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Environmental risk

Modelling ocean storm environment

◦ Multiple coupled physical processes

◦ Rare, extreme events
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Environmental risk

Modelling structural risk

◦ Ocean environment is harsh

◦ Marine structures at risk of failure

◦ Reliability standards must be met
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Environmental risk

Optimal design of marine structure

Set-up
◦ Storm storm peak events Xsp dependent on covariates Θsp

◦ An evolving within-storm environment {(Xs , Θs)}s∈ST for storm of length T
◦ Structural “loading” Y
◦ Everything subject to sources of uncertainty Z
◦ Z, Θsp, Xsp, {(Xs , Θs)}s∈ST and Y are multidimensional random variables

Unconditional distribution of loading for a random storm

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ
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Environmental risk

Optimal design of marine structure

Typical

◦ Distribution of annual maximum loading (for univariate load here)

FA(y) =
∫

m
[FY(y)]m fC(m)dm

◦ Annual rate of occurrence fC of storms

◦ Return value for return period P years given by F−1
A (1 − 1/P)

More generally

◦ Expected annual utility for year with M random storms

E(UA|R) =
∫

m

∫
y1

...
∫

ym

UA(y1 , ..., ym|R) fY1 ,...,Ym ,M(y1 , ..., ym , m)dy1 ...dym dm

◦ System annual utility UA(Y1 , ..., Ym|R) given system “strength” characteristics R
◦ fY1 ,...,Ym ,M is the joint density of multivariate loading from M random storms

◦ Solve for R to achieve required expected annual utility
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Historical approach: return values and associated values

Historical approach
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Historical approach: return values and associated values

Historical approach

Will discuss:
◦ Estimation for return values from small samples

◦ This is still a major issue today (e.g. LOADS)

Generic historical issues:

◦ Weaker justification (?) for choice of distributional forms for extremes

◦ Neglect of covariate effects in extremes (direction, season, “climate change”)

◦ Neglect of spatial and temporal dependence in extremes

◦ Neglect of joint behaviour of extremes across multiple metocean variables
(“associated values”)

◦ Neglect of uncertainty (“no UQ”)

◦ Dearth of data, data quality (measured, hindcast, ...) for extremes not clear

◦ Disconnect with risk (no direct connection with structural failure; “return values”,
“design contours”)

◦ Missing interface between metocean specialists, structural engineers and
“statistical modellers”

◦ “No full empirical model”
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Historical approach: return values and associated values Return values

What is a return value?

◦ xP = F−1
A (1 − 1

P ) for annual maximum event A

◦ FAP (xP) =
(

1 − 1
P

)P
≈ exp(−1) for P-year maximum event AP

◦ FA or FAP estimated with uncertainty from a sample of data

◦ xP can be estimated easily in the absence of uncertainty
◦ In the presence of uncertainty Z, we can “integrate it out” using either

◦ F̃Y(y) =
∫
ζ FY|Z(x|ζ) fZ(ζ) dζ , a predictive distribution from uncertain FY|Z

◦ E[g(Z)] =
∫
ζ g(ζ) fZ(ζ) dζ , a predictive mean from uncertain g(Z)

◦ Choices made lead to different estimates of return values and related quantities

◦ Bias effects can be proven theoretically (and demonstrated numerically)

◦ Effects are most dramatic for small sample sizes
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Historical approach: return values and associated values Return values

Fractional bias of return value estimators

Fractional bias of return value estimates from different estimators using maximum likelihood, as a function of sample size and true GP shape ξ .
LHS top to bottom: q3, q2, q5, q1, q4.

◦ Knock-on effects for associated values of the form EZ(Y |X = q, Z)
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Historical approach: return values and associated values Return value references and implications

Return value references and implications

References

◦ Return values: Serinaldi [2015], Jonathan et al. [2021]

◦ Associated values : Towe et al. [2023]

◦ Lots of other approaches for small samples (e.g empirical Bayes Zhang 2007,
Zhang and Stephens 2009, Zhang 2010)

Implications for today

◦ Current EV models tend to have high effective dimensionality

◦ Effective number of degrees of freedom from sample for model fitting can be
small ⇒ we have small effective sample size

◦ Momentum in metocean community (e.g. AWARE, LOADS JIPs) to use Bayesian
inference ... great in principle, but ...

