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Environmental risk

Modelling ocean storm environment

◦ Multiple coupled physical processes

◦ Rare, extreme events

Jonathan Ocean extremes April 2024 2 / 71



Environmental risk

Modelling structural risk

◦ Ocean environment is harsh

◦ Marine structures at risk of failure

◦ Reliability standards must be met
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Environmental risk

Optimal design of marine structure

Set-up
◦ Storm storm peak events Xsp dependent on covariates Θsp

◦ An evolving within-storm environment {(Xs , Θs)}s∈ST for storm of length T
◦ A structural “loading” Y
◦ Everything subject to sources of uncertainty Z
◦ Z, Θsp, Xsp, {(Xs , Θs)}s∈ST and Y are multidimensional random variables

Unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ
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Environmental risk

Optimal design of marine structure

Typical

Distribution of annual maximum loading

Assumes univariate load

FA(y) =
∫

m
[FY(y)]m fC(m)dm

Annual rate of occurrence fC of storms

Return value for return period P years given by F−1
A (1 − 1/P)

More generally

Expected utility

E(UA|R) =
∫

m

∫
y1

...
∫

ym

UA(y1 , ..., ym|R) fY1 ,...,Ym ,M(y1 , ..., ym , m)dy1 ...dym dm

System annual utility UA(Y1 , ..., Ym|R) given system “strength” characteristics R
Solve for R to achieve required expected annual utility

Or maybe “lifetime utility” (?)
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Historical approach: return values and associated values

Historical approach
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Historical approach: return values and associated values Intro

Historical approach

Will discuss:
◦ Estimation for return values from small samples

◦ This is still a major issue today (e.g. LOADS)

Generic historical issues:

◦ Weaker justification (?) for choice of distributional forms for extremes

◦ Neglect of covariate effects in extremes (direction, season, “climate change”)

◦ Neglect of spatial and temporal dependence in extremes

◦ Neglect of joint behaviour of extremes across multiple metocean variables
(“associated values”)

◦ Neglect of uncertainty (“no UQ”)

◦ Dearth of data, data quality (measured, hindcast, ...) for extremes not clear

◦ Disconnect with risk (no direct connection with structural failure; “return values”,
“design contours”)

◦ Missing interface between metocean specialists, structural engineers and
“statistical modellers”

◦ “No full empirical model”
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Historical approach: return values and associated values Return values

What is a return value?

◦ Random variable A represents the maximum value of some physical quantity X
per annum

◦ Forget about all complicating issues like serial dependence, covariates and other
sources of dependence and uncertainty

◦ The P-year return value xP of X is then defined by the equation

FA(xP) = Pr(A ≤ xP) = 1 − 1
P

◦ Or

xP = F−1
A (1 − 1

P
)

◦ Typically P ∈ [102 , 108] years
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Historical approach: return values and associated values Return values

An alternative definition

◦ Random variable AP represents the P-year maximum value of X
◦ The P-year return value x′P of X can be found from FAP for large P, assuming

independent annual maxima since

FA(xP) = 1 − 1
P

⇒ FAP (xP) =

(
1 − 1

P

)P
≈ exp(−1)

◦ Use FAP (x′P) = exp(−1) to define an alternative return value x′P
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Historical approach: return values and associated values Return values

Estimating a return value

◦ To estimate xP, we need knowledge of the distribution function FA of the annual
maximum

◦ We might estimate FA using extreme value analysis on a sample of independent
observations of A

◦ Typically more efficient to estimate the distribution FX|X>ψ of threshold
exceedances of X above some high threshold ψ using a sample of independent
observations of X, and use this in turn to estimate FA and xP

◦ How is this done?
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Historical approach: return values and associated values Return values

Estimating a return value

◦ Asymptotic theory suggests for high threshold ψ ∈ (−∞, ∞) that

FX|X>ψ(x|ψ,σ ,ξ) = 1 −
(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+

for x > ψ, shape ξ ∈ (−∞, ∞) and scale σ ∈ (0, ∞)

◦ The full distribution of X is FX(x) = τ + (1 − τ)FX|X>ψ(x) where τ = Pr(X ≤ ψ)

◦ Thus

FA(x) = Pr(A ≤ x) =
∞
∑
k=0

fC(k)Fk
X(x)

where C is the number of occurrences of X per annum, with probability mass
function fC to be estimated (say with a Poisson model with parameter λ)

◦ So what’s the problem?
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Historical approach: return values and associated values Return values

Parameter uncertainty

◦ xP can be estimated easily in the absence of uncertainty

◦ In reality, we estimate parameters λ, ψ, σ and ξ from a sample of data, and we
cannot know their values exactly

◦ How does this epistemic uncertainty affect return value estimates?

