejected.
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Supplementary Material

Changes over time in the 100-year return value of climate model variables

Callum Leach, Kevin Ewans, Philip Jonathan

Overview

This supplementary material provides supporting information for the article referenced above.

Section SM1 provides illustrations of global annual maximum and mean data for four climate variables (rsds,
sfcWind, sfcWindmax, tas) where available, and global minimum tas, from each of seven GCMs (ACCESS-CM2,
CAMS-CSM1-0, CESM2, EC-Earth3, MRI-ESM2-0, NorESM2-0-LL, UKESM1-0-LL). For each combination of GCM and cli-
mate variable, figure panels give time series for multiple climate ensemble runs under three climate scenarios (SSP126,
green; SSP245, orange; SSP585, grey). Note that the data presented are not smoothed. Plots in this section comple-
ment discussion around Figure 1 of the main text.

Section SM2 provides illustrations of climate zone annual maximum and mean data for the four climate variables
where available, and climate zone minimum tas, from each of the seven GCMs. For each GCM, two figures are pre-
sented: one for annual maximum and tas minimum (in Section SM2.1), the other for annual mean (in Section SM2.2).
Note that the data presented are not smoothed. Plots in this section complement discussion around Figure 2 of the
main text.

Section SM3 provides illustrations of estimated slopes of linear regression lines fitted directly to annual mimumum
data for tas, and also for annual means, per given climate zone, GCM, climate scenario and ensemble member. Plots
in this section complement discussion around Figure 3 of the main text.

Section SM4 illustrates time-series of annual data for the centre locations of the North Atlantic and Celtic Sea
region neighbourhoods considered, for the four climate variables from each of the seven GCMs. For each combination
of GCM and climate variable, figure panels give time series for multiple climate ensemble runs under the three climate
scenarios. Note that the data presented are not smoothed. Plots in this section complement discussion in Section 2.2
of the main text.

Section SM5 provides estimated posterior cumulative distribution functions for GEVR model parameters for global
annual maxima and global annual minima for tas (panels (a)), and NHGR model parameter for global means (panels
(b)) from the UKESM1-0-LL GCM, with separate figures for each of the climate variables. These plots support the
discussion of Figures 5-7 of the main text.

Section SM6 provides supporting information for linear mixed effects modelling of ∆Q = Q2125 − Q2025 and
∆M = M2125 − M2025. Section SM6.1 shows box-whisker plots for the posterior distribution of ∆Q estimated per
climate variable, spatial zone, scenario, model and ensemble. Sections SM6.2 and SM6.3 give tables characterising
changes ∆Q in return values of the annual minimum, and ∆M in the annual mean, to be compared with Tables 2
and 4 of the main text for the change ∆Q in the 100-year value of the annual maximum for global and climate zone
maxima.
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SM1 Time-series of global annual maxima, tas minima and means

Figure SM1: Time series of global annual maximum data for four climate variables (rsds, sfcWind, sfcWindmax, tas)
where available, and global minimum tas, from each of seven GCMs (ACCESS-CM2, CAMS-CSM1-0, CESM2, EC-Earth3,
MRI-ESM2-0, NorESM2-0-LL, UKESM1-0-LL). Rows indicate GCM, columns indicate climate variable and type of ex-
treme. For each combination of GCM and climate variable, panels give time series for multiple climate ensemble
runs (distinguished by line style) under three climate scenarios (SSP126, green; SSP245, orange; SSP585, grey). Empty
panels indicate that data for the specific combination of GCM and climate variable was not available for analysis. Note
a suspect value in ensemble r1i1p1f1 for annual minimum tas for NorESM2-0-LL under scenario SSP245, discussed
in Section 2.1 of the main text.
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Figure SM2: Time series of global annual mean data for four climate variables (rsds, sfcWind, sfcWindmax, tas)
where available, from each of seven GCMs (ACCESS-CM2, CAMS-CSM1-0, CESM2, EC-Earth3, MRI-ESM2-0, NorESM2-0-LL,
UKESM1-0-LL). Rows indicate GCM, columns indicate climate variable. For each combination of GCM and climate
variable, panels give time series for multiple climate ensemble runs (distinguished by line style) under three climate
scenarios (SSP126, green; SSP245, orange; SSP585, grey). Empty panels indicate that data for the specific combination
of GCM and climate variable was not available for analysis.
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SM2 Time-series of annual maxima, tas minima and means for climate
zones

