Return values subject to uncertainty

Philip Jonathan

Lancaster University, Department of Mathematics & Statistics, UK. Shell Research Ltd., London, UK.

ISSC-ITTC Workshop (Slides at www.lancs.ac.uk/~jonathan)

Return values

Acknowledgement

- Lancaster : Jon Tawn and Jenny Wadsworth
- Shell : David Randell
- Return values : Jonathan et al. [2021]
- A better approach : Towe et al. [2021]

< D > < 🗗

Overview

- Return values
- Problem : incorporating estimation (epistemic) uncertainty
- Possible estimators
- Theoretical orderings of estimators
- Simulation study
- Conclusions and a better way

イロト イロト イヨト イヨト

What is a return value?

- Random variable *A* represents the maximum value of some physical quantity *X* per annum
- The *N*-year return value x_N of *X* is then defined by the equation

$$F_A(x_N) = \Pr(A \le x_N) = 1 - \frac{1}{N}$$

• Typically $N \in [10^2, 10^8]$ years

An alternative definition

- Random variable A_N represents the *N*-year maximum value of *X*
- The *N*-year return value x'_N of *X* can be found from F_{A_N} for large *N*, assuming independent annual maxima since

$$F_A(x_N) = 1 - \frac{1}{N}$$

$$\Rightarrow F_{A_N}(x_N) = \left(1 - \frac{1}{N}\right)^N \approx \exp(-1)$$

• Use $F_{A_N}(x'_N) = \exp(-1)$ to define an alternative return value x'_N

Estimating a return value

- To estimate x_N , we need knowledge of the distribution function F_A of the annual maximum
- We might estimate F_A using extreme value analysis on a sample of independent observations of A
- Typically more efficient to estimate the distribution $F_{X|X>\psi}$ of threshold exceedances of *X* above some high threshold ψ using a sample of independent observations of *X*, and use this in turn to estimate F_A and x_N
- How is this done?

Estimating a return value

• Asymptotic theory suggests for high threshold $\psi \in (-\infty, \infty)$ that

$$F_{X|X>\psi}(x|\psi,\sigma,\xi) = 1 - \left(1 + rac{\xi}{\sigma} \left(x - \psi
ight)
ight)_+^{-1/\sigma}$$

for $x > \psi$, shape $\xi \in (-\infty, \infty)$ and scale $\sigma \in (0, \infty)$

- The full distribution of *X* is $F_X(x) = \tau + (1 \tau)F_{X|X > \psi}(x)$ where $\tau = \Pr(X \le \psi)$
- Thus

$$F_A(x) = \Pr(A \le x) = \sum_{k=0}^{\infty} f_C(k) F_X^k(x)$$

where *C* is the number of occurrences of *X* per annum, with probability mass function f_C to be estimated (say with a Poisson model with parameter λ)

• So what's the problem?

Parameter uncertainty

- x_N can be estimated easily in the absence of uncertainty
- In reality, we estimate parameters λ , ψ , σ and ξ from a sample of data, and we cannot know their values exactly
- How does this epistemic uncertainty affect return value estimates?
- A number of different plausible estimators for return values under uncertainty
- Different estimators perform differently (bias and variance)
- Which estimators are likely to perform reasonably in fairly general circumstances?
- Is it even **sensible or desirable** to estimate return values?

Incorporating uncertainty

• If a distribution $F_{Y|Z}$ of random variable Y is known conditional on random variables Z, and the joint density f_Z of Z is also known, the unconditional predictive distribution \tilde{F}_Y can be evaluated using

$$\tilde{F}_{Y}(y) = \int_{\boldsymbol{\zeta}} F_{Y|\boldsymbol{Z}}(x|\boldsymbol{\zeta}) f_{\boldsymbol{Z}}(\boldsymbol{\zeta}) \, d\boldsymbol{\zeta}$$

• Th expected value of deterministic function *g* of parameters **Z** given joint density *f*_Z is

$$E[g(\mathbf{Z})] = \int_{\boldsymbol{\zeta}} g(\boldsymbol{\zeta}) f_{\mathbf{Z}}(\boldsymbol{\zeta}) \, d\boldsymbol{\zeta}$$

• $\boldsymbol{\zeta} = (\lambda, \psi, \sigma, \xi), Y = A \text{ (or } Y = A_N)$

Return value estimated using expected values of parameters, $x_N(E[\mathbf{Z}])$

 Motivated by the widespread approach of ignoring uncertainty in parameters ζ for estimation of return values

 $x_{N1} = x_N(E[\mathbf{Z}])$

- Simply plug in the mean parameter estimates $E[\mathbf{Z}] = \int_{\zeta} \zeta f_{\mathbf{Z}}(\zeta) d\zeta$
- A related estimator converging to *x*_{N1} with increasing *N*, would be *x*'_N(*E*[**Z**])
- Similar choices of estimator could be based on mode(Z), median(Z), ...

