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SUMMARY

The effect of decaying catalyst efficacy in a commercial-scale, semi-continuous petrochemical process was
investigated. The objective was to gain a better understanding of process behaviour and its effect on production
rate. The process includes a three-stage reaction performed in fixed bed reactors. Each of the three reaction stages
consists of a number of catalyst beds that are changed periodically to regenerate the catalyst. Product separation
and reactant recycling are then performed in a series of distillation columns. In the absence of specific
measurements of the catalyst properties, process operational data are used to assess catalyst decay. A number of
statistical techniques were used to model production rate as a function of process operation, including
information on short- and long-term catalyst decay. It was found that ridge regression, partial least squares and
stepwise selection multiple linear regression yielded similar predictive models. No additional benefit was found
from the application of non-linear partial least squares or Curds and Whey. Finally, through time series profiles of
total daily production volume, corresponding to individual in-service cycles of the different reaction stages,
short-term catalyst degradation was assessed. It was shown that by successively modelling the process as a
sequence of batches corresponding to cycles of each reaction stage, considerable economic benefit could be
realized by reducing the maximum cycle length in the third reaction stage. Copyright  2001 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Process analysis, monitoring and control rely on the availability of appropriate mathematical models
to represent the system of interest. A common but sometimes very demanding approach is to develop
a first-principles or mechanistic model of the process based upon knowledge of the chemical and
physical phenomena underlying the process operation. Empirical data-based modelling is a widely
used alternative to mechanistic modelling, since it requires less specific knowledge of the process
being studied than that needed to develop a first-principles model. Empirical modelling techniques
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require data (measurements) collected on those variables believed to be representative of process
behaviour and of the quality or properties of the product or system output. Statistical regression
techniques are now routinely used in the process industries for building empirical models.

In practice, a model is an approximate representation of a real world system, and model building is
a balance between model simplicity, model accuracy and computational time. Numerous regression
techniques are available that differ in terms of complexity and speed of computation. These include
linear regression, linear regression through data transformations, non-linear regression, non-
parametric regression analysis and neural networks. Each has its own advantages and disadvantages.
As a result, practitioners are required to select the most appropriate tool according to the modelling
objective and the required simplicity and accuracy of the application.

The aim of the paper is to demonstrate that through the structured application of chemometric
modelling tools to a complex industrial process, process features of significant manufacturing
importance can be identified from non-standard data. Data from a major petrochemical process for the
production of higher alkenes (olefins) form the basis of the study. More specifically, the effects of
catalyst decay in the three-stage reaction section are investigated. The three-stage reaction comprises
a number of fixed bed reactors. Frequent catalyst replenishment by regeneration or replacement is
required. However, through the interchanging of so-called ‘spent’ beds with essentially identical but
replenished beds, production is maintained. The process can therefore be viewed as being of a semi-
continuous form. Following the reaction section, products are separated from reactants (which are
recycled) and extracted in a series of distillation columns.

Within a single cycle of bed operation, catalyst efficacy decays over time. However, the decay
profile cannot be quantified easily owing to multiple competing sources of process variation. In the
absence of data to characterize catalyst status directly as a function of time, statistical methods are
used to identify the relationship between catalyst status and process performance. Catalyst in the first
and third reaction stages is regenerated, whilst the catalyst in second-stage beds is replaced. Since
regeneration is never 100% effective, a long-term efficacy decay effect is present. Isolation of this
trend is difficult owing to confounding with other sources of variation, most notably time. A simple
averaging technique, based on the analysis of time series profiles of multiple cycles, is used to
quantify short-term (within-cycle) catalyst effect and demonstrate that the performance of the
process, in economic terms, can be improved by reducing the operational cycle lengths in one of the
three reaction stages.

A number of statistical tools were applied to develop predictive models of production flow as a
function of process operation and short- and long-term catalyst decay. Multiple linear regression
(MLR) has been extensively used in the development of predictive empirical models. However, when
dealing with highly correlated multivariate problems, the traditional approach of MLR can lead to
singular solutions or very imprecise parameter estimation [1]. These issues can be overcome by
applying alternative regression methodologies such as the regularization techniques of ridge
regression [2] and partial least squares (PLS) [3]. Ridge regression overcomes the ill-conditioning
problem, whilst PLS not only addresses the collinearity problem but also reduces the dimensionality
of the problem and can provide a filtering tool for measurement noise.

Although the overall objective of the study was not to carry out an extensive comparison of
different methods, the above approaches were compared with Curds and Whey [4] and the non-linear
technique of non-linear partial least squares to assess the applicability of the different tools when
applied to industrial data. Curds and Whey is a method for predicting several response variables from
the same set of explanatory variables. The advantage of this approach is that it takes account of the
correlations between the response variables to improve prediction accuracy. In practice, when dealing
with real and complex chemical and physical systems, linear techniques cannot reliably be used to
model the underlying structure, as it may exhibit significant non-linear characteristics. Of particular
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interest in this paper is to model the non-linearities inherent within the data using non-linear PLS. A
number of algorithms have been proposed to integrate non-linear features within the linear PLS
framework to produce a non-linear PLS algorithm that retains the statistical properties of the linear
methodology [5–9]. Wold et al. [5] proposed a polynomial (quadratic) PLS algorithm that retains the
framework of linear PLS but modifies the relationship between the predictor and the response latent
variables to be non-linear. More recently a novel error-based PLS approach has been developed by
Baffi et al. [6], and this algorithm has been used here.