SM2.1 Maxima/Minima

Figure SM3: Time-series plots of annual maximum rsds, sfcWind, sfcWindmax, tas (rows 1-4) and annual mini-
mum tas (row 5), for each of 5 climate zones (columns), for ACCESS-CM2. Colour indicates climate scenario (SSP126,
green; SSP245, orange; SSP585, grey) with different line style for each ensemble member. No smoothing of time-series
is performed.
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Figure SM4: Time-series plots of annual maximum tas (rows 1-4) and annual minimum tas (row 5), for each of 5
climate zones (columns), for CAMS-CSM1-0. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585,
grey) with different line style for each ensemble member. No smoothing of time-series is performed.
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Figure SM5: Time-series plots of annual maximum rsds, sfcWind, tas (rows 1-4) and annual minimum tas (row
5), for each of 5 climate zones (columns), for CESM2. Colour indicates climate scenario (SSP126, green; SSP245, orange;
SSP585, grey) with different line style for each ensemble member. No smoothing of time-series is performed.
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Figure SM6: Time-series plots of annual maximum sfcWind, sfcWindmax, tas (rows 1-4) and annual minimum tas

(row 5), for each of 5 climate zones (columns), for EC-Earth3. Colour indicates climate scenario (SSP126, green;
SSP245, orange; SSP585, grey) with different line style for each ensemble member. No smoothing of time-series is
performed.
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Figure SM7: Time-series plots of annual maximum rsds, sfcWind, sfcWindmax, tas (rows 1-4) and annual mini-
mum tas (row 5), for each of 5 climate zones (columns), for MRI-ESM2-0. Colour indicates climate scenario (SSP126,
green; SSP245, orange; SSP585, grey) with different line style for each ensemble member. No smoothing of time-series
is performed. Note suspect values for sfcWindmax in the Temperate North.
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Figure SM8: Time-series plots of annual maximum rsds, sfcWind, tas (rows 1-4) and annual minimum tas (row
5), for each of 5 climate zones (columns), for NorESM2-0-LL. Colour indicates climate scenario (SSP126, green; SSP245,
orange; SSP585, grey) with different line style for each ensemble member. No smoothing of time-series is performed.
Note suspect low value of tas minimum in the Antarctic under scenario SSP245.
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Figure SM9: Time-series plots of annual maximum rsds, sfcWind, sfcWindmax, tas (rows 1-4) and annual mini-
mum tas (row 5), for each of 5 climate zones (columns), for UKESM1-0-LL. Colour indicates climate scenario (SSP126,
green; SSP245, orange; SSP585, grey) with different line style for each ensemble member. No smoothing of time-series
is performed.
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SM2.2 Means

Figure SM10: Time-series plots of annual mean rsds, sfcWind, sfcWindmax, tas (rows), for each of 5 climate zones
(columns), for ACCESS-CM2. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with
different line style for each ensemble member. No smoothing of time-series is performed. Note unusually low value for
tas minimum in the Antarctic.

Figure SM11: Time-series plots of annual mean tas (rows), for each of 5 climate zones (columns), for CAMS-CSM1-0.
Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with different line style for each
ensemble member. No smoothing of time-series is performed. Note unusually low value for tas minimum in the
Antarctic.
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Figure SM12: Time-series plots of annual mean rsds, sfcWind, tas (rows), for each of 5 climate zones (columns),
for CESM2. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with different line style
for each ensemble member. No smoothing of time-series is performed. Note unusually low value for tas minimum in
the Antarctic.
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Figure SM13: Time-series plots of annual mean sfcWind, sfcWindmax, tas (rows), for each of 5 climate zones
(columns), for EC-Earth3. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with
different line style for each ensemble member. No smoothing of time-series is performed. Note unusually low value for
tas minimum in the Antarctic.
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Figure SM14: Time-series plots of annual mean rsds, sfcWind, sfcWindmax, tas (rows), for each of 5 climate zones
(columns), for MRI-ESM2-0. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with
different line style for each ensemble member. No smoothing of time-series is performed. Note unusually low value for
tas minimum in the Antarctic.