◦ Characteristics of (posterior) predictive distributions highly dependent on prior
specification. Yet not clear how to advise “diverse user community” regarding
“rational prior specification”.
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Full probabilistic modelling

Full probabilistic modelling
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Full probabilistic modelling

Full probabilistic modelling

◦ Model components of “full empirical model”
◦ Storm peaks
◦ Within-storm evolution
◦ Fluid loading

◦ Marginal modelling

◦ Dependence modelling
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Full probabilistic modelling

The full “forward” model

Unconditional distribution of loading from a random storm

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Issues
◦ Temporal “inter-storm” effects (clustering, climate change)

“Random storm” model invalid; even conditional independence assumption invalid (?)
◦ Spatial dependence of extremes

Spatial risk: e.g. de-manning multiple structures

◦ Estimating each model component is challenging!
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Full probabilistic modelling

Full model for fluid loading

General approach
◦ Linear wave spectrum model

◦ e.g. JONSWAP
◦ Multivariate extreme value model for all spectral model parameters
◦ ⇒ Simulation of arbitrary sea state spectra

◦ Linear wave theory (potential theory)
◦ Linearised boundary conditions
◦ Linear surface elevation and kinematics
◦ ⇒ Simulation of linear time-series given linear spectrum

◦ Non-linear transformation (Swan 2020, Gibson 2020)
◦ Non-linear surface elevation
◦ “Stretched” kinematics
◦ ⇒ Simulation of non-linear time-series given linear spectrum

◦ Conditional simulation of Gaussian time-series (Taylor et al. 1997)
◦ Embed extreme excursions in surface elevation and associated kinematics
◦ ⇒ Efficient simulation of extreme time-series

◦ Estimate marginal distribution of structural response from random storm
◦ Efficient integration using importance sampling and conditional simulation
◦ Optimal design in environmental space (Gramstad et al. 2020, Speers et al. 2024)
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Marginal extremes

Marginal extremes
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Marginal extremes Non-stationarity

Model for size of occurrence

◦ Sample of storm peaks X over threshold ψθ ∈ R, with 1-D covariate θ ∈ Dθ
◦ Extreme value threshold ψθ assumed known

◦ X assumed to follow generalised Pareto distribution with shape ξθ , (modified)
scale νθ

fGP(x|ξθ ,νθ) =
1
σθ

(
1 +

ξθ
σθ

(x −ψθ)
)−1/ξθ−1

+
with νθ = σθ(1 +ξθ)

◦ Shape parameter ξθ ∈ R and scale parameter νθ > 0

◦ (Non-stationary Poisson model for rate of occurrence, with rate ρθ ≥ 0)

Jonathan Ocean extremes November 2024 16 / 47



Marginal extremes Covariate representations

Covariate representations in 1-D

◦ Index set Iθ = {θs}m
s=1 on periodic covariate domain Dθ

◦ Each observation belongs to exactly one θs

◦ On Iθ , assume
ηs =

n

∑
k=1

Bskβk , s = 1, 2, ..., m, or

η = Bβ

◦ η ∈ (ξ ,ν) (and similar for ρ)

◦ B = {Bsk}m;n
s=1;k=1 basis for Dθ

◦ β = {βk}n
k=1 basis coefficients

◦ Inference reduces to estimating nξ , nν , Bξ , Bν , βξ , βν (and roughnesses λξ , λν)

◦ P-splines, BARS and Voronoi are different forms of B

◦ Tensor products and slick GLAM algorithms for n-D covariate representations
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Marginal extremes Covariate representations

Posterior parameter estimates for ξ , ν and ρ for northern North Sea

◦ MCMC inference (Gibbs sampling, reversible jump, etc.)

◦ Note colour scheme

◦ Rate ρ and ν very
similar

◦ Voronoi gives almost
constant ξ

◦ Voronoi piecewise
constant

◦ Land shadow effects

◦ General agreement

◦ ... for other
parameters also

◦ Covariate effects are everywhere, margins and dependence ...
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Marginal extremes UQ

Practical implications of modelling choices
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Marginal extremes UQ

Practical implications of modelling choices

◦ How do “arbitrary choices” in the modelling procedure effect output?

◦ Case studies (like a southern North Sea location)

Effects of
◦ Generalised Pareto (GP) model parameterisation

◦ Orthogonal
◦ “Mean-max”

◦ Relative penality for GP shape and scale
◦ Relatively high
◦ Very high

◦ Cross-validation strategy
◦ 10-fold
◦ Repeated random 2-fold

◦ Choice of estimator for return value
◦ Mean quantile
◦ Quantile mean

Findings

◦ Material impact on estimates of return values
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Marginal extremes Issues and opportunities

Issues and opportunities

Issues
◦ EV threshold modelling and UQ
◦ Many tuning parameters which should be optimised, but rarely are, and UQ w.r.t.

these
◦ Model misspecification

◦ Measurement scale, sub-asymptotic models
◦ Missing covariates

◦ Prior specification (or equivalent frequentist choices)
◦ UQ generally

Opportunities
◦ Incorporate new data sources

◦ Satellite (e.g. scatterometry)
◦ GCM output (but CMIP6 inconsistency)
◦ Large simulations (over 103s of years; so just “interpolate”)

◦ Overly-complex models
◦ Standard Norge [2022] “immature methodologies”
◦ Diagnostics