2. THE PROCESS

The process (Figure 1) consists of two sections, reaction and distillation. The reaction section
comprises a series of three catalytic reaction stages, A, B and C, which are operated in predetermined
combinations of the fixed bed reactors. The second stage, the distillation section, consists of a
network of seven distillation columns in which separation of reaction products occurs. A number of
recycle flows return approximately 80% of the total mass from the distillation section back to the
reactors. Bleed streams remove unwanted side-products and contaminants. Feed enters the reaction
section at approximately 15 t h�1. The distillation section separates products, bleeds (both of which
exit the process) and unprocessed reactants (which are recycled) at approximately 10, 2 and 130 t h�1

respectively.
The process converts unsaturated hydrocarbons in the form of primary alkenes of short or long

carbon chain length to higher (secondary, tertiary, etc.) alkenes of intermediate chain length which
are of higher economic value. Reaction stage A is responsible for purification of the reaction mixture.
In stage B, specific isomerization reactions take place to create secondary, tertiary and higher alkenes
from the primary alkene feed. In stage C, exchange reactions of the form X = Y � Z = W →
X = Z � Y = W take place. Here standard chemical notation is adopted, with ‘=’ referring to a

Figure 1. Schematic diagram of the process.
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double bond and W, X, Y and Z representing hydrocarbon chains. In stage C the short-chain alkenes
(X = Y) react with long-chain alkenes (Z = W), creating the desired products of intermediate chain
length.

In the reaction section a total of eight reactor beds are operational at any one time. Catalyst efficacy
in each bed decays over a period of days or weeks within each reactor, necessitating frequent bed
regeneration or catalyst replacement, depending on the type of reactor. To maintain production, spent
beds are exchanged for duplicate beds with regenerated catalyst for the A and C beds or new catalyst
for the B beds. A bed is typically on-line for a cycle of between 1 and 3 weeks. In stage A, two beds
are used on-line in series, whilst the catalyst in the third bed is regenerated. The reaction mixture
enters the first bed (1 in Figure 1), moves onto the second bed (2 in Figure 1) and then exits to reaction
stage B. The catalyst in the first bed is older than that in the second bed. When the catalyst in the first
bed is considered to be spent, a cyclic rotation of the three beds is performed. The first bed is
regenerated, the second bed becomes the first bed and the off-line regenerated bed becomes the
second bed, thereby regulating overall catalyst efficacy in reaction stage A and maintaining
production. In stage B a similar operating procedure is used, except that three beds are used on-line in
series at any one time. Concurrently, fresh (new) catalyst is supplied to a fourth, off-line, bed. The
beds in stage C are operated in parallel, usually with three beds on-line whilst a fourth is being
regenerated.

Figure 2 illustrates the likely behaviour of catalyst efficacy over time for reaction stages A and C.
Within a cycle, catalyst activity decays over a number of days until a decision is made to exchange a
spent bed with a regenerated duplicate, thereby initiating a new cycle. Since regeneration is never
totally complete, catalyst performance at the start of each cycle also decays slowly with time. For
reaction stage B, fresh catalyst is used to replenish spent beds, hence no long-term trend is anticipated
in this particular unit operation. Since fresh catalyst is expensive, there is strong economic incentive
to run each B bed cycle for as long as possible before replacing catalyst. In contrast, catalyst
regeneration (in stages A and C) is relatively inexpensive. Depending on the effect of catalyst decay
on process throughput, economic consideration might support the lengthening of cycles for stages A
and C.

Figure 2. Catalyst efficacy for reactor stages A and C.
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Total production volume is determined by the efficacy of catalyst in each of the three reaction
sections. As catalyst performance decays, product flows reduce and average retention time in the
process increases. To compensate for this effect, the separating ability of the distillation columns can
be improved by increasing their duties (energy consumption). The duties on columns 1, 2 and 5 in
particular are varied by engineers on a routine basis. The operation of the remaining columns is not
varied significantly. Consequently, overall feed flow rates through the plant, which are limited by the
capacity of the reaction section, are also reduced.

3. THE DATA

The processing operation to be analysed is extremely complex and the data collected are non-
homogeneous and therefore present a major challenge to chemometric techniques. Daily average

Table I. Descriptions of the process variables used: F (flow), T (temperature), D (duty), P (pressure) and time
variables present

Number Variable description

1 F: Light feed Process
2 F: Medium feed Process
3 F: Heavy feed Process
4 F: Major recycle Process
5 F: Recycle C1–4 to C Process
6 F: Heavy bleed Process
7 F: Light bleed Process
8 F: Feed from ABC to distillation section Process
9 F: Feed from tank to distillation section Process