◦ A number of different plausible estimators for return values under uncertainty

◦ Different estimators perform differently (bias and variance)

◦ Which estimators are likely to perform reasonably in fairly general circumstances?

◦ Is it even sensible or desirable to estimate return values?
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Historical approach: return values and associated values Return values

Incorporating uncertainty

◦ If a distribution FY|Z of random variable Y is known conditional on random
variables Z, and the joint density fZ of Z is also known, the unconditional
predictive distribution F̃Y can be evaluated using

F̃Y(y) =
∫
ζ

FY|Z(x|ζ) fZ(ζ) dζ

◦ Th expected value of deterministic function g of parameters Z given joint density
fZ is

E[g(Z)] =
∫
ζ

g(ζ) fZ(ζ) dζ

◦ ζ = (λ,ψ,σ ,ξ), Y = A (or Y = AP)
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Historical approach: return values and associated values Return values

Different estimators of return value

◦ Uncertain estimates of GP model parameters from fit to sample represented by
random variables Z

◦ Estimate distribution FA|Z of annual maximum event using Z

◦ Estimate P-year return value by finding the 1 − 1/P quantile of FA|Z

◦ Various options available, including:

q1 = F−1
A|Z(1 − 1/P | EZ [Z]) = F−1

A|Z(1 − 1/P |
∫
ζ
ζ fZ(ζ)dζ)

q2 = EZ [F−1
A|Z(1 − 1/P | Z)] =

∫
ζ

F−1
A|Z(1 − 1/P | ζ) fZ(ζ)dζ

q3 = F̃−1
A (1 − 1/P) where F̃A(x) =

∫
ζ

FA|Z(x | ζ) fZ(ζ)dζ

q4 = F̃−1
AP

(exp(−1)) where F̃AP (x) = F̃P
A(x)

q5 = medZ [F−1
A|Z(1 − 1/P | Z)]

◦ For small samples, these have very different properties
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Historical approach: return values and associated values Return values

Fractional bias of return value estimators

Fractional bias of return value estimates from different estimators using maximum likelihood, as a function of sample size and true GP shape ξ .
LHS top to bottom: q3, q2, q5, q1, q4.

◦ Knock-on effects for associated values of the form EZ(Y |X = q, Z)
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Historical approach: return values and associated values Return value references and implications

Return value references and implications

References

◦ Return values: Serinaldi [2015], Jonathan et al. [2021]

◦ Associated values : Towe et al. [2022]

◦ Lots of other approaches for small samples (e.g empirical Bayes Zhang 2007,
Zhang and Stephens 2009, Zhang 2010)

Implications for today

◦ Current EV models tend to have high effective dimensionality

◦ Effective number of degrees of freedom from sample for model fitting can be
small ⇒ we have small effective sample size

◦ Momentum in metocean community (e.g. AWARE, LOADS JIPs) to use Bayesian
inference ... great in principle, but ...

◦ Characteristics of (posterior) predictive distributions highly dependent on prior
specification. Yet not clear how to advise “diverse user community” regarding
“rational prior specification”.
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Current best practice: full probabilistic modelling

Current best practice
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Current best practice: full probabilistic modelling

Current best practice: full probabilistic modelling

◦ Model components of “full empirical model”
◦ Storm peaks
◦ Within-storm evolution
◦ Fluid loading

◦ Marginal modelling

◦ Dependence modelling
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Current best practice: full probabilistic modelling Context

The full “forward” model

Unconditional distribution of loading from a “random storm”

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Still missing here:
◦ Temporal “inter-storm” effects (clustering, climate change)

“Random storm” model invalid; even conditional independence assumption invalid (?)
◦ Spatial dependence of extremes

Spatial risk: e.g. de-manning multiple structures
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Current best practice: full probabilistic modelling Context

Storm peaks

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Storm peaks: modelling margins and dependence

fXsp|Θsp ,Z(x
sp|θsp,ζ) =

[
p

∏
j=1

fXsp
j |Θsp ,Z(xsp

j |θsp,ζ)

]
× c(FXsp

1 |Θsp ,Z(xsp
1 |θsp,ζ), ..., FXsp

p |Θsp ,Z(xsp
p |θsp,ζ)|θsp,ζ)

More to come in a minute!
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Current best practice: full probabilistic modelling Context

Within-storm evolution

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Models for within-storm evolution

◦ History matching: Feld et al. [2019], Hansen et al. [2020]

◦ Extreme value time-series model (an extension of conditional extremes): Tendijck
et al. [2019], Tendijck et al. [2023]
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Current best practice: full probabilistic modelling Context

Fluid loading

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Models for fluid loading

◦ Incorporate kinematics, estimate Morison loads (e.g. LOADS, AWARE JIPs): Swan
[2020], Gibson [2020]