14



Figure SM15: Time-series plots of annual mean rsds, sfcWind, tas (rows), for each of 5 climate zones (columns),
for NorESM2-0-LL. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with different line
style for each ensemble member. No smoothing of time-series is performed. Note unusually low value for tas minimum
in the Antarctic.
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Figure SM16: Time-series plots of annual mean rsds, sfcWind, sfcWindmax, tas (rows), for each of 5 climate zones
(columns), for UKESM1-0-LL. Colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey) with
different line style for each ensemble member. No smoothing of time-series is performed. Note unusually low value for
tas minimum in the Antarctic.
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SM3 Slopes of linear regression lines through annualised data

SM3.1 Minima

Figure SM17: Estimated slopes of linear regression lines fitted directly to the annual mimumum data for tas per given
climate zone, GCM, climate scenario and ensemble member. Columns indicate climate zone. Discs indicate slopes for
ensemble members, and disc colour indicates climate scenario (SSP126, green; SSP245, orange; SSP585, grey).

SM3.2 Means

Figure SM18: Slopes of linear regression lines fitted directly to the annual mean data for each climate variable, given
climate zone, GCM, climate scenario and ensemble member. Rows indicate different climate variables. Columns
indicate climate zone. Discs indicate slopes for ensemble members, and disc colour indicates climate scenario (SSP126,
green; SSP245, orange; SSP585, grey).
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SM4 Examples of time-series for annual maxima from the North At-
lantic and Celtic Sea region

Figure SM19: Time-series of annual maximum data for the centre location of the North Atlantic neighbourhood, for
the four climate variables from each of the seven GCMs. For each combination of GCM and climate variable, panels
give time series for multiple climate ensemble runs (distinguished by line style) under the three climate scenarios
(SSP126, green; SSP245, orange; SSP585, grey). Note that the data presented are not smoothed.
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Figure SM20: Time-series of annual maximum data for the centre location of the Celtic Sea neighbourhood, for the
four climate variables from each of the seven GCMs. For each combination of GCM and climate variable, panels give
time series for multiple climate ensemble runs (distinguished by line style) under the three climate scenarios (SSP126,
green; SSP245, orange; SSP585, grey). Note that the data presented are not smoothed.

19



SM5 Diagnostic plots for GEVR model fitting to global annual data,
and NHGR modelling fitting to global means, for UKESM1-0-LL

(a) Estimated posterior cumulative distribution functions for GEVR model parameters
and 100-year return values (Q2025, Q2125, for years 2025 and 2125), for global annual
maxima from the specified GCM and climate variable. Colours indicate climate scenario
(SSP126, green; SSP245, orange; SSP585, grey). Dashed line styles indicate inferences for
different ensemble members; a solid line corresponds to the ensemble mean cumulative
distribution function. Model parameters are the GEV location µ0, scale σ0 and shape ξ0

in 2015, and the changes µ1, σ1 and ξ1 in those parameters over the period (2015,2100).
Return value for year t is denoted by Qt.

(b) Estimated posterior cumulative distribution functions for NHGR model parameters
and predicted values (M2025, M2125, for years 2025 and 2125), for the global annual
mean from the specified GCM and climate variable. Colours indicate climate scenario:
SSP126 (green), SSP245 (orange), SSP585 (grey). Dashed line styles indicate inferences
for different ensemble members; solid line corresponds to the ensemble mean. Model
parameters are the NHGR mean α0, scale β0 in 2015, and the changes α1, β1 in those
parameters over the period (2015,2100). Predicted value for year t is denoted by Mt.

Figure SM21: UKESM1-0-LL, rsds
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(a) Estimated posterior cumulative distribution functions for GEVR model parameters
and 100-year return values (Q2025, Q2125, for years 2025 and 2125), for global annual
maxima from the specified GCM and climate variable. Colours indicate climate scenario
(SSP126, green; SSP245, orange; SSP585, grey). Dashed line styles indicate inferences for
different ensemble members; a solid line corresponds to the ensemble mean cumulative
distribution function. Model parameters are the GEV location µ0, scale σ0 and shape ξ0

in 2015, and the changes µ1, σ1 and ξ1 in those parameters over the period (2015,2100).
Return value for year t is denoted by Qt.