10 R: Recycle from C3 to C Process
11 F: Recycle from C4 to C Process
12 F: Recycle from C6 to C4 Process
13 F: C11= & C12=product Product
14 F: C13= & C14=product Product
15 T: Feed temperature to reactors Process
16 T: A bed temperature position 1 Process
17 T: A bed temperature position 2 Process
18 T: B bed temperature position 1 Process
19 T: B bed temperature position 2 Process
20 T: B bed temperature position 3 Process
21 T: Drop pre first B bed Process
22 T: Vessel between B and C Process
23 T: Feed to distillation section Process
24 T: Top of C1 Process
25 T: Bottom of C1 Process
26 D: Reboiler duty of C1 Process
27 T: Top vapour temperature of C2 Process
28 T: Cooling water C2 � C3 Process
29 P: Top of C5 Process
30 F: Reflux at top of C5 Process
31 T: Bottom of C5 Process
32 D: Reboiler duty C5 Process
33 Time: Days C bed configuration live Process
34 Time: Days B bed configuration live Process
35 Long-term catalyst decay Process
36 F: Total product flow (equal to the sum of variables 13 and 14) Product

STATISTICAL ANALYSIS OF CATALYST DEGRADATION 669

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 665–683

 1099128x, 2001, 8, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.666 by <
Shibboleth>

-m
em

ber@
bath.ac.uk, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



operating data over a period of 6 years (April 1991–February 1997) were considered. The data set
consisted of 2156 observations on 33 process variables characterizing feed, bleed, recycle and
product streams as well as many other intermediate flow rates, reactor bed temperatures, pressures
and distillation column conditions, and three product quality variables relating to product flow.
Although no direct measurements on catalyst properties were available, three surrogate variables
were defined. Variables 33 (days C bed configuration live) and 34 (days B bed configuration live)
relate to short-term catalyst decay, whilst variable 35 acts as a surrogate for long-term decay. The
complete set of variables is listed in Table I and shown on the process diagram (Figure 1). Following
consultation with the process engineers, samples corresponding to periods of process shutdown and
non-typical operation were removed from the data set, resulting in a revised data set comprising 1764
samples. These formed the basis of the subsequent exploratory analysis.

4. EXPLORATORY ANALYSIS

The first stage in the analysis was to pre-process the data. This included the identification,
interrogation and handling of missing data and spurious data points, and the elimination of noise from

Figure 3(a). Filtered data: total feed, (b) recycle to feed, (c) total bleed, (d) total product.

670 E. KASKAVELIS ET AL.

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 665–683

 1099128x, 2001, 8, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.666 by <
Shibboleth>

-m
em

ber@
bath.ac.uk, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



process variables with a low signal-to-noise ratio. With respect to missing observations, one of three
approaches can be adopted, sample or variable elimination, data imputation, or the use of algorithms
that allow model building in the presence of missing values [10]. The former approach of elimination
was selected. However, care needs to be taken in the elimination of measurements from data. If time
delays are present in the process owing to recycles, residence times, etc., the data need to be time
aligned to ensure that relationships between variables are not masked by the time shift effect. This
was not an issue here, since the data were presented in terms of daily averages, and time delays were
known to be of the order of hours and not days. Thus the issue of time alignment did not need to be
addressed. However, variables with in excess of 30% of the original observations missing were
removed from the analysis. This resulted in the removal of heavy bleed (variable 6) from the
modelling data set, giving a reduced data set comprising 1540 complete observations on 32
explanatory (process) variables and three product quality variables.

Spurious points were not identified in the data owing to the presence of a data reconciliation
algorithm within the distributed control system (DCS). The variables total feed (the sum of variables
1–3), total bleed (the sum of variables 6 and 7), total recycle (variable 4) and total product flow
(variable 36) had low signal-to-noise ratios, thus it was decided to apply a moving average filter. The
filtered profiles are given in Figures 3(a)–3(d). The size of the window (� 3 months) was selected to
ensure that the key features of process behaviour were not lost owing to over-smoothing and that
major trends were not significantly masked by process noise. From the figures it is clear that process
operation in years 1–3 differs from that in years 4–6. In years 1–3 a number of significant process and
operational changes were made at various times. For years 4–6, however, following a major shutdown
(SD in Figures 3(a)–3(d)), process operation is more consistent; total feed (Figure 3(a)) and total
product (Figure 3(d)) decrease smoothly until an approximately constant value of the mean is
reached, whilst total bleed is approximately constant (Figure 3(c)).

Figure 4. Score plot of principal components 1 and 2 (�, years 1–3; �, years 4–6).
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The final stage before applying principal component analysis (PCA) and the modelling tools
described in Section 5 was to standardize the data to zero mean and unit variance. PCA [11] was
applied to the process data as defined in Table I. The first two principal components explained 33% of
the variance of the sample correlation matrix. Interrogating the loading plot for principal component 1
(not shown), there was a clear indication that the temperature variables in stages B and C of the
reaction section have the largest absolute contribution, whilst the variables dominating principal
component 2 were the flows in the distillation section. From the score plot of principal components 1
and 2, Figure 4, the difference between years 1–3 (�) and years 4–6 (�) was confirmed. Based on
this information, it was decided to only use the data for years 4–6 for the modelling work reported in
Section 5, since from an operational perspective this is believed to correspond to a period of
consistent operation. In contrast, data for the whole of the 6 year period were used for the estimation
of the within-cycle production decay profiles discussed in Section 6. This is again justifiable from a
process engineering perspective, since the short-term, within-cycle, trend is expected to be present for
all operating conditions.