◦ Interface environment and fluid loading software for full “forward model”

◦ Fundamentals paper: Speers et al. [2024]
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Current best practice: full probabilistic modelling Context

Full model for fluid loading

General approach
◦ Linear wave spectrum model

◦ e.g. JONSWAP
◦ Multivariate extreme value model for all spectral model parameters
◦ ⇒ Simulation of arbitrary sea state spectra

◦ Linear wave theory (potential theory)
◦ Linearised boundary conditions
◦ Linear surface elevation and kinematics
◦ ⇒ Simulation of linear time-series given linear spectrum

◦ Non-linear transformation (Swan 2020, Gibson 2020)
◦ Non-linear surface elevation
◦ “Stretched” kinematics
◦ ⇒ Simulation of non-linear time-series given linear spectrum

◦ Conditional simulation of Gaussian time-series (Taylor et al. 1997)
◦ Embed extreme excursions in surface elevation and associated kinematics
◦ ⇒ Efficient simulation of extreme time-series

◦ Estimate marginal distribution of Morison load from random storm
◦ Efficient integration using importance sampling and conditional simulation

◦ Fundamentals paper: Speers et al. [2024]
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Current best practice: full probabilistic modelling Motivating marginal extremes

Modelling covariate effects
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Current best practice: full probabilistic modelling Motivating marginal extremes

Motivating marginal extremes

Storm peaks: modelling margins and dependence

fXsp|Θsp ,Z(x
sp|θsp,ζ) =

[
p

∏
j=1

fXsp
j |Θsp ,Z(xsp

j |θsp,ζ)

]
× c(FXsp

1 |Θsp ,Z(xsp
1 |θsp,ζ), ..., FXsp

p |Θsp ,Z(xsp
p |θsp,ζ)|θsp,ζ)

More to come on dependence later!
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Current best practice: full probabilistic modelling Motivating marginal extremes

Generalised Pareto distribution

◦ Suppose we have an exceedance X of high threshold ψ ∈ R
◦ The Pickands-Balkema-De Haan theorem states

lim
ψ→∞P[X ≤ x|X > ψ] = lim

ψ→∞ FX(x)
1 − FX(ψ)

= GP(x|ξ ,σ ,ψ)

= 1 −
(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+
, σ > 0, ξ ∈ R

Theory Practicalities

◦ Derived from max-stability of FX

◦ Threshold-stability property

◦ “Poisson × GP = GEV”

◦ How to isolate independent threshold
exceedances from observed time-series?

◦ How to specify extreme threshold ψ?

◦ ξ , σ , ψ functions of covariates
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Current best practice: full probabilistic modelling Motivating marginal extremes

Motivation

◦ Environmental extremes vary smoothly with multidimensional covariates

◦ Generic modelling framework for different covariate representations

◦ Statistical and computational efficiency for n-D covariates

◦ Thorough Bayesian uncertainty quantification

Typical data for northern North Sea. Storm peak HS on direction, with τ = 0.8 extreme value threshold.
Rate and size of occurrence varies with direction.
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Current best practice: full probabilistic modelling Model for size of occurrence

Model for size of occurrence

◦ Sample of storm peaks X over threshold ψθ ∈ R, with 1-D covariate θ ∈ Dθ
◦ Extreme value threshold ψθ assumed known

◦ X assumed to follow generalised Pareto distribution with shape ξθ , (modified)
scale νθ

fGP(x|ξθ ,νθ) =
1
σθ

(
1 +

ξθ
σθ

(x −ψθ)
)−1/ξθ−1

+
with νθ = σθ(1 +ξθ)

◦ Shape parameter ξθ ∈ R and scale parameter νθ > 0

◦ (Non-stationary Poisson model for rate of occurrence, with rate ρθ ≥ 0)

Jonathan Ocean extremes April 2024 28 / 71



Current best practice: full probabilistic modelling Covariate representations

Covariate representations in 1-D

◦ Index set Iθ = {θs}m
s=1 on periodic covariate domain Dθ

◦ Each observation belongs to exactly one θs

◦ On Iθ , assume
ηs =

n

∑
k=1

Bskβk , s = 1, 2, ..., m, or

η = Bβ

◦ η ∈ (ξ ,ν) (and similar for ρ)

◦ B = {Bsk}m;n
s=1;k=1 basis for Dθ

◦ β = {βk}n
k=1 basis coefficients

◦ Inference reduces to estimating nξ , nν , Bξ , Bν , βξ , βν (and roughnesses λξ , λν)

◦ P-splines, BARS and Voronoi are different forms of B

◦ Tensor products and slick GLAM algorithms for n-D covariate representations
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Current best practice: full probabilistic modelling Covariate representations