or		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Expected quantile of distribution of *A* with NEP 1 - 1/N, $E[x_N(\mathbf{Z})]$

$$x_{N2} = E[x_N(\mathbf{Z})] = \int_{\boldsymbol{\zeta}} x_N(\boldsymbol{\zeta}) f_{\mathbf{Z}}(\boldsymbol{\zeta}) \, d\boldsymbol{\zeta}$$

- Solve for quantile $x_N(\zeta)$ of the distribution of A with NEP 1 1/N for a large number of parameter choices ζ , and then take the mean
- A related estimator *E*[*x*'_N(*Z*)] is the expected quantile of distribution of *A_N* with NEP exp(−1) (converges to *x_{N2}* as *N* increases)

			ın

Quantile of predictive distribution of *A* with NEP 1 - 1/N, $\tilde{Q}_A(1 - 1/N)$

• First calculated the predictive distribution \tilde{F}_A

$$\tilde{F}_A(x) = \int_{\boldsymbol{\zeta}} F_{A|\boldsymbol{Z}}(x|\boldsymbol{\zeta}) f_{\boldsymbol{Z}}(\boldsymbol{\zeta}) \, d\boldsymbol{\zeta}$$

integrating over parameter uncertainty

• Then find the $1 - \frac{1}{N}$ quantile of \tilde{F}_A

$$\tilde{F}_A(x_{N3}) = 1 - \frac{1}{N}$$

- Write briefly as $x_{N3} = \tilde{Q}_A(1 1/N)$, where \tilde{Q}_A is the predictive quantile (or inverse) function corresponding to \tilde{F}_A
- This would be the "obvious go-to" Bayesian estimate

Quantile of predictive distribution of A_N with NEP exp(-1), $\tilde{Q}_{A_N}(\exp(-1))$

• First calculated the *N*-year predictive distribution F_{A_N}

$$ilde{F}_{A_N}(x) = \int_{\boldsymbol{\zeta}} F_{A_N \mid \boldsymbol{Z}}(x \mid \boldsymbol{\zeta}) f_{\boldsymbol{Z}}(\boldsymbol{\zeta}) \, d\boldsymbol{\zeta}$$

integrating over parameter uncertainty

• Then find the $\exp(-1)$ quantile of \tilde{F}_{A_N}

$$\tilde{F}_{A_N}(x_{N4}) = \exp(-1)$$

• Write briefly as $x_{N4} = \tilde{Q}_{A_N}(\exp(-1))$, where \tilde{Q}_{A_N} is the predictive quantile function corresponding to \tilde{F}_{A_N}

or		

イロト 不得 とくほと くほとう

Summary

- Take average over uncertain parameters, and plug in to return value calculation $q_1 = x_{N1} = x_N(E[\mathbf{Z}])$
- Calculate return value for all sets of estimates independently, then take average $q_2 = x_{N2} = E[x_N(\mathbf{Z})]$
- Calculate "average" annual maximum distribution, then take 1 - 1/N quantile $q_3 = x_{N3} = \tilde{Q}_A(1 - 1/N)$
- Calculate "average" *N*-year maximum distribution, then take exp(-1) quantile $q_4 = x_{N4} = \tilde{Q}_{A_N}(exp(-1))$

Without parameter uncertainty, all these estimators are equivalent
 With parameter uncertainty, all these estimators are different

Theoretical inequalities

• We can show that the estimators have orderings, e.g.

	Inequality	Condition
I1	$q_3 \ge q_4$	Always
I2	$q_2 > q_0$	$\xi_1 > \max(\xi_0, 0)$
I3	$q_3 > q_2$	$1 > \xi_1 > \max(\xi_0, 0)$
I4	$q_1 > q_0$	$\xi_0,\xi_1< 0, \sum_i \sigma_i/\sum_i (-\xi_i) > \sigma_0/(-\xi_0)$
I5	$q_2 > q_0$	$\xi_0, \xi_1 < 0, (1/m) \sum_i (\sigma_i/(-\xi_i)) > \sigma_0/(-\xi_0)$
I6	$q_3 > q_0$	$\xi_0, \xi_1 < 0, \max_{k \in (1,2,,m)}(\sigma_k/(-\xi_k)) > \sigma_0/(-\xi_0)$

- GP parameter set $\mathcal{Z} = \{\xi_i, \sigma_i\}_{i=1}^m$ ordered s.t. $\xi_1 = \operatorname{argmax}_i(\xi_i)$
- ξ_0 and σ_0 are the true underlying data-generating parameters
- Condition $N \rightarrow \infty$ applies to all these cases
- Not specific to maximum likelihood estimation of GP parameters