Finally, the existence of linear relationships between the process and quality variables was
identified from the Spearman rank correlation matrix. From this analysis a number of high
correlations (in excess of 0⋅7) were identified. These included the operating temperatures in the A and
B beds (variables 17–20), the recycles from columns C3 and C4 and the individual product flows from
C7 (variables 11–14) with the operating parameters for column C1 (variables 24–26), C bed cycle
time (variable 33), long-term catalyst decay (variable 35) and total production (variable 36). These
are important observations for the modelling work described in the next section.

5. MODELLING OF THE RATE OF PRODUCTION

In deciding on the modelling approaches to explore, a number of issues were considered.

� The process data are highly correlated (Section 4). Thus modelling techniques which handle
multicollinearity (i.e. non-orthogonality of predictors), such as partial least squares or ridge
regression, should be considered.

� The relationship between product flow and process operation may be non-linear. Thus a non-
linear methodology should be investigated.

� Engineers on the plant would ideally like a simple model to implement within their process
manufacturing software. Parsimony suggests that the simplest model consistent with the data
should be identified. Multiple linear regression (established via a stepwise search procedure) is
attractive for this purpose.

� The product flow can be partitioned into two streams with correlated flow rates. There is
therefore the potential to model the individual product streams (although this is not a primary
objective). The technique of Curds and Whey [4], which is specifically designed for this
situation, was therefore considered.

For these reasons, the modelling techniques of partial least squares (linear and non-linear), ridge
regression and stepwise multiple linear regression were considered. These methodologies were
supplemented by Curds and Whey, an approach specifically developed for multiple responses.

Cross-validation [12] was used throughout the study to estimate the predictive performance of the
methods requiring tuning (namely ridge regression, partial least squares and Curds and Whey). A
common cross-validation strategy was adopted for all analyses. The data were partitioned into 30
groups of size 18. Each cross-validation group represents a contiguous interval in time of 18 days
duration. This is an important consideration in modelling multivariate, autocorrelated time series. In
particular, selecting cross-validation groups at random (with respect to the time order of the data)
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produces over-optimistic estimates of future predictive performance. Since cross-validation is used to
tune the models, the corresponding estimates for predictive performance will themselves be biased. A
two-deep cross-validation strategy [13] would be necessary to provide unbiased estimates in these
situations. Predictive performance is reported in terms of cross-validated mean square error (cvMSE).
Since the response is standardized, this is related to the cross-validated coefficient of determination
(cvR2) by cvMSE � cvR2 = 1.

5.1. Ridge regression and partial least squares

Ridge regression is a well-established technique for multivariate modelling introduced by Hoerl and
Kennard [2]. By adding a constant (the ‘shrinkage’ or ‘ridge’ parameter) to the diagonal of the sample
covariance matrix in multiple regression, stable but biased regression results. In ridge regression,
cross-validation was used to estimate the shrinkage parameter. In this application a search was carried
out over a pre-specified grid [13]. A plot of cross-validated mean square error against ridge parameter
is shown in Figure 5(a). The value of ridge parameter that gives the best predictive performance is 30

Figure 5(a). Variation in mean square error with shrinkage parameter for ridge regression. (b). Variation in mean
square error with latent variables for partial least squares. (c). Parameter vectors for ridge regression (RR) and

partial least squares (PLS). (d). Quantile–quantile plot for ridge regression.
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(corresponding to approximately the trace of the sample covariance matrix), giving a cross-validated
mean square error of approximately 0⋅31 (corresponding to a cross-validated R2 of 0⋅69).

Partial least squares is a well-reported technique for linear modelling in the presence of
multicollinearity [3]. In partial least squares, cross-validation is used to select the optimal number of
latent variables to retain. A plot of cross-validated mean square error is given in Figure 5(b). The
figure shows that four factors correspond to a cvMSE of 0⋅32. These factors explain a total of
approximately 43% of the total variance of the explanatory data and 75% of the response variance.
For this application it can be seen that the predictive performance of partial least squares is almost
identical to that of ridge regression. Moreover, the regression parameters estimated by partial least
squares and ridge regression are very similar, as illustrated in Figure 5(c). The explanatory variables
having the greatest individual contributions to the regression vector are the medium feed rate (2), the
light bleed (7) and the two recycles (5 and 11), the bottom temperature for column 1 (25), the duty of
distillation column 5 (32) as well as the long-term catalyst decay (35). Although the effect of
intercorrelation of explanatory variables needs to be borne in mind, the key variables identified can be
related to process knowledge, and thus it was concluded that the model was physically realizable. A
quantile–quantile (QQ) plot of the sorted residuals for ridge regression against expected normal order
statistics is given in Figure 5(d), indicating that the assumption of normality is satisfied. A similar plot
was obtained for PLS (not shown).

5.2. Stepwise multiple linear regression and response surface fitting

A stepwise linear search procedure was used to identify multiple linear models using the S-PLUS
software [14]. A number of competing models of varying complexity were identified with multiple R2

of approximately 0⋅7. Many of these models included those variables found to be influential in the
ridge and partial least squares models. The final set comprised variables 2, 5, 7, 11, 25, 32, 33 and 35.
The only additional variable identified compared to ridge regression and PLS was variable 33 (days C
bed configuration live) which relates to short-term decay. Using this subset of variables, a full
response surface model was fitted (including pairwise interactions and quadratic terms). Results
indicated that the interactions of variable 25 (bottom temperature for column 1) with variables 2 (feed
rate), 5 (recycle) and 7 (light bleed flow) might be worth adding to the original linear model.
However, the improvement in the predictive ability of the model was minimal compared to the added
complexity of the model which would make it less acceptable for the engineers to utilize and
understand. Thus these interactions were not included in the final model. Parameter estimates for the
nine-term multiple linear regression model are given in Table II. Comparing these values with the
parameter estimates for ridge regression and PLS, there is a strong similarity between the two sets.
Thus it appears that ridge regression, PLS and MLR provide comparable models, as previously
discussed by Frank and Friedman [15].