◦ “Black box” AI/ML (e.g. KAUST, Saudi A.)
◦ “ExaGeoStat” (Genton)
◦ Sensible extremes (e.g. GP tail, “interpretable” plus “uninterpretable” covariate effects;

Hüser, Richards)
◦ Just “do the whole planet” and be done with it!
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Marginal extremes References

Marginal extremes references

◦ Theory : Embrechts et al. [2003], Beirlant et al. [2004]

◦ Method : Coles [2001], Dey and Yan [2016]

◦ Motivation : Davison and Smith [1990]

◦ Covariate effects : Wood [2003], Chavez-Demoulin and Davison [2005], Brezger
and Lang [2006], Youngman [2022]

◦ Metocean : Jonathan and Ewans [2013], Feld et al. [2019], Vanem et al. [2022]

◦ Metocean applications : Randell et al. [2016], Zanini et al. [2020]

◦ Machine learning: Abdulah et al. [2018], Richards and Huser [2024]

◦ Uncertainties: Tendijck et al [2024]
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Multivariate extremes

Multivariate extremes
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Multivariate extremes

Multivariate extremes

◦ Max-stability, AD and AI

◦ Conditional extremes basics

◦ Time-series conditional extremes

◦ Multivariate spatial conditional extremes

◦ SPAR

◦ covXtreme
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Multivariate extremes

Modelling margins and dependence

Context

FXsp|Θsp ,Z(x
sp|θsp,ζ) = C(FXsp

1 |Θsp ,Z(xsp
1 |θsp,ζ), ..., FXsp

p |Θsp ,Z(xsp
p |θsp,ζ)|θsp,ζ)

◦ We already have marginal models FXsp
j |Θsp (xsp

j |θsp, Z), j = 1, 2, ..., p

◦ Now we need a dependence model or copula C = C(u1 , u2 , ..., up|θsp,ζ)
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Multivariate extremes Basics

Which dependence function?
Max-stability == multivariate extreme value distribution, MEVD
◦ The copula is not unique
◦ Max-stability is one popular assumption, which itself involves a common but

often unrealistic assumption of component-wise maxima
◦ On uniform margins, extreme value copula: C(u) = Ck(u1/k)

◦ On Fréchet margins (G j(z) = exp
(
−z−1)), G(z) = exp (−V(z)), for exponent

measure V such that V(rz) = r−1V(z), homogeneity order -1
◦ Rich spatial extensions to max-stable processes, MSPs
◦ Multivariate generalised Pareto distribution, MGPD

AD and AI
◦ All MEVD distributions exhibit asymptotic dependence (AD)
◦ Many common distributions (e.g. the multivariate Gaussian) exhibit asymptotic

independence (AI)
◦ So extreme value copulas are not general enough to describe extremal dependence

in nature
◦ Other (e.g. inverted) copula forms do exhibit AI
◦ The conditional extremes model admits AD (on the boundary) and AI
◦ SPAR admits AD and AI
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Multivariate extremes Conditional extremes

Conditional extremes
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Multivariate extremes Conditional extremes

Conditional extremes ... moving beyond component-wise maxima

◦ Random variables X = (X1 , ..., X j , ..., Xp) and Y
◦ Each X and Y have standard Laplace margins ( f (x) = exp(−|x|)/2, x ∈ R)
◦ Seek a model for X|(Y = y) for y > u

◦ Assume we can find p-dimensional scaling a, b > 0 such that

P(Z ≤ z|Y = y) → G(z) as u → ∞
for Z =

X − a(y)
b(y)

◦ Non-degenerate G is unknown, and estimated empirically

◦ Typical scaling is a = αy and b = yβ,α ∈ [−1, 1]p, β ∈ (−∞, 1]p

◦ So simply fit regression model

X|(Y = y) = αy + yβZ, for y > u

◦ α = 1, β = 0 : perfect dependence and AD, andα ∈ (0, 1) : AI

◦ Heffernan and Tawn [2004] find choices forα and β for popular bivariate cases
◦ Bivariate Gaussian : α = ρ2, β = 1/2
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Multivariate extremes Extensions of conditional extremes

Developments of the conditional extremes model

Canonical extensions

◦ Basic: X|(Y = y), y > u
◦ Temporal: “heatwave model” X1 , X2 , ..., Xτ |(X0 = x0), x0 > u
◦ Spatial: “spatial conditional extremes” X1 , X2 , ..., Xs|(X0 = x0), x0 > u

Idea

X1 , X2 , ..., Xp|(Y = y) = αy + yβZ

◦ Impose appropriate structure on parametersα, β and distribution of Z
e.g. α evolves smoothly in space
e.g. Z follows a multivariate Gaussian or extension thereof with appropriate mean and
covariance forms