Basis representations ... BARS and others

Bayesian adaptive regression splines (BARS)

◦ n irregularly-spaced knots on Dθ
◦ B consists of n B-spline bases

◦ Order d
◦ Each using d + 1 consecutive knot

locations

◦ Local support

◦ Wrapped on Dθ
◦ Knot locations {rk}n

k=1 vary

◦ Number of basis functions n varies Periodic BARS knot birth and death

P-splines and Voronoi partition

◦ P-splines use fixed number of regularly-spaced knots

◦ Voronoi partition uses piecewise-constant representation, trivially extended to n-D
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Current best practice: full probabilistic modelling Inference in 1-D

Posterior parameter estimates for ξ , ν and ρ for northern North Sea

◦ MCMC inference (Gibbs sampling, reversible jump, etc.)

◦ Note colour scheme

◦ Rate ρ and ν very
similar

◦ Voronoi gives almost
constant ξ

◦ Voronoi piecewise
constant

◦ Land shadow effects

◦ General agreement

◦ ... for other
parameters also
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Current best practice: full probabilistic modelling Inference in 1-D

Directional posterior predictive distribution of P = 1000-year
maximum

◦ Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles

◦ General agreement

◦ This is more-or-less what the engineer currently uses to design a “compliant”
structure
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Current best practice: full probabilistic modelling Inference in 2-D

Extension to 2D : directional-seasonal

◦ 2-D tensor product P-spline bases for same northern North Sea location

◦ Marginal posterior median estimates (plus posterior density for τ)
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Current best practice: full probabilistic modelling UQ

Practical implications of modelling choices
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Current best practice: full probabilistic modelling UQ

Practical implications of modelling choices

◦ How do “arbitrary choices” in the modelling procedure effect output?

◦ Case studies (like a southern North Sea location)

Effects of
◦ Model parameterisation

◦ Orthogonal
◦ “Mean-max”

◦ Relative penality for GP shape and scale
◦ Relatively high
◦ Very high

◦ Cross-validation strategy
◦ 10-fold
◦ Repeated random 2-fold

◦ Choice of estimator for return value
◦ Mean quantile
◦ Quantile mean
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Current best practice: full probabilistic modelling UQ

Case studies
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◦ Small samples
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Current best practice: full probabilistic modelling UQ

Case studies

◦ Large samples
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Current best practice: full probabilistic modelling UQ

Case studies

◦ Performance by case
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Current best practice: full probabilistic modelling UQ

Case studies
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◦ Aggregate performance
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Current best practice: full probabilistic modelling Issues and opportunities

Issues and opportunities

Issues
◦ EV threshold modelling and UQ
◦ Many tuning parameters which should be optimised, but rarely are, and UQ w.r.t.

these
◦ Model misspecification

◦ Measurement scale, sub-asymptotic models
◦ Missing covariates

◦ Prior specification (or equivalent frequentist choices)
◦ UQ generally

Opportunities
◦ Incorporate new data sources

◦ Satellite (e.g. scatterometry)
◦ GCM output (but CMIP6 inconsistency)
◦ Large simulations (over 103s of years; so just “interpolate”)

◦ Overly-complex models
◦ Standard Norge [2022] “immature methodologies”
◦ Diagnostics

◦ “Black box” AI/ML (e.g. KAUST, Saudi A.)
◦ “ExaGeoStat” (Genton)
◦ Sensible extremes (e.g. GP tail, “interpretable” plus “uninterpretable” covariate effects;

Hüser, Richards)
◦ Just “do the whole planet” and be done with it!
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Current best practice: full probabilistic modelling Marginal extremes references

Marginal extremes references

◦ Theory : Embrechts et al. [2003], Beirlant et al. [2004]

◦ Method : Coles [2001], Dey and Yan [2016]

◦ Motivation : Davison and Smith [1990]

◦ Covariate effects : Wood [2003], Chavez-Demoulin and Davison [2005], Brezger
and Lang [2006], Youngman [2022]

◦ Metocean : Jonathan and Ewans [2013], Feld et al. [2019], Vanem et al. [2022]

◦ Metocean applications : Randell et al. [2016], Zanini et al. [2020]

◦ Machine learning: Abdulah et al. [2018], Richards and Huser [2024]

◦ Uncertainties: Tendijck et al [2024] (in preparation)
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Multivariate extremes

Multivariate extremes
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Multivariate extremes Intro

Multivariate extremes

◦ Recap

◦ Max-stability, AD and AI

◦ Conditional extremes basic

◦ Time-series conditional extremes

◦ Multivariate spatial conditional extremes

◦ Multivariate extremes literature

◦ SPAR

◦ covXtreme

◦ Summary
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Multivariate extremes Recap on storm peaks