5.3. Non-linear partial least squares

Wold et al., [5] proposed a non-linear PLS algorithm which retained the framework of linear PLS but
used second-order polynomial (quadratic) regression (QPLS) to fit the functional relation between
each pair of latent variables. In their paper the authors identified the main drawbacks of merging non-
linear regression techniques within the framework of the linear PLS algorithm. They proposed a
solution and went on to show how their approach to updating the input weights is suitable for any
continuous and differentiable functional relationship between the input and the output scores. Based
on this work, Baffi et al. [6] proposed an error-based updating procedure which resulted in a new
quadratic PLS algorithm. This was shown to provide improved modelling capabilities over the
algorithm of Wold et al. [5]. The approach of Baffi et al. [6] was adopted in this work. Using the
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cross-validation strategy described, it was found that only one non-linear partial least squares
component should be retained, explaining approximately 16% of the explanatory variance and about
80% of the response variance. The corresponding cross-validated mean square error of 0⋅32 suggests
that no additional benefit was realized through the use of non-linear PLS. Including additional non-
linear latent variables resulted in an increase in the cvMSE with only a minor increase in the
percentage variability explained (Figure 6). For example, for two latent variables the x-variability
explained was 18%, whilst for the quality variables 83% of the total variability was explained. It was
thus concluded that there was no real improvement in the predictive ability of the model by
incorporating non-linear terms into the analysis.

Table II. Parameter estimates for the stepwise selection multiple linear regression model

Variable Parameter estimate Standard error t statistic

2 0⋅1730 0⋅0252 6⋅8687
5 0⋅1602 0⋅0352 4⋅5453
7 �0⋅1834 0⋅0253 �7⋅2472

11 0⋅2149 0⋅0510 4⋅2102
25 0⋅1548 0⋅0532 2⋅9116
32 0⋅3217 0⋅0507 6⋅3450
33 �0⋅1238 0⋅0243 �5⋅0956
35 �0⋅1017 0⋅0415 �2⋅4510

Figure 6. Variation in mean square error with non-linear partial least squares factors.
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5.4. Curds and Whey

Curds and Whey [4] is a method for the biased prediction of a multivariate response, designed to take
specific advantage of the correlation between response variables. The method can be viewed as a form
of canonical correlation analysis applied to the individual ridge predictands (with a common ridge
parameter) to improve the overall predictive performance. Again it was assessed using cross-
validation. Generalized cross-validation can be used to estimate the shrinkage parameter in the
canonical analysis part, thus there is only a need for cross-validation to select the common ridge
parameter.

The method was applied to the two product streams C11=/C12= and C13=/C14= (variables 13 and
14 respectively) of which the total product flow is composed. The sample intercorrelation of these
variables was 0⋅26. Previous analysis of the individual product streams using partial least squares and
ridge regression had suggested that the C11=/C12= stream was more amenable to modelling. This
was confirmed by the Curds and Whey analysis, which yielded good predictive performance for

Figure 7(a). Time series plots of product flow for individual cycles in reaction stage C. (b). Time series profiles of
product flow for C cycle. (c). Averaged time series profiles with confidence intervals for C cycle. (d). Histogram

of cycle lengths.
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C11=/C12= (cvMSEs of approximately 0⋅3) but much poorer performance for C13=/C14= (cvMSEs
of approximately 0⋅7). The Curds and Whey predictors were observed to be very similar to those
based on the individual responses. It was therefore concluded that in this case Curds and Whey
analysis does not offer any additional benefit with respect to modelling the total product flow.

6. ESTIMATION OF WITHIN-CYCLE PRODUCTION DECAY AND OPTIMIZATION OF
CYCLE LENGTH

The effect of within-cycle catalyst degradation on process performance was estimated by assuming
the process to be a contiguous sequence of batch runs where a batch corresponded to a cycle of
operation in any of the reaction stages A, B or C. By averaging over all cycles for a given reaction
stage, an estimate of the expected decay of product flow within a given cycle is obtained. It was
assumed that averaging reduced the effect of other sources of variability in relative terms, and thus the
decay profile could be attributed to short-term catalyst degradation. From a process engineering
perspective this assumption was valid.

The analysis is first outlined before describing the procedure in more detail. Figure 7(a) shows
typical time series plots of product flow for four individual cycles in reaction stage C. The individual
cycles can be isolated from the process operational information relating to bed switching times. Thus
profiles of product flow as a function of time since the start of the present C cycle can be identified
(Figure 7(b)). The next step was to average these profiles at each time point and calculate the point
wise 95% confidence band for the mean trajectory (Figure 7(c)).