(b) Estimated posterior cumulative distribution functions for NHGR model parameters
and predicted values (M2025, M2125, for years 2025 and 2125), for the global annual
mean from the specified GCM and climate variable. Colours indicate climate scenario:
SSP126 (green), SSP245 (orange), SSP585 (grey). Dashed line styles indicate inferences
for different ensemble members; solid line corresponds to the ensemble mean. Model
parameters are the NHGR mean α0, scale β0 in 2015, and the changes α1, β1 in those
parameters over the period (2015,2100). Predicted value for year t is denoted by Mt.

Figure SM22: UKESM1-0-LL, sfcWind
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(a) Estimated posterior cumulative distribution functions for GEVR model parameters
and 100-year return values (Q2025, Q2125, for years 2025 and 2125), for global annual
maxima from the specified GCM and climate variable. Colours indicate climate scenario
(SSP126, green; SSP245, orange; SSP585, grey). Dashed line styles indicate inferences for
different ensemble members; a solid line corresponds to the ensemble mean cumulative
distribution function. Model parameters are the GEV location µ0, scale σ0 and shape ξ0

in 2015, and the changes µ1, σ1 and ξ1 in those parameters over the period (2015,2100).
Return value for year t is denoted by Qt.

(b) Estimated posterior cumulative distribution functions for NHGR model parameters
and predicted values (M2025, M2125, for years 2025 and 2125), for the global annual
mean from the specified GCM and climate variable. Colours indicate climate scenario:
SSP126 (green), SSP245 (orange), SSP585 (grey). Dashed line styles indicate inferences
for different ensemble members; solid line corresponds to the ensemble mean. Model
parameters are the NHGR mean α0, scale β0 in 2015, and the changes α1, β1 in those
parameters over the period (2015,2100). Predicted value for year t is denoted by Mt.

Figure SM23: UKESM1-0-LL, sfcWindmax
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(a) Estimated posterior cumulative distribution functions for GEVR model parameters
and 100-year return values (Q2025, Q2125, for years 2025 and 2125), for global annual
maxima from the specified GCM and climate variable. Colours indicate climate scenario
(SSP126, green; SSP245, orange; SSP585, grey). Dashed line styles indicate inferences for
different ensemble members; a solid line corresponds to the ensemble mean cumulative
distribution function. Model parameters are the GEV location µ0, scale σ0 and shape ξ0

in 2015, and the changes µ1, σ1 and ξ1 in those parameters over the period (2015,2100).
Return value for year t is denoted by Qt.

(b) Estimated posterior cumulative distribution functions for NHGR model parameters
and predicted values (M2025, M2125, for years 2025 and 2125), for the global annual
mean from the specified GCM and climate variable. Colours indicate climate scenario:
SSP126 (green), SSP245 (orange), SSP585 (grey). Dashed line styles indicate inferences
for different ensemble members; solid line corresponds to the ensemble mean. Model
parameters are the NHGR mean α0, scale β0 in 2015, and the changes α1, β1 in those
parameters over the period (2015,2100). Predicted value for year t is denoted by Mt.

Figure SM24: UKESM1-0-LL, tas
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Estimated posterior cumulative distribution functions for GEVR model parameters and
100-year return values (Q2025, Q2125, for years 2025 and 2125), for global annual minima
from the tas from UKESM1-0-LL. Colours indicate climate scenario (SSP126, green; SSP245,
orange; SSP585, grey). Dashed line styles indicate inferences for different ensemble mem-
bers; a solid line corresponds to the ensemble mean cumulative distribution function.
Note that extreme value analysis is performed on negated annual minimum tas. Model
parameters are the GEV location µ0, scale σ0 and shape ξ0 in 2015, and the changes µ1,
σ1 and ξ1 in those parameters over the period (2015,2100). 100-year return values for
annual minimum tas in year t is denoted by Qt. Results indicate that extremely low
temperatures become less frequent in future with increasing climate forcing.