Modelling margins and dependence

Context

FXsp|Θsp ,Z(x
sp|θsp,ζ) = C(FXsp

1 |Θsp ,Z(xsp
1 |θsp,ζ), ..., FXsp

p |Θsp ,Z(xsp
p |θsp,ζ)|θsp,ζ)

◦ We already have marginal models FXsp
j |Θsp (xsp

j |θsp, Z), j = 1, 2, ..., p

◦ Now we need a dependence model or copula C = C(u1 , u2 , ..., up|θsp,ζ)
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Multivariate extremes Basic theory

Which dependence function?
Max-stability == multivariate extreme value distribution, MEVD
◦ The copula is not unique
◦ Max-stability is one popular assumption, which itself involves a common but

often unrealistic assumption of component-wise maxima

◦ On uniform margins, extreme value copula: C(u) = Ck(u1/k)

◦ On Fréchet margins (G j(z) = exp
(
−z−1)), G(z) = exp (−V(z)), for exponent

measure V such that V(rz) = r−1V(z), homogeneity order -1
◦ Rich spatial extensions to max-stable processes, MSPs
◦ Multivariate generalised Pareto distribution, MGPD

AD and AI
◦ All MEVD distributions exhibit asymptotic dependence (AD)
◦ Many common distributions (e.g. the multivariate Gaussian) exhibit asymptotic

independence (AI)
◦ So extreme value copulas are not general enough to describe extremal dependence

in nature
◦ Other copula forms do exhibit AI
◦ The conditional extremes model admits AD (on the boundary) and AI
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Multivariate extremes Basic conditional extremes

Conditional extremes
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Multivariate extremes Basic conditional extremes

Conditional extremes ... moving beyond component-wise maxima

◦ Random variables X = (X1 , ..., X j , ..., Xp) and Y
◦ Each X and Y have standard Laplace margins ( f (x) = exp(−|x|)/2, x ∈ R)
◦ Seek a model for X|(Y = y) for y > u

◦ Assume we can find p-dimensional scaling a, b > 0 such that

P(Z ≤ z|Y = y) → G(z) as u → ∞
for Z =

X − a(y)
b(y)

◦ Non-degenerate G is unknown, and estimated empirically

◦ Typical scaling is a = αy and b = yβ,α ∈ [−1, 1]p, β ∈ (−∞, 1]p

◦ So simply fit regression model

X|(Y = y) = αy + yβZ, for y > u

◦ α = 1, β = 0 : perfect dependence and AD, andα ∈ (0, 1) : AI

◦ Heffernan and Tawn [2004] find choices forα and β for popular bivariate cases
◦ Bivariate Gaussian : α = ρ2, β = 1/2
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Multivariate extremes Canonical extensions of conditional extremes

Developments of the conditional extremes model

Canonical extensions

◦ Basic: X|(Y = y), y > u
◦ Temporal: “heatwave model” X1 , X2 , ..., Xτ |(X0 = x0), x0 > u
◦ Spatial: “spatial conditional extremes” X1 , X2 , ..., Xs|(X0 = x0), x0 > u

Idea

X1 , X2 , ..., Xp|(Y = y) = αy + yβZ

◦ Impose appropriate structure on parametersα, β and distribution of Z
e.g. α evolves smoothly in space
e.g. Z follows a multivariate Gaussian or extension thereof with appropriate mean and
covariance forms

◦ Make a simplifying assumption
e.g. apply a low-order model repeatedly Xt+1 , Xt+2|(Xt = x) = [α1α2]x + x[β1β2 ][Z1Z2]

Further extensions

◦ Non-stationary and multivariate temporal and spatial models
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Multivariate extremes Time-series conditional extremes using EVAR

Extremal vector auto-regression (EVAR) for within-storm evolution

Context: unconditional distribution of loading

FY (y) =
∫
ζ

∫
({(xs ,θs)}s∈Sτ ,τ)

∫
xsp

∫
θsp

× FY |{(Xs ,Θs)}s∈ST ,Z(y|{(xs ,θs)}s∈Sτ ,ζ)

× f({(Xs ,Θs)}s∈ST
,T)|Xsp ,Θsp ,Z

(
{(xs ,θs)}s∈Sτ , τ | xsp,θsp,ζ

)
× fXsp|Θsp ,Z(x

sp|θsp,ζ)

× fΘsp|Z(θ
sp|ζ)

× fZ(ζ)

× dθsp dxsp d({(xs ,θs)}s∈Sτ , τ)dζ

Models for within-storm evolution

◦ History matching: Feld et al. [2019], Hansen et al. [2020]

◦ Extreme value time-series model (an extension of conditional extremes): Tendijck
et al. [2019], Tendijck et al. [2023]
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Multivariate extremes Time-series conditional extremes using EVAR