As mentioned previously, product flow decreases with increasing catalyst age; thus, if only one of
the A, B or C beds were switched, production profiles as seen in Figure 2 would be realized. However,
some of the profiles in Figure 7(b) (e.g. for C) contradict this trend (i.e. appear to increase over time).
This is because switches in other beds (A and B) are occurring during the C cycles, thus causing
product flow to increase. Averaging over the cycles is therefore analogous to estimating the main
effects in a linear model.

The mean profile for the C cycles, Figure 7(c), indicates that production rate drops from
approximately 11⋅2 to approximately 9⋅7t hr�1 over the first 10 days of the cycle, corresponding to a
daily reduction of some 0⋅15t hr�1day�1. It is interesting to compare these rates with those found from
the modelling in Section 5. The parameter estimate for variable 33 (days C bed configuration live)
from Figure 5(c) is �0⋅10 with respect to the standardized variables. Correcting for the standard
deviation of total production (�5⋅2) and C cycle day (�3⋅4), the daily reduction from the model is
also approximately �0⋅15 (= �0⋅1 � 5⋅2/3⋅4). Thus, based on the parameter estimate for variable 33
(days C bed configuration live) from the linear model in Table II, a slight decay is indicated,
confirming what is seen in Figure 7(c).

Since cycle lengths are not constant, as seen in Figure 7(d), the confidence band for the mean
profile increases with increasing cycle time, i.e. there are fewer longer cycle lengths. Furthermore,
since daily average data are being considered, there is some ambiguity concerning the first day of a
cycle. The convention adopted is that the first day of a cycle is defined as that day when the new or
regenerated catalyst was first used. However, in practice the first full day of that cycle is actually the
following day (day 2 in Figure 7(c) for this example). This explains the odd profile for relative days 1
and 2 in the figure.

Mathematically, let {p(i)}, i = 1, …, n, be the time series of daily average product flow, where n is
the total number of available days, i.e. 1764 samples. Let �TC

i �� i � 1� � � � �N C, be a vector denoting
the first day of each cycle, shown by the vertical lines in Figure 7(a), and let NC be the number of
cycles within time period n in reaction stage C (i.e. the length of the vector). Cycle profiles
�xC

ij�� i � 1� � � � �N C� j � 1� � � � � LC
i , shown overlaid in Figure 7(b), are constructed according to the
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relationship

�xC
ij� � p	TC

i � 1 � j
� j � 1� 2� � � � � LC
i � i � 1� 2� � � � �N C 	1


where LC
i is the length of cycle i, given by TC

i�1 � TC
i ; that is, the difference between the first day of

the next cycle and the first day of its previous one. Since this difference is variable, the cycle profiles
can be thought of as being batch processes of unequal length. The mean cycle profile Figure 7(c) with
respect to the reaction cycles of stage C is therefore �xC

�j�� j � 1� 2� � � � � LC.
It is clear from Figure 7(b) that there is considerable variability between individual cycle profiles.

Notably, since cycle lengths for reaction stages A, B and C vary considerably (with cycle lengths of
5–30 days for A and 4–18 days for B), the relative times of A and B cycle switches, with respect to C
cycle switches, also change. This is an additional complication in the data analysis, since bed switches
that occur close in time (i.e. on the same day) might have a greater impact on the overall process
performance than switches that occur further apart in time. Furthermore, since catalyst degradation
effects are anticipated by the process chemists, various operational steps are taken, particularly in the
distillation section, to maintain production levels.

Similar analyses were performed for reaction sections A and B. The results are illustrated in
Figures 8(a) and 8(b) respectively. The effect of short-term catalyst degradation is clear for stage B,
where product flow can be seen to decrease on average by approximately 0⋅7 t h�1 over a cycle.
However, for stage A, catalyst degradation effects are not apparent. Discussions with process
chemists confirmed that the effects of catalyst degradation are known from experience to be more
pronounced in reaction section C than in sections B and A. The results of the data interrogation agreed
with their process understanding.

Figures 7(c) and 8(b) suggest that reducing cycle times for reaction stages B and C would result in
increased total product throughput. However, to operate with shorter cycles, more frequent catalyst
regenerations (bed C) or fresh catalyst supplies (bed B) would be required, thereby increasing
operational costs. The viability of reducing cycle lengths must therefore be assessed in terms of the
competing economic factors. In reality, one bed regeneration for reaction stage C is relatively
inexpensive, being of the order of £5000, implying that reducing C cycle lengths is worthy of
consideration. In contrast, the fresh catalyst used for reaction stage B is expensive. A bed switch in

Figure 8(a). Averaged time series profiles with confidence intervals for A cycle. 8(b). Averaged time series
profiles with confidence intervals for B cycle.
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this reaction stage costs around £60000. Indeed, in this case there is an argument to lengthen the B
cycles, at the expense of production, to reduce overall operating costs.

Estimating the average (or total) annual added value of running at a fixed cycle length involves
further manipulation of the cycle profiles (similar to those in Figure 7(b) for reaction stage C). A
sequence �rC

ik�� k � 1� 2� � � � LC
i , termed the running average profile, is defined for the first k days of

any individual cycle profile i. This sequence is then calculated for each profile i as

rC
ik �

�k

j�1

xC
ij�k� i � 1� � � � �NC 	2


Figure 9(a) shows the running average profiles (RAPs) superimposed for reaction stage C. The mean
RAP �rC

�k�� k � 1� 2� � � � LC
i , can then be calculated in a similar manner to the mean cycle profile. This

is plotted in Figure 9(b) along with the pointwise 95% confidence band.