◦ Make a simplifying assumption
e.g. apply a low-order model repeatedly Xt+1 , Xt+2|(Xt = x) = [α1α2]x + x[β1β2 ][Z1Z2]

Further extensions

◦ Non-stationary and multivariate temporal and spatial models
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Multivariate extremes Temporal conditional extremes

Extremal vector auto-regression (EVAR) for within-storm evolution
On Laplace margins, with component-wise operations and Xt ∈ Rd:

Xt+k| (Xt , ..., Xt+k−1 , Xt,1 = y) =
k

∑
ℓ=1

AℓXt+k−ℓ + ybZ, y > u ≫ 0

Excursions of HS (top) and WS (middle) from EVAR(4) model (left; black), observed (middle; red) on original margins with storm peak HS ∈ [11.5, 12.5];
right-hand plots summarise the observed (red) and EVAR(4) (black) excursions, using median (solid), 10% and 90% quantiles (dashed). In the bottom panel,

we plot survival probabilities for observed (red) and EVAR(4) (black) excursions relative to the time of the excursion maximum.
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Multivariate extremes MSCE

Multivariate spatial conditional extremes (MSCE)
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Multivariate extremes MSCE

MSCE

Motivation

◦ How useful are satellite observations of ocean waves and winds?

◦ Could they become the primary data source for decisions soon?

◦ What are the spatial characteristics of extremes from satellite observations?

Overview

◦ A look at the data : satellite wind, hindcast wind, hindcast wave

◦ Brief overview of methodology

◦ Results for joint spatial structure of extreme scatterometer wind speed, hindcast
wind speed and hindcast significant wave height in the North Atlantic

◦ Implications for future practical applications
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Multivariate extremes MSCE

Methodology in a nut-shell

◦ Transform to standard margins using
independent non-stationary GP models

◦ Condition on large value x of first quantity X01 at one
location j = 0 (green square)

◦ Estimate “conditional spatial profiles” for m > 1
quantities {X jk}

p,m
j=1,k=1 at p > 0 other locations (green,

orange and blue circles)

X jk ∼ Lpl

x > u

X|{X01 = x} = αx + xβZ

Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ MCMC to estimateα, β, µ,σ , δ and ρ, κ, λ

◦ α, β, µ,σ , δ spatially smooth for each quantity

◦ DL = delta-Laplace = generalised Gaussian

◦ Residual correlation Σ for conditional Gaussian
field, powered-exponential decay with distance
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Multivariate extremes MSCE

Parameter estimates

Estimates forα, β, µ, σ and δ with distance, and residual process estimates ρ, κ and λ. Model fitted with τ = 0.75
StlWnd (green), HndWnd (orange), HndWav(blue)

Residual Gaussian field : ρ=scale (need to ×100km), κ=exponent (need to ×5), λ=cross-correlation
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Multivariate extremes References

Applied conditional extremes references

◦ Non-stationary : Jonathan et al. [2014]

◦ Time-series : Winter and Tawn [2016], Tendijck et al. [2019], Tendijck et al. [2024]

◦ Mixture model : Tendijck et al. [2023]

◦ Spatial : Shooter et al. [2021b], Shooter et al. [2021a], Shooter et al. [2022]

◦ Lots more
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Multivariate extremes SPAR

Semi-parametric angular-radial representations
(SPAR)
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Multivariate extremes SPAR

SPAR

Basics

◦ Radial R and angular Q components. Then joint density factorised as

fR,Q(r, q) = fQ(q) fR|Q(r|q)

◦ Assume GP conditional tail for R|(Q = q), with parameters varying smoothly
with angle q above some threshold ψ(q) with non-exceedance probability τ(q)

fR,Q(r, q) = fQ(q)× τ(q) fGP(r −ψ(q)|ξ(q),σ(q)), r > ψ(q)

with smoothly varying ψ(q), τ(q), ξ(q) and σ(q). Also assume angular density
fQ(q) varies smoothly with q

◦ SPAR representation shown to provide good approximations to a large set of
copula functions on standard margins

◦ Is transformation to standard margins necessary?

◦ Different possible angular-radial decompositions using “generalised co-ordinates”

◦ ⇒ multivariate extremes is just “non-stationary univariate” extremes!
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Multivariate extremes SPAR

SPAR fits to extreme value copulas

Density contours of various copulas on Laplace margins. All copulas have Pearson correlation coefficient 0.6. Student-t copula has two degrees of freedom.
Solid lines: true contours at logarithmic increments. Dashed lines: SPAR-estimated contours.