Extremal vector auto-regression (EVAR) for within-storm evolution
On Laplace margins, with component-wise operations and Xt ∈ Rd:

Xt+k| (Xt , ..., Xt+k−1 , Xt,1 = y) =
k

∑
ℓ=1

AℓXt+k−ℓ + ybZ, y > u ≫ 0

Excursions of HS (top) and WS (middle) from EVAR(4) model (left; black), observed (middle; red) on original margins with storm peak HS ∈ [11.5, 12.5];
right-hand plots summarise the observed (red) and EVAR(4) (black) excursions, using median (solid), 10% and 90% quantiles (dashed). In the bottom panel,

we plot survival probabilities for observed (red) and EVAR(4) (black) excursions relative to the time of the excursion maximum.
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Multivariate extremes Multivariate spatial conditional extremes

MSCE
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Multivariate extremes Multivariate spatial conditional extremes

Multivariate spatial conditional extremes (MSCE)

Motivation

◦ How useful are satellite observations of ocean waves and winds?

◦ Could they become the primary data source for decisions soon?

◦ What are the spatial characteristics of extremes from satellite observations?

Overview

◦ A look at the data : satellite wind, hindcast wind, hindcast wave

◦ Brief overview of methodology

◦ Results for joint spatial structure of extreme scatterometer wind speed, hindcast
wind speed and hindcast significant wave height in the North Atlantic

◦ Implications for future practical applications
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Multivariate extremes Multivariate spatial conditional extremes

Satellite observation

[Ribal and Young 2019]

Features

◦ Altimetry: HS and U10

◦ Scatterometry: best for U10 and direction

◦ > 30 years of observations

◦ Spatial coverage is by no means
complete: one observation daily if all
well

◦ Calibration necessary (to buoys and
reanalysis datasets, Ribal and Young
2020)

◦ METOP(-A,-B,-C) since 2007

HS : significant wave height (m)

U10: wind speed (ms−1) at 10m (calibrated to 10-minute average wind speed)
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Multivariate extremes Multivariate spatial conditional extremes

JASON and METOP

[n2yo.com, accessed 06.09.21 at around 1100UK] [stltracker.github.io, accessed 27.08.2021 at around 1235UK]

◦ JASON and METOP similar polar orbits

◦ JASON all ascending, METOP all descending over North Atlantic

◦ Joint occurrence of JASON and METOP over North Atlantic rare
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Multivariate extremes Multivariate spatial conditional extremes

In a nut-shell

◦ Transform to standard margins using
independent non-stationary GP models

◦ Condition on large value x of first quantity X01 at one
location j = 0 (green square)

◦ Estimate “conditional spatial profiles” for m > 1
quantities {X jk}

p,m
j=1,k=1 at p > 0 other locations (green,

orange and blue circles)

X jk ∼ Lpl

x > u

X|{X01 = x} = αx + xβZ

Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ MCMC to estimateα, β, µ,σ , δ and ρ, κ, λ

◦ α, β, µ,σ , δ spatially smooth for each quantity

◦ DL = delta-Laplace = generalised Gaussian

◦ Residual correlation Σ for conditional Gaussian
field, powered-exponential decay with distance
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Multivariate extremes Multivariate spatial conditional extremes

Swath wind speeds

Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident
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Multivariate extremes Multivariate spatial conditional extremes

Inference

X jk ∼ Lpl, x > u, X|{X01 = x} = αx + xβZ, Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ Delta-Laplace residual margins

fZ j,k (z j,k) =
δ j,k

2κ j,kσ j,kΓ
(

1
δ j,k

) exp

−
∣∣∣∣∣ z −µ j,k

κ j,kσ j,k

∣∣∣∣∣
δ j,k
 , κ2

j,k = Γ
(

1/δ j,k

)
/Γ
(

3/δ j,k

)
◦ Gaussian residual dependence

Σ∗
A∗( j,k)A∗( j′ ,k′) = λ

|k−k′ |
k,k′ exp

(
−
(

dist(r j , r j′ )

ρk,k′

)κk,k′
)

◦ Piecewise linear forms forα, β, µ,σ , δ with distance using nNod spatial nodes

◦ Adaptive MCMC, Roberts and Rosenthal [2009]
◦ Total of m(5nNod + (3m + 1)/2) parameters
◦ Rapid convergence, 10k iterations sufficient
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Multivariate extremes Multivariate spatial conditional extremes

Parameter estimates

Estimates forα, β, µ, σ and δ with distance, and residual process estimates ρ, κ and λ. Model fitted with τ = 0.75
StlWnd (green), HndWnd (orange), HndWav(blue)

Residual Gaussian field : ρ=scale (need to ×100km), κ=exponent (need to ×5), λ=cross-correlation
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Multivariate extremes Applied conditional extremes references