Figure 9(a). Running average profiles for reaction stage C. (b). Mean running average profiles for reaction stage
C. (c). Mean-adjusted running average profiles for reaction stage C. (d). Average mean-adjusted running average

profiles for reaction stage C.
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Since interest is in the decay profile rather than the actual starting value of the RAP, each RAP in
Figure 9(a) can be adjusted with respect to its mean value over the cycle. This can be achieved
without loss of pertinent information. Let �rC

i��� i � 1� 2� � � � � LC, be the mean of each individual cycle
i and let �r

C
���� i � 1� 2� � � � � LC� k � 1� 2� � � �N C, be the overall mean of the individual cycles. The

mean-adjusted RAPs are then calculated from

RaC
ik � �r

C
�� � 	rC

ik � rC
i�
�� i � 1� 2� � � � � LC� k � 1� 2� � � � �N C 	3


and are shown overlaid in Figure 9(c). The average mean-adjusted RAP �RaC
�k�� k � 1� 2� � � � �NC, in

Figure 9(d) exhibits similar trends to the mean RAP �rC
�k� in Figure 9(b), but the confidence band is

narrower.
Using the mean-adjusted RAP, the annual added value of running at a specified maximum cycle

length can be calculated. Symbolically, if �LC
i �� i � 1� 2� � � � �N C, are the true cycle lengths, then the

Figure 10(a). Plot of added value from increased production. (b). Annual cost of operating with a fixed cycle
length distribution. (c). Plot of net benefit. (d). Absolute ratio of net benefit to added value.
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added value of running with modified cycles of lengths �LC�
i �� i � 1� 2� � � � �N C, can be calculated for

any particular choice of maximum cycle length LC
MAX:

LC�
i � �LC

i if LC
i � LC

MAX
LC

MAX if LC
i � LC

MAX

�
for i � 1� 2� � � � �NC 	4


The curve in Figure 10(a) is an estimate of the added value that would have been achieved had the
length of all C cycles larger than a specific cycle length LC

MAX over the 6 year period been reduced to
the specific maximum cycle length. In addition, from the distribution of cycle length, Figure 7(d), the
annual cost of operating with a fixed cycle length distribution can be estimated and is shown in Figure
10(b).

The procedure is illustrated through a simple numerical example. Assume that a desired maximum
cycle length of 12 days has been selected, i.e. LC

MAX � 12, and of the total number of cycles, four had
lengths in excess of LC

MAX, say 15 days. If all the cycles were of length LC
MAX, these four cycles would

have resulted in one additional cycle of 12 days, since (15 � 12) � 4 = 12. In this case the added value
from increased production would be the product of the value of the mean RAP for day 12 and the
market value of the product. The new 12 day cycle would therefore incur an additional cost of one
regeneration. Therefore in this particular example the added value from the increased number of
cycles would be equal to the cost of one bed regeneration.

The net benefit shown in Figure 10(c) is calculated by summing the values in Figures 10(a) and
10(b) for the respective cycle lengths. The absolute ratio of the net benefit to the added value of
increased bed regenerations is the net benefit-to-cost ratio. This is shown in Figure 10(d). The results
given in Figures 10(a)–10(d) indicate that operating with a maximum C cycle length of between 9 and
11 days would bring a net annual benefit in the region of £ 250000, taking account of total
regeneration costs of around £ 60000. Adoption of this new bed regeneration strategy is therefore
economically viable depending on the commercial environment.

A similar cost–benefit analysis applied to the reaction stage is complicated by the fact that interest
is in the lengthening, not shortening, of the cycles. Owing to the sparsity of long B cycles available in
the data set, it was necessary to either extrapolate or omit a considerable number of bed cycle profiles
of relatively short lengths. A number of approaches have been proposed in the literature [16] to
achieve this. Results using different types of extrapolation/omission indicate that the current average
cycle lengths of 10–12 days are close to optimal.

7. CONCLUSIONS

A range of statistical methods have been used to analyse data from a complex, full-scale
petrochemical process, with the objective of optimizing operational cycle lengths in the three major
reaction stages. From the initial exploratory analysis, information concerning the operation of the
plant was clearly seen. Based on this, a variety of statistical techniques were used to model production
rate as a function of process operation, including short- and long-term catalyst decay for the time
period following a plant shutdown. Table III summarizes the results from the modelling section. It
was found that ridge regression, partial least squares and stepwise selection multiple linear regression,
assessed using cross-validation, yielded similar predictive models. It was concluded that production
rate decays by approximately 0⋅15 t h�1 day�1 in the third reaction stage and by approximately 0⋅7 t
h�1 day�1 in the second reaction stage. No additional benefit was found from the application of non-
linear partial least squares or Curds and Whey.

More extensive comparative studies [15] have shown that there are generally minor differences
among the predictive performances of tools where there are more observations than samples, i.e.
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np, as in this problem. In practice, different methods are favoured by practitioners in different
fields, e.g. chemometricians have a preference for projection methods such as PLS, whilst statisticians
favour more classical regression methods such as MLR and ridge regression. This study has shown
that provided the methods are applied and validated appropriately, there are no marked differences
between the different approaches.