Figure SM25: tas for UKESM1-0-LL
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SM6 Supporting information for synoptic modelling of ∆Q and ∆M

SM6.1 Box-whisker plots for ∆Q per climate ensemble for global climate zones

Figure SM26: Box-whisker plots for the posterior distribution of the change ∆Q in 100-year return value Qt of spatial
annual maximum over the next 100-years per climate ensemble, for rsds. Rows represent climate scenarios (SSP126,
SSP245, SSP585), and columns spatial domain (Antarctic, Temperate South, Tropical, Temperate North and Arctic).
Each panel gives box-whiskers per climate ensemble grouped by GCM (ACCESS-CM2, CESM2, EC-Earth3, MRI-ESM2-0,
NorESM2-0-LL and UKESM1-0-LL). The first two characters of the GCM name are used for concise labelling. For each
box-whisker, the box represents the central (25%, 75%) interval for the posterior distribution, and the whisker the
central (2.5%, 97.5%) interval. The posterior median is shown as a thin horizontal line (of the same width as the box),
and the posterior mean as a thicker horizontal line. Vertical extents of panels have been restricted so that all central
(25%, 75%) intervals is clear.
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Figure SM27: Box-whisker plots for the posterior distribution of the change ∆Q in 100-year return value Qt of spatial
annual maximum over the next 100-years per climate ensemble, for sfcWind. For details, see Figure SM26.

Figure SM28: Box-whisker plots for the posterior distribution of the change ∆Q in 100-year return value Qt of spatial
annual maximum over the next 100-years per climate ensemble, for sfcWindmax. For details, see Figure SM26.
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Figure SM29: Box-whisker plots for the posterior distribution of the change ∆Q in 100-year return value Qt of spatial
annual maximum over the next 100-years per climate ensemble, for tas. For details, see Figure SM26.
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SM6.2 Summary tables for the change ∆Q in the annual minimum

Variable Zone
E(∆Q) P(∆Q > 0)

126 245 585 126 245 585

tas

[K]

GL -0.61 2.2 5.84 0.56 0.74 0.87

AN -0.28 2.25 5.88 0.58 0.74 0.87

TS 1.65 5.24 9.18 0.67 0.85 0.89

TR 1.33 2.44 8.86 0.66 0.74 0.93

TN 2.94 7.02 17.42 0.74 0.87 0.98

AR 1.64 3.16 11.38 0.65 0.75 0.92

Table SM1: Estimated expected change E(∆Q) and probability of increase P(∆Q > 0) of the 100-year return values over
the period (2025,2125) for annual tas minima over 6 climate zones (GL: global; AN: Antarctic; TS: Temperate South;
TR: Tropical; TN: Temperate North; AR: Arctic). Columns under “E(∆Q)” show expected changes per scenario, in
the units of the variable; thus we estimate an increase of 7.02K in the 100-year minimum tas in the Temperate North
under scenario SSP585 over the next 100 years. Columns under “P(∆Q > 0)” show corresponding probabilities of
increasing return value. Estimates are calculated assuming equal weighting for each climate model. See notes about
suspect values for sfcWindmax under model MRI-ESM2-0, and suspect run r1i1p1f1 for annual minimum tas for
NorESM2-0-LL under scenario SSP245, discussed in Section 2.1 of the main text.

Variable Zone
SSP effect Model standard deviations R2

ι+ γ1 γ2 − γ1 γ3 − γ1 τR τFE τϵ τδ τζ R2
FE R2

ME

tas

[K]