Applied conditional extremes references

◦ Non-stationary : Jonathan et al. [2014]

◦ Time-series : Winter and Tawn [2016], Tendijck et al. [2019], Tendijck et al. [2023]

◦ Mixture model : Tendijck et al. [2021]

◦ Spatial : Shooter et al. [2021b], Shooter et al. [2021a], Shooter et al. [2022]

◦ Lots more
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SPAR
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Multivariate extremes SPAR

Semi-parametric angular radial (SPAR) representation

Basics

◦ Radial R and angular Q components. Then joint density factorised as

fR,Q(r, q) = fQ(q) fR|Q(r|q)

◦ Assume GP conditional tail for R|(Q = q), with parameters varying smoothly
with angle q above some threshold ψ(q) with non-exceedance probability τ(q)

fR,Q(r, q) = fQ(q)× τ(q) fGP(r −ψ(q)|ξ(q),σ(q)), r > ψ(q)

with smoothly varying ψ(q), τ(q), ξ(q) and σ(q). Also assume angular density
fQ(q) varies smoothly with q

◦ SPAR representation shown to provide good approximations to a large set of
copula functions on standard margins

◦ Is transformation to standard margins necessary?

◦ Different possible angular-radial decompositions using “generalised co-ordinates”

◦ ⇒ multivariate extremes is just “non-stationary univariate” extremes!
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Multivariate extremes SPAR

SPAR fits to extreme value copulas

Density contours of various copulas on Laplace margins. All copulas have Pearson correlation coefficient 0.6. Student-t copula has two degrees of freedom.
Solid lines: true contours at logarithmic increments. Dashed lines: SPAR-estimated contours.
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Multivariate extremes SPAR

Density contours from SPAR fits to data

Density contours from SPAR model for 6 samples.
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Pragmatic non-stationary multivariate extremes with UQ covXtreme

covXtreme
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Pragmatic non-stationary multivariate extremes with UQ covXtreme

Pragmatic non-stationary multivariate extremes with UQ

◦ Fit generalised Pareto marginal models for peaks over threshold data Ẋ and Ẏ
◦ Physics-based identification of peaks from time-series
◦ Multiple thresholds, simple piecewise constant model for covariates Θ
◦ Diagnostics: threshold stability

◦ Transform to standard Laplace scale X and Y
◦ Transform full sample

◦ Fit conditional extremes model X|(Y = y) for y > u
◦ Multiple thresholds, simple piecewise constant covariate model forα
◦ Diagnostics: threshold stability, residual structure

◦ Calculate probabilities of extreme sets
◦ MC simulation, importance sampling
◦ Estimate environmental contours

◦ Free covXtreme software for MATLAB does all of above
◦ UQ: incorporates epistemic uncertainty using bootstrapping cradle to grave
◦ Model averaging: incorporates multiple models for different threshold combinations
◦ Multidimensional X and covariates
◦ Cross-validation for optimal parameter roughness in marginal and dependence models
◦ Careful return value and associated value definitions
◦ https://lfenergy.org/projects/covXtreme/, Towe et al. [2024]
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Pragmatic non-stationary multivariate extremes with UQ Multivariate extremes references

Multivariate extremes references

◦ Theory : Beirlant et al. [2004]

◦ Copulas : Joe [2014]

◦ Method : Dey and Yan [2016]

◦ Key ideas in AI : Ledford and Tawn [1996], Ledford and Tawn [1997], Coles et al.
[1999], Heffernan and Tawn [2004]

◦ Modelling across dependence classes : Wadsworth et al. [2017], Huser and
Wadsworth [2022]

◦ Limit sets and SPAR : Nolde and Wadsworth [2022], Simpson and Tawn [2024],
Mackay and Jonathan [2023], Murphy-Barltrop et al. [2024], Mackay et al. [2024],
Huser et al. [2024]

◦ Metocean : Parametric conditional models (e.g. Haver 1987), design contours (e.g.
Haselsteiner et al. 2021).

◦ covXtreme: Towe et al. [2024]
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Summary

Summary

Why?

◦ Careful quantification of “rare-event” risk

◦ Characterise tails of (multivariate) distributions

◦ Limited observations

◦ Combine solid theory and pragmatic application, UQ

◦ Immediate real-world consequences

The next 10 years?