◦ SPAR admits asymptotic independence (e.g. upper tails of Frank and Gaussian)
and asymptotic dependence (e.g. upper tails of Gumbel and Student-t)

◦ SPAR handles all directions (not just “first quadrant”)

◦ Link to limit sets
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Multivariate extremes SPAR

Density contours from SPAR fits to data

Density contours from SPAR model for 6 samples.
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Pragmatic non-stationary multivariate extremes with UQ covXtreme

covXtreme
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Pragmatic non-stationary multivariate extremes with UQ covXtreme

Pragmatic non-stationary multivariate extremes with UQ

◦ Fit generalised Pareto marginal models for peaks over threshold data Ẋ and Ẏ
◦ Physics-based identification of peaks from time-series
◦ Multiple thresholds, simple piecewise constant model for covariates Θ
◦ Diagnostics: threshold stability

◦ Transform to standard Laplace scale X and Y
◦ Transform full sample

◦ Fit conditional extremes model X|(Y = y) for y > u
◦ Multiple thresholds, simple piecewise constant covariate model forα
◦ Diagnostics: threshold stability, residual structure

◦ Calculate probabilities of extreme sets
◦ MC simulation, importance sampling
◦ Estimate environmental contours

◦ Free covXtreme software for MATLAB does all of above
◦ UQ: incorporates epistemic uncertainty using bootstrapping cradle to grave
◦ Model averaging: incorporates multiple models for different threshold combinations
◦ Multidimensional X and covariates
◦ Cross-validation for optimal parameter roughness in marginal and dependence models
◦ Careful return value and associated value definitions
◦ https://lfenergy.org/projects/covXtreme/, Towe et al. [2024]
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Pragmatic non-stationary multivariate extremes with UQ References

Multivariate extremes references

◦ Theory : Beirlant et al. [2004]

◦ Copulas : Joe [2014]

◦ Method : Dey and Yan [2016]

◦ Key ideas in AI : Ledford and Tawn [1996], Ledford and Tawn [1997], Coles et al.
[1999], Heffernan and Tawn [2004]

◦ Modelling across dependence classes : Wadsworth et al. [2017], Huser and
Wadsworth [2022]

◦ “Geometric extremes”, limit sets and SPAR : Nolde and Wadsworth [2022],
Mackay and Jonathan [2023], Huser et al. [2024], Murphy-Barltrop et al. [2024],
Papastathopoulos et al. [2024], Simpson and Tawn [2024], Wadsworth and
Campbell [2024], Mackay et al. [2025]

◦ Metocean : Parametric conditional models (e.g. Haver 1987, Bitner-Gregersen and
Haver 1991), design contours (e.g. Huseby et al. 2013, Haselsteiner et al. 2021).

◦ covXtreme: Towe et al. [2024]
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Summary

Summary
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Summary

Summary

Why?

◦ Careful quantification of “rare-event” risk

◦ Characterise tails of (multivariate) distributions

◦ Limited observations

◦ Combine solid theory and pragmatic application, UQ

◦ Immediate real-world consequences

The next 10 years?

◦ Univariate : fuller covariate descriptions, exploit measurement scale /
sub-asymptotics, UQ, provide real-world decision-support

◦ Multivariate : theoretical development, computational tractability, expansion in
scope (time-series, spatial), serious real-world applications

◦ More demanding regulatory framework

Tusen takk! / Diolch yn fawr!
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Backup Return values under uncertainty

What is a return value?

◦ Random variable A represents the maximum value of some physical quantity X
per annum

◦ Forget about all complicating issues like serial dependence, covariates and other
sources of dependence and uncertainty

◦ The P-year return value xP of X is then defined by the equation

FA(xP) = Pr(A ≤ xP) = 1 − 1
P

◦ Or

xP = F−1
A (1 − 1

P
)

◦ Typically P ∈ [102 , 108] years
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Backup Return values under uncertainty

An alternative definition

◦ Random variable AP represents the P-year maximum value of X
◦ The P-year return value x′P of X can be found from FAP for large P, assuming

independent annual maxima since

FA(xP) = 1 − 1
P

⇒ FAP (xP) =

(
1 − 1

P

)P
≈ exp(−1)

◦ Use FAP (x′P) = exp(−1) to define an alternative return value x′P
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Backup Return values under uncertainty

Estimating a return value

◦ To estimate xP, we need knowledge of the distribution function FA of the annual
maximum

◦ We might estimate FA using extreme value analysis on a sample of independent
observations of A

◦ Typically more efficient to estimate the distribution FX|X>ψ of threshold
exceedances of X above some high threshold ψ using a sample of independent
observations of X, and use this in turn to estimate FA and xP

◦ How is this done?
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Backup Return values under uncertainty

Estimating a return value

◦ Asymptotic theory suggests for high threshold ψ ∈ (−∞, ∞) that

FX|X>ψ(x|ψ,σ ,ξ) = 1 −
(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+

for x > ψ, shape ξ ∈ (−∞, ∞) and scale σ ∈ (0, ∞)

◦ The full distribution of X is FX(x) = τ + (1 − τ)FX|X>ψ(x) where τ = Pr(X ≤ ψ)

◦ Thus

FA(x) = Pr(A ≤ x) =
∞
∑
k=0

fC(k)Fk
X(x)

where C is the number of occurrences of X per annum, with probability mass
function fC to be estimated (say with a Poisson model with parameter λ)

◦ So what’s the problem?
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Backup Return values under uncertainty

Parameter uncertainty

◦ xP can be estimated easily in the absence of uncertainty

◦ In reality, we estimate parameters λ, ψ, σ and ξ from a sample of data, and we
cannot know their values exactly

◦ How does this epistemic uncertainty affect return value estimates?