By treating the times between successive changes of the catalyst in the reactor beds as batches of
unequal length, the understanding and isolation of the effects of catalyst decay were enhanced. Once
again using the total throughput as the most appropriate engineering variable to describe variable
decay, a good estimate of catalyst decay through time was achieved by averaging the total product
cycle profiles. The results obtained complimented those derived from the modelling work and were
also in good agreement with the understanding of the process personnel. Based on this work,
competing economic factors associated with the level of total product and the number of
regenerations required to operate at a specific bed cycle, an estimate of the optimum cycle length from
an economic perspective was defined. Reduction of cycle lengths in the third reaction stage to
approximately 10 days was shown to have substantial economic value.

The paper has comprehensively demonstrated that the application of multivariate data
methodologies can lead to enhanced process understanding in complex, real world cases such as
the one considered, as well as indicating significant potential economic benefits. It is hoped that in this
way the wider use of chemometric techniques will be adopted by the process engineering community
working closely with their colleagues skilled in chemometrics and statistics.
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Table III. Summary of predictive abilities of different modelling techniques

Method MSEa Comments

Stepwise multiple linear regression 0⋅33
Ridge regression 0⋅31 Cross-validation was used both to select the

shrinkage parameter and estimate the MSE
Linear partial least squares 0⋅32 Cross-validation was used both to select the

number of factors to retain and estimate the MSE
Non-linear partial least squares 0⋅35 Cross-validation was used both to select the

number of factors to retain and estimate the MSE
Curds and Whey 0⋅32 Generalized cross-validation was used for

shrinkage estimation in canonical analysis, and
cross-validation was used both to select the
common ridge parameter and estimate the MSE

a MSE is the mean square error for modelling the standardized response C11=/C12=.
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APPENDIX:

NOMENCLATURE

LMAX
C maximum C bed cycle length

Li
C length of ith C bed cycle

n total number of days
NC number of C bed cycles
pi value of variable for day i
rik

C running average value of ith C bed cycle for k relative days
tk relative days for cycle beds (k = A, B, C reactors)
ri⋅

C mean of ith running average profile for C beds
r⋅k

C mean running average profile for k relative days for C beds
r= C

⋅⋅ overall mean of running average values
Raik

C ‘mean-adjusted’ running average profile for C cycles
Ra⋅k

C mean of ‘mean-adjusted’ running average profiles for C cycles
tA,B,C relative days for A, B and C cycles
t day number for long-term catalyst effect
Ti

C start day of ith cycle for C beds
xij

C jth relative day of ith cycle
x⋅j

C mean value for jth relative day of C bed cycles

REFERENCES

1. Draper NR, Smith H. Applied Regression Analysis. Wiley: New York, 1998.
2. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics

1970; 42: 80–86.
3. Geladi P, Kowalski BR. Partial least squares regression: a tutorial. Anal. Chim. Acta 1986; 185: 1–17.
4. Breiman L, Friedman JH. Predicting multivariate responses in multiple linear regression (with discussion). J.

R. Statist. Soc. B. 1997; 59: 3–54.
5. Wold S, Kettaneh-Wold N, Skagerberg B. Non-linear PLS modelling. Chemometrics Intele. Lab. Syst. 1989;

7: 53–65.
6. Baffi G, Martin EB, Morris AJ. Non-linear projection to latent structures revisited (the quadratic PLS

algorithm). Comput. Chem. Engng 1999; 23: 395–411.
7. Malthouse EC, Tamhane AC, Mah RSH. Non-linear partial least squares. Comput. Chem. Engng 1997; 21:

875–890.
8. Qin SJ, McAvoy TJ. Non-linear PLS modelling using neural networks. Comput. Chem. Engng 1992; 16:

379–391.
9. Wilson DJH, Irwin GW, Lightbody G. Non-linear PLS modelling using radial basis functions. Proc. Am.

Control Conf., Albuquerque, NM, 1997.
10. Nelson PRC, Taylor PA, MacGregor JF. Missing data methods in PCA and PLS: score calculations with

incomplete observations. Chemometrics Intell. Lab. Syst. 1996; 35: 45–65.
11. Jackson JE. A User’s Guide to Principal Components. Wiley: New York, 1991.
12. Stone M. Cross-validatory choice and assessment of statistical predictions. J. R. Statist. Soc. B 1974; 36:

111–147.
13. Jonathan P, McCarthy WV, Krzanowski WJ. On the use of cross-validation to assess performance in

multivariate prediction. Statist. Comput. 2000; 10: 209–229.
14. S-PLUS software. Available: http://www.mathsoft.com/splus.
15. Frank IE, Friedman JH. A statistical view of some chemometrics regression tools. Technometrics 1993; 35:

109–148.
16. Rothwell SG, Martin EB, Morris AJ. Comparison of methods for dealing with uneven length batches with

application to MPLS prediction of batch bioprocess quality. Proc. IFAC DYCOPS-5, 1998; 66–71.

STATISTICAL ANALYSIS OF CATALYST DEGRADATION 683

Copyright  2001 John Wiley & Sons, Ltd. J. Chemometrics 2001; 15: 665–683

 1099128x, 2001, 8, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.666 by <
Shibboleth>

-m
em

ber@
bath.ac.uk, W

iley O
nline L

ibrary on [19/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