◦ Univariate : fuller covariate descriptions, exploit measurement scale /
sub-asymptotics, UQ, provide real-world decision-support

◦ Multivariate : theoretical development, computational tractability, expansion in
scope (time-series, spatial), serious real-world applications

◦ Limit sets (Simpson and Tawn 2024), SPAR (Murphy-Barltrop et al. 2024)

◦ More demanding regulatory framework

Tusen takk! / Diolch yn fawr!
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Backup

Generalised extreme value distribution

◦ Fn
X is the distribution of the maximum of n independent draws of X

◦ If Fn
X “looks like” Fn′

X , we say FX is max-stable

◦ More formally, FX is max-stable if there exist sequences of constants an > 0, bn,
and non-degenerate Gξ such that

lim
n→∞ Fn

X (anx + bn) = Gξ (x)

◦ We say FX ∈ D(Gξ ) or that FX lies in the max-domain of attraction of Gξ
◦ The Fisher–Tippett–Gnedenko theorem states that Gξ is the generalised extreme

value distribution with parameter ξ

Gξ (y) = exp
(
− (1 +ξy)−1/ξ

)
, ξ ∈ R

◦ For large n, makes sense to model block maxima of n iid draws using Gξ (with
(x −µ)/σ in place of y above)
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Backup

Multivariate extreme value distribution, MEVD

◦ Xi = (Xi1 , ..., Xi j , ..., Xip), i = 1, ..., n iid p-vectors, distribution F

◦ Mn, j = maxi Xi j, component-wise maximum

◦ The component-wise maximum is not “observed” (especially as n → ∞)

◦ Then for Zn, j = (Mn, j − bn, j)/an, j, normalised with scaling constants:

P(Z ≤ z) = Fn (anz + bn) → G(z) as n → ∞
◦ Non-degenerate G(z) must be max-stable, so ∀k ∈ N, ∃αk > 0,βk s.t.

Gk(αkz +βk) = G(z)

◦ We say F ∈ D(G)

◦ Margins G1 , ..., Gp are unique GEV, but G(z) is not unique
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Backup

MEVD on common margins

◦ On standard Fréchet margins with pseudo-polars (r, w)

G(z) = exp (−V(z))

with V(z) =
∫
∆

max
j

{
w j

z j
} S(dw), on ∆ = {w ∈ Rp : ||w|| = 1}

and 1 =
∫
∆

w j S(dw), ∀ j, for angular measure S

◦ Condition of multivariate regular variation, MRV

1 − F(tx)
1 − F(t1)

→ λ(x) as t → ∞, x ∈ Rp

useful to prove that F ∈ D(G) for some MEVD G

◦ Lots more
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Backup

Asymptotic dependence ... admitted by MEVD

◦ On uniform margins

χ(u) =
P(U > u, V > u)

P(U > u)
=

C̄(u, u)
1 − u

→ χ as u → 1

◦ χ = 1 perfect dependence

◦ χ ∈ (0, 1) asymptotic dependence, AD

◦ χ = 0 perfect independence

θ(u) =
logP(U ≤ u, V ≤ u)

logP(U ≤ u)
=

log C(u, u)
log u

→ θ as u → 1

◦ θ = 2 − χ

◦ χ and θ describe AD

◦ MEVD admits AD
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Backup

Asymptotic independence ... not admitted by MEVD

◦ On uniform margins

χ̄(u) = 2
logP(U > u)

logP(U > u, V > u)
− 1 = 2

log(1 − u)
log C̄(u, u)

− 1 → χ̄ as u → 1

◦ χ̄ = 1 perfect dependence and AD
◦ χ̄ ∈ (0, 1) asymptotic independence, AI
◦ χ̄ = 0 perfect independence

◦ On Fréchet margins (F(z) = exp
(
−z−1)), assume

P(Z1 > z, Z2 > z)

(P(Z1 > z))1/η
= L(z)

where L is slowly varying : L(xz)/L(z) → 1 as z → ∞
◦ χ̄ = 2η− 1

◦ Idea : use non-extreme value copulas or inverted EV copulas

◦ Also P(Z2 > z|Z1 > z) ≈ Cz1−1/η from above
◦ Idea : assume a max-stable-like normalisation for conditional extremes
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Backup

Extremal dependence (bivariate Gaussian)

◦ Many (almost all?) environmental extremes problems involve asymptotic
independence, at least in part ... bivariate Gaussian is one example!

χ(u) and χ̄(u) for bivariate Gaussian (⇒ χ = 0, χ̄ = ρ)
Colours are correlations ρ on -0.9, -0.8, ..., 0.9 (Recreated from Coles et al. 1999)
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Scatter plots on physical scale

Scatter plots of registered data : StlWnd (green), HndWnd (orange), HndWav(blue)
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Covariate dependence on physical scale

Directional and seasonal dependence. “Direction” is that from which fluid flows measured clockwise from North
StlWnd (green), HndWnd (orange), HndWav(blue)
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Scatter plots on Laplace scale

Registered data on Laplace scale: StlWnd (green), HndWnd (orange), HndWav(blue)
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