◦ A number of different plausible estimators for return values under uncertainty

◦ Different estimators perform differently (bias and variance)

◦ Which estimators are likely to perform reasonably in fairly general circumstances?

◦ Is it even sensible or desirable to estimate return values?
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Backup Return values under uncertainty

Incorporating uncertainty

◦ If a distribution FY|Z of random variable Y is known conditional on random
variables Z, and the joint density fZ of Z is also known, the unconditional
predictive distribution F̃Y can be evaluated using

F̃Y(y) =
∫
ζ

FY|Z(x|ζ) fZ(ζ) dζ

◦ Th expected value of deterministic function g of parameters Z given joint density
fZ is

E[g(Z)] =
∫
ζ

g(ζ) fZ(ζ) dζ

◦ ζ = (λ,ψ,σ ,ξ), Y = A (or Y = AP)
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Backup Return values under uncertainty

Different estimators of return value

◦ Uncertain estimates of GP model parameters from fit to sample represented by
random variables Z

◦ Estimate distribution FA|Z of annual maximum event using Z

◦ Estimate P-year return value by finding the 1 − 1/P quantile of FA|Z

◦ Various options available, including:

q1 = F−1
A|Z(1 − 1/P | EZ [Z]) = F−1

A|Z(1 − 1/P |
∫
ζ
ζ fZ(ζ)dζ)

q2 = EZ [F−1
A|Z(1 − 1/P | Z)] =

∫
ζ

F−1
A|Z(1 − 1/P | ζ) fZ(ζ)dζ

q3 = F̃−1
A (1 − 1/P) where F̃A(x) =

∫
ζ

FA|Z(x | ζ) fZ(ζ)dζ

q4 = F̃−1
AP

(exp(−1)) where F̃AP (x) = F̃P
A(x)

q5 = medZ [F−1
A|Z(1 − 1/P | Z)]

◦ For small samples, these have very different properties
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Backup Full probabilistic model

Storm peaks

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Storm peaks: modelling margins and dependence

fXsp|Θsp ,Z(x
sp|θsp,ζ) =

[
p

∏
j=1

fXsp
j |Θsp ,Z(xsp

j |θsp,ζ)

]
× c(FXsp

1 |Θsp ,Z(xsp
1 |θsp,ζ), ..., FXsp

p |Θsp ,Z(xsp
p |θsp,ζ)|θsp,ζ)

More to come in a minute!
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Backup Full probabilistic model

Within-storm evolution

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Models for within-storm evolution

◦ History matching: Feld et al. [2019], Hansen et al. [2020]

◦ Extreme value time-series model (an extension of conditional extremes): Tendijck
et al. [2019], Tendijck et al. [2024]
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Backup Full probabilistic model

Fluid loading

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Models for fluid loading

◦ Incorporate kinematics, estimate Morison loads (e.g. LOADS, AWARE JIPs): Swan
[2020], Gibson [2020]

◦ Interface environment and fluid loading software for full “forward model”

◦ Fundamentals paper: Speers et al. [2024]
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Backup Covariate effects

Motivating marginal extremes

Storm peaks: modelling margins and dependence

fXsp|Θsp ,Z(x
sp|θsp,ζ) =

[
p

∏
j=1

fXsp
j |Θsp ,Z(xsp

j |θsp,ζ)

]
× c(FXsp

1 |Θsp ,Z(xsp
1 |θsp,ζ), ..., FXsp

p |Θsp ,Z(xsp
p |θsp,ζ)|θsp,ζ)

Jonathan Ocean extremes November 2024 12 / 38



Backup Covariate effects

Generalised Pareto distribution

◦ Suppose we have an exceedance X of high threshold ψ ∈ R
◦ The Pickands-Balkema-De Haan theorem states

lim
ψ→∞P[X ≤ x|X > ψ] = lim

ψ→∞ FX(x)
1 − FX(ψ)

= GP(x|ξ ,σ ,ψ)

= 1 −
(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+
, σ > 0, ξ ∈ R

Theory Practicalities

◦ Derived from max-stability of FX

◦ Threshold-stability property

◦ “Poisson × GP = GEV”

◦ How to isolate independent threshold
exceedances from observed time-series?