イロト イロト イヨト イヨ

Simulation study

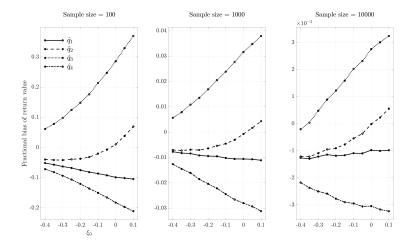
- Data from GP distribution, $\xi_0 \in -0.4, -0.35, ..., +0.1, \sigma_0 = 1$
- Sample sizes $n = 10^2$, 10^3 and 10^4 , and $\lambda = 10^2$ events annually
- Return periods $N = 10^2$ and 10^4 years
- $m = 10^5$ sample realisations
- Fractional bias in return value *q_i*

$$\frac{q_j}{q_0} - 1$$

- Fractional bias in exceedence probability $Pr(A > q_j) - \frac{1}{N}$
- Fractional bias in log exceedence probability

$$\log_{10}(\Pr(A > q_j)) - \log_{10}(\frac{1}{N})$$

Fractional bias in return value, N = 100 years, $\lambda = 100$ annually



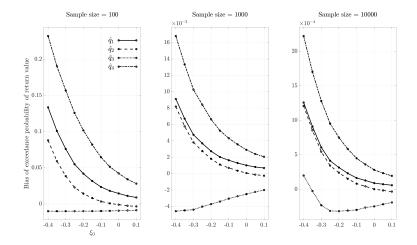
∘ n/λ ⇒ 1, 10, 100 years of data to predict 100 year return value $∘ q_3 > q_2 > q_1 > q_4$, and q_2 shows lowest bias

- 1	01	n:	٦ŧ	h	3	n
J	Q,				а	

Return values

June 2021 17 / 23

Fractional bias in exceedance probability, N = 100, $\lambda = 100$



*q*₃ underestimates exceedance probability *q*₂ shows lowest bias for ξ₀ > -0.2

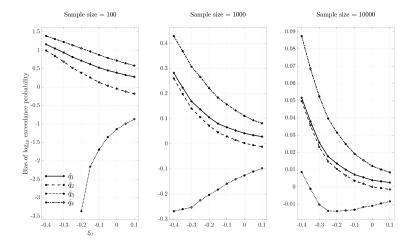
Jonathan

Return values

< D > < 🗗

June 2021 18 / 23

Fractional bias in log exceedance probability, N = 100, $\lambda = 100$



*q*₃ underestimates exceedance probability (huge for small *n*)
 *q*₂ generally shows lowest bias

or			

Return values

June 2021 19 / 23

Findings

Findings

- Different estimators \Rightarrow different estimates and systematic bias
- Why? $E(g(\mathbf{Z})) \neq g(E(\mathbf{Z}))$ in general
- Worse for small sample size *n*, and $\rightarrow 0$ as $n \rightarrow \infty$
- $E[x_N(\mathbf{Z})]$ less biased, estimated from F_A or F_{A_N}
- $\tilde{Q}_A(1-1/N)$ is "obvious go-to", but poor performance \Rightarrow Intuitively, better to take averages at end of calculation **only** \Rightarrow Decision-theoretic approach better
- Maximum likelihood estimation used here; other inference schemes examined also; lots of other estimators possible!
- Uncertainties in return values are also large!
- Do safety factors elsewhere in the design process require return values with assumed characteristics?
- Discussion of differences in return values only makes sense when they have been calculated using the same approach

Jonathan

Return values

June 2021 20 / 23

Decision-theoretic approach

- Consider structural loading *R* over some period for structural strength r_0
- Define a loss function, e.g. $L(R|r_0) = \mathbb{I}(R > r_0)$
- Estimate conditional distribution $F_{R|Z}(r|\zeta)$ for uncertain environmental parameters ζ (computationally challenging!)
- Calculate expected loss

$$E(L|r_0) = \int_{\zeta} \int_{r} L(r|r_0) f_{R|\mathbf{Z}}(r|\zeta) f_{\mathbf{Z}}(\zeta) \, dr d\zeta$$

- Adjust r_0 so that $E(L|r_0)$ is acceptably small
- **Propagate uncertainty in full through design calculation**, and integrate over uncertain parameters at the very end
- No need for return values

Jonathan

Return values

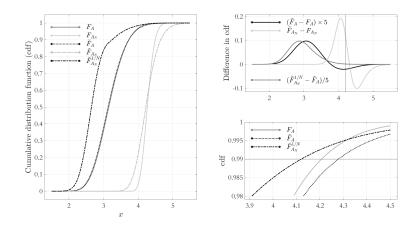
June 2021 21 / 23

References

- P. Jonathan, D. Randell, J. Wadsworth, and J.A. Tawn. Uncertainties in return values from extreme value analysis of peaks over threshold using the generalised Pareto distribution. *Ocean Eng.*, 220:107725, 2021.
- R. Towe, E. Zanini, D. Randell, G. Feld, and P. Jonathan. Efficient estimation of distributional properties of extreme seas from a hierarchical description applied to calculation of un-manning and other weather-related operational windows. *Submitted to Ocean Engineering, draft at www.lancs.ac.uk/~jonathan,* 2021.

Comparing q_3 and q_4

q_3 , q_4 and their uncertainties



• $\xi_0 = -0.2$, sample size $n = 10^3$ and N = 100 years

Jonathan

э June 2021 23 / 23

< ∃ >

< ∃⇒