GL -0.69 3.0 6.45 6.51 5.95 5.49 0.32 2.26 0.16 0.29

AN -0.33 2.7 6.16 6.38 5.86 5.45 0.52 2.09 0.16 0.27

TS 0.97 3.65 7.53 7.77 7.13 6.32 2.26 2.43 0.16 0.34

TR 1.48 0.85 7.51 6.61 5.72 5.04 1.03 2.47 0.25 0.42

TN 1.85 3.93 14.49 9.38 7.11 6.16 3.53 2.34 0.43 0.57

AR 1.67 1.46 9.74 9.97 9.0 8.46 0.0 3.02 0.18 0.28

Table SM2: Summary of linear mixed effects modelling for the change ∆Q in the 100-year return value of annual
minima for tas over 6 climate zones (GL: global; AN: Antarctic; TS: Temperate South; TR: Tropical; TN: Temperate
North; AR: Arctic). Columns under “SSP effect” show intercept ι and fixed effect parameter estimates γj for the
change in 100-year return value of the given variable over the period (2025,2125) under scenario j, in the units of the
variable. Columns under “Model standard deviations” provide estimates of the various standard deviations of model
fitting. τR: the (full unconditional) standard deviation of the response R; τFE: the model error standard deviation
after fitting only the fixed effects (FE, of climate scenario); τϵ: the model error standard deviation after fitting the
full mixed effects model. τδ: standard deviation of climate model random effect; τζ : standard deviation due to nested
random effect of climate ensemble within climate model. R2 statistics are also provided, from fitting only the fixed
effects (FE), and from fitting the full mixed effects (ME) model. Further, since sample size for model fitting is huge,
estimates of uncertainties and “significance” are of little practical value, and are omitted. See notes about suspect
values for sfcWindmax under model MRI-ESM2-0, and suspect run r1i1p1f1 for annual minimum tas for NorESM2-0-LL
under scenario SSP245, discussed in Section 2.1 of the main text.
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SM6.3 Summary tables for the change ∆M in the annual mean

Variable Zone
E(∆M ) P(∆M > 0)

126 245 585 126 245 585

rsds

[Wm−2]

GL 3.5 2.1 -1.19 0.95 0.83 0.53

AN -1.91 -3.56 -8.56 0.08 0.03 0.0

TS 0.21 -0.5 -1.71 0.57 0.4 0.41

TR 2.39 2.08 0.82 0.96 0.8 0.62

TN 4.3 3.34 2.53 1.0 0.91 0.65

AR -0.66 -5.08 -14.12 0.35 0.09 0.0

sfcWind

[ms−1]

GL 0.04 0.05 0.04 0.7 0.71 0.68

AN -0.01 0.02 0.06 0.48 0.55 0.68

TS -0.02 -0.0 -0.01 0.39 0.48 0.47

TR -0.01 -0.02 -0.04 0.45 0.38 0.3

TN -0.06 -0.11 -0.22 0.19 0.05 0.0

AR 0.2 0.31 0.51 0.82 0.9 0.94

sfcWindmax

[ms−1]

GL 0.07 0.05 0.0 0.77 0.69 0.6

AN -0.01 0.01 0.14 0.46 0.53 0.84

TS -0.06 -0.04 -0.1 0.27 0.32 0.16

TR -0.02 -0.04 -0.06 0.36 0.26 0.28

TN -0.13 -0.23 -0.41 0.05 0.01 0.0

AR 0.38 0.49 0.74 0.93 0.95 0.96

tas

[K]

GL 1.76 3.97 7.99 0.9 1.0 1.0

AN 1.16 2.52 6.06 0.91 0.99 1.0

TS 0.77 1.6 3.77 0.99 1.0 1.0

TR 0.83 1.91 4.48 0.97 1.0 1.0

TN 1.02 2.63 6.08 0.85 1.0 1.0

AR 3.45 6.51 13.06 0.93 1.0 1.0

Table SM3: Estimated expected change E(∆M ) and probability of increase P(∆M > 0) of the annual mean over the
period (2025,2125), for four climate variables over 6 climate zones (GL: global; AN: Antarctic; TS: Temperate South;
TR: Tropical; TN: Temperate North; AR: Arctic). Columns under “E(∆M )” show expected changes per scenario,
in the units of the variable. Columns under “P(∆M > 0)” show corresponding probabilities of increasing change.
Estimates are calculated assuming equal weighting for each climate model. Note that the first (year 2015) observation
for rsds in all CESM2 runs is spurious and has been omitted. Multiple values for sfcWindmax from MRI-ESM2-0 are
also suspect (with some values > 100 ms−1); for this reason MRI-ESM2-0 output is ignored for variable sfcWindmax.
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Variable Zone
SSP effect Model standard deviations R2

ι+ γ1 γ2 − γ1 γ3 − γ1 τR τFE τϵ τδ τζ R2
FE R2

ME

rsds

[Wm−2]