◦ How to specify extreme threshold ψ?

◦ ξ , σ , ψ functions of covariates
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Backup Covariate effects

Motivation

◦ Environmental extremes vary smoothly with multidimensional covariates

◦ Generic modelling framework for different covariate representations

◦ Statistical and computational efficiency for n-D covariates

◦ Thorough Bayesian uncertainty quantification

Typical data for northern North Sea. Storm peak HS on direction, with τ = 0.8 extreme value threshold.
Rate and size of occurrence varies with direction.
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Backup Covariate effects

Basis representations ... BARS and others

Bayesian adaptive regression splines (BARS)

◦ n irregularly-spaced knots on Dθ
◦ B consists of n B-spline bases

◦ Order d
◦ Each using d + 1 consecutive knot

locations

◦ Local support

◦ Wrapped on Dθ
◦ Knot locations {rk}n

k=1 vary

◦ Number of basis functions n varies Periodic BARS knot birth and death

P-splines and Voronoi partition

◦ P-splines use fixed number of regularly-spaced knots

◦ Voronoi partition uses piecewise-constant representation, trivially extended to n-D
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Backup Covariate effects

Directional posterior predictive distribution of P = 1000-year
maximum

◦ Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles

◦ General agreement

◦ This is more-or-less what the engineer currently uses to design a “compliant”
structure
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Backup Covariate effects

Extension to 2D : directional-seasonal

◦ 2-D tensor product P-spline bases for same northern North Sea location

◦ Marginal posterior median estimates (plus posterior density for τ)
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Backup Practical implications of modelling choices

Case studies
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◦ Small samples
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Backup Practical implications of modelling choices

Case studies

◦ Large samples
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Backup Practical implications of modelling choices

Case studies

◦ Performance by case
Jonathan Ocean extremes November 2024 20 / 38



Backup Practical implications of modelling choices

Case studies
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◦ Aggregate performance
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Backup Temporal conditional extremes

Extremal vector auto-regression (EVAR) for within-storm evolution

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Models for within-storm evolution

◦ History matching: Feld et al. [2019], Hansen et al. [2020]

◦ Extreme value time-series model (an extension of conditional extremes): Tendijck
et al. [2019], Tendijck et al. [2024]
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Backup MSCE

JASON and METOP

[n2yo.com, accessed 06.09.21 at around 1100UK] [stltracker.github.io, accessed 27.08.2021 at around 1235UK]

◦ JASON and METOP similar polar orbits

◦ JASON all ascending, METOP all descending over North Atlantic

◦ Joint occurrence of JASON and METOP over North Atlantic rare
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Backup MSCE

Satellite observation

[Ribal and Young 2019]

Features

◦ Altimetry: HS and U10

◦ Scatterometry: best for U10 and direction

◦ > 30 years of observations

◦ Spatial coverage is by no means
complete: one observation daily if all
well

◦ Calibration necessary (to buoys and
reanalysis datasets, Ribal and Young
2020)

◦ METOP(-A,-B,-C) since 2007

HS : significant wave height (m)

U10: wind speed (ms−1) at 10m (calibrated to 10-minute average wind speed)
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Backup MSCE

Scatter plots on physical scale

Scatter plots of registered data : StlWnd (green), HndWnd (orange), HndWav(blue)
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Backup MSCE

Covariate dependence on physical scale

Directional and seasonal dependence. “Direction” is that from which fluid flows measured clockwise from North
StlWnd (green), HndWnd (orange), HndWav(blue)

Jonathan Ocean extremes November 2024 26 / 38



Backup MSCE

Scatter plots on Laplace scale

Registered data on Laplace scale: StlWnd (green), HndWnd (orange), HndWav(blue)
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Backup MSCE

Swath wind speeds

Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident
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Backup MSCE

Inference

X jk ∼ Lpl, x > u, X|{X01 = x} = αx + xβZ, Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ Delta-Laplace residual margins

fZ j,k (z j,k) =
δ j,k

2κ j,kσ j,kΓ
(

1
δ j,k

) exp

−
∣∣∣∣∣ z −µ j,k

κ j,kσ j,k

∣∣∣∣∣
δ j,k
 , κ2

j,k = Γ
(

1/δ j,k

)
/Γ
(

3/δ j,k

)
◦ Gaussian residual dependence

Σ∗
A∗( j,k)A∗( j′ ,k′) = λ

|k−k′ |
k,k′ exp

(
−
(

dist(r j , r j′ )

ρk,k′

)κk,k′
)

◦ Piecewise linear forms forα, β, µ,σ , δ with distance using nNod spatial nodes

◦ Adaptive MCMC, Roberts and Rosenthal [2009]
◦ Total of m(5nNod + (3m + 1)/2) parameters
◦ Rapid convergence, 10k iterations sufficient
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Backup GEV

Generalised extreme value distribution

◦ Fn
X is the distribution of the maximum of n independent draws of X

◦ If Fn
X “looks like” Fn′

X , we say FX is max-stable

◦ More formally, FX is max-stable if there exist sequences of constants an > 0, bn,
and non-degenerate Gξ such that

lim
n→∞ Fn

X (anx + bn) = Gξ (x)

◦ We say FX ∈ D(Gξ ) or that FX lies in the max-domain of attraction of Gξ
◦ The Fisher–Tippett–Gnedenko theorem states that Gξ is the generalised extreme

value distribution with parameter ξ

Gξ (y) = exp
(
− (1 +ξy)−1/ξ

)
, ξ ∈ R

◦ For large n, makes sense to model block maxima of n iid draws using Gξ (with
(x −µ)/σ in place of y above)
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Backup MEVD

Multivariate extreme value distribution (MEVD)

◦ Xi = (Xi1 , ..., Xi j , ..., Xip), i = 1, ..., n iid p-vectors, distribution F

◦ Mn, j = maxi Xi j, component-wise maximum

◦ The component-wise maximum is not “observed” (especially as n → ∞)

◦ Then for Zn, j = (Mn, j − bn, j)/an, j, normalised with scaling constants:

P(Z ≤ z) = Fn (anz + bn) → G(z) as n → ∞
◦ Non-degenerate G(z) must be max-stable, so ∀k ∈ N, ∃αk > 0,βk s.t.

Gk(αkz +βk) = G(z)

◦ We say F ∈ D(G)

◦ Margins G1 , ..., Gp are unique GEV, but G(z) is not unique
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Backup MEVD

MEVD on common margins

◦ On standard Fréchet margins with pseudo-polars (r, w)

G(z) = exp (−V(z))

with V(z) =
∫
∆

max
j

{
w j

z j
} S(dw), on ∆ = {w ∈ Rp : ||w|| = 1}

and 1 =
∫
∆

w j S(dw), ∀ j, for angular measure S

◦ Condition of multivariate regular variation, MRV

1 − F(tx)
1 − F(t1)

→ λ(x) as t → ∞, x ∈ Rp

useful to prove that F ∈ D(G) for some MEVD G

◦ Lots more
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Backup MEVD

Asymptotic dependence ... admitted by MEVD

◦ On uniform margins

χ(u) =
P(U > u, V > u)

P(U > u)
=

C̄(u, u)
1 − u

→ χ as u → 1

◦ χ = 1 perfect dependence

◦ χ ∈ (0, 1) asymptotic dependence, AD

◦ χ = 0 perfect independence

θ(u) =
logP(U ≤ u, V ≤ u)

logP(U ≤ u)
=

log C(u, u)
log u

→ θ as u → 1

◦ θ = 2 − χ

◦ χ and θ describe AD

◦ MEVD admits AD
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Backup MEVD

Asymptotic independence ... not admitted by MEVD

◦ On uniform margins

χ̄(u) = 2
logP(U > u)

logP(U > u, V > u)
− 1 = 2

log(1 − u)
log C̄(u, u)

− 1 → χ̄ as u → 1

◦ χ̄ = 1 perfect dependence and AD
◦ χ̄ ∈ (0, 1) asymptotic independence, AI
◦ χ̄ = 0 perfect independence

◦ On Fréchet margins (F(z) = exp
(
−z−1)), assume

P(Z1 > z, Z2 > z)

(P(Z1 > z))1/η
= L(z)

where L is slowly varying : L(xz)/L(z) → 1 as z → ∞
◦ χ̄ = 2η− 1

◦ Idea : use non-extreme value copulas or inverted EV copulas

◦ Also P(Z2 > z|Z1 > z) ≈ Cz1−1/η from above
◦ Idea : assume a max-stable-like normalisation for conditional extremes
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Backup MEVD

Extremal dependence (bivariate Gaussian)

◦ Many (almost all?) environmental extremes problems involve asymptotic
independence, at least in part ... bivariate Gaussian is one example!

χ(u) and χ̄(u) for bivariate Gaussian (⇒ χ = 0, χ̄ = ρ)
Colours are correlations ρ on -0.9, -0.8, ..., 0.9 (Recreated from Coles et al. 1999)
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Backup Limit sets

Limit sets
Intuition

◦ Transform your sample X (empirically) to certain standard margins XS (e.g. Laplace or exponential)
◦ Divide each value of XS by a simple known function of n (like log(n/2) for Laplace) appropriate for that marginal scale
◦ The normalised values must be contained within a limit set in red below (which you can work out from theory)
◦ The cloud shape reveals dependence structure (e.g. AI (top) or AD (bottom))
◦ Value of HTα where red curve touches y = 1 or x = 1
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