GL 3.05 -1.32 -4.69 3.49 2.89 1.5 2.76 0.32 0.31 0.82

AN -1.42 -2.2 -6.65 3.3 1.83 1.33 1.09 1.03 0.69 0.84

TS -0.03 -0.6 -1.76 1.99 1.84 1.24 1.28 0.65 0.15 0.61

TR 1.71 0.25 -1.45 2.47 2.38 1.47 2.05 0.62 0.07 0.65

TN 3.79 -0.48 -1.57 2.76 2.67 1.52 2.24 0.41 0.06 0.7

AR -0.38 -4.51 -13.49 6.7 3.94 2.42 3.14 0.81 0.65 0.87

sfcWind

[ms−1]

GL 0.02 0.01 -0.0 0.1 0.1 0.08 0.06 0.01 0.0 0.34

AN -0.01 0.02 0.07 0.12 0.12 0.11 0.03 0.03 0.05 0.14

TS -0.02 0.02 0.02 0.09 0.09 0.09 0.02 0.01 0.01 0.08

TR -0.01 -0.01 -0.04 0.07 0.07 0.06 0.03 0.01 0.04 0.18

TN -0.06 -0.05 -0.17 0.11 0.08 0.04 0.06 0.02 0.42 0.82

AR 0.15 0.12 0.32 0.29 0.26 0.19 0.16 0.05 0.2 0.58

sfcWindmax

[ms−1]

GL 0.06 -0.02 -0.07 0.13 0.13 0.1 0.1 0.01 0.05 0.43

AN -0.01 0.02 0.15 0.15 0.13 0.13 0.0 0.02 0.2 0.22

TS -0.06 0.02 -0.04 0.1 0.1 0.09 0.0 0.02 0.05 0.1

TR -0.03 -0.02 -0.04 0.08 0.08 0.07 0.04 0.01 0.05 0.26

TN -0.11 -0.1 -0.27 0.15 0.09 0.06 0.07 0.03 0.59 0.84

AR 0.32 0.11 0.37 0.33 0.29 0.23 0.19 0.04 0.21 0.52

tas

[K]

GL 1.21 2.27 6.23 3.17 1.87 0.86 1.57 0.35 0.65 0.93

AN 0.75 1.64 4.93 2.33 1.16 0.84 0.89 0.49 0.75 0.87

TS 0.51 1.01 3.02 1.36 0.57 0.32 0.52 0.3 0.83 0.94

TR 0.58 1.29 3.69 1.66 0.73 0.43 0.61 0.23 0.81 0.93

TN 0.67 1.87 5.16 2.42 1.27 0.58 1.03 0.3 0.72 0.94

AR 2.33 3.64 9.81 5.16 3.37 1.56 2.92 0.7 0.57 0.91

Table SM4: Summary of linear mixed effects modelling for change ∆M in the annual mean of four climate variables over
6 climate zones (GL: global; AN: Antarctic; TS: Temperate South; TR: Tropical; TN: Temperate North; AR: Arctic).
Columns under “SSP effect” show fixed effect parameter estimates γj for the change in 100-year return value of the
given variable over the period (2025,2125) under scenario j, in the units of the variable; thus we estimate a reduction in
3.6ms−1 in the return value for sfcWind under scenario SSP585. Columns under “Model standard deviations” provide
estimates of the various standard deviations of model fitting. τR: the (full unconditional) standard deviation of the
response R; τFE: the model error standard deviation after fitting only the fixed effects (FE, of climate scenario); τϵ:
the model error standard deviation after fitting the full mixed effects model. τδ: standard deviation of climate model
random effect; τζ : standard deviation due to nested random effect of climate ensemble within climate model. R2

statistics are also provided, from fitting only the fixed effects (FE), and from fitting the full mixed effects (ME) model.
Note that the first (year 2015) observation for rsds in all CESM2 runs is spurious and has been omitted. Multiple values
for sfcWindmax from MRI-ESM2-0 are also suspect (with some values > 100 ms−1); for this reason MRI-ESM2-0 output
is ignored for variable sfcWindmax. Further, since sample size for model fitting is huge, estimates of uncertainties and
“significance” are of little practical value, and are omitted.
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