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Environmental risk

Modelling ocean storm environment

◦ Multiple coupled physical processes

◦ Rare, extreme events
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Environmental risk

Modelling structural risk

◦ Ocean environment is harsh

◦ Marine structures at risk of failure

◦ Reliability standards must be met
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Environmental risk

Optimal design of marine structure

Set-up
◦ A marine system with “strength” specifications S
◦ An ocean environment X dependent on covariates Θ

◦ A structural “loading” Y as a result of environment X and covariates Θ

◦ System utility (or risk) U(Y |S) for loading Y and specification S
◦ Desired U typically specified in terms of annual probability of failure

◦ Y |X , Θ and X|Θ (and U?) subject to uncertainty Z
◦ Z, Θ, X, Y are multidimensional random variables

Optimal design
◦ A model fX|Θ,Z for the environment

◦ A model fY |X ,Θ,Z for environment-structure interaction

◦ A model fΘ|Z for the covariates

E[U|S ] =
∫
ζ

∫
y

∫
x

∫
θ

U(y|S ,ζ) fY |X ,Θ,Z(y|x,θ,ζ) fX|Θ,Z(x|θ,ζ) fΘ|Z(θ|ζ) fZ(ζ) dθ dx dy dζ

⇒ solve for S to achieve required (safety) utility

Jonathan Ocean extremes November 2022 4 / 36



Conventional approach: estimating return values and associated values

Conventional approach: environmental return values

◦ Estimating E[U|S ] is difficult

◦ Ignore the structural response Y

◦ Design to extreme quantile of marginal annual distribution of single X instead

FA(x) =
∫

Z

∫
θ

∑
k

Fk
X|Θ,Z(x|θ,ζ) fC|Θ,Z(k|θ,ζ) fΘ|Z(θ|ζ) fZ(ζ) dθ dζ

where fC|Θ,Z is the density of annual rate of events given covariate Θ.

◦ Set the return value xT (for T = 1000 years say) such that

FA(xT) = 1 − 1
T

◦ Specify conditional return values for other Xs given X = xT

◦ Potentially as a function of covariates

◦ Ambiguous ordering of expectation operators ...
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Conventional approach: estimating return values and associated values

What is a return value?

◦ Random variable A represents the maximum value of some physical quantity X
per annum

◦ The N-year return value xN of X is then defined by the equation

FA(xN) = Pr(A ≤ xN) = 1 − 1
N

◦ Or

xN = F−1
A (1 − 1

N
)

◦ Typically N ∈ [102 , 108] years
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Conventional approach: estimating return values and associated values

An alternative definition

◦ Random variable AN represents the N-year maximum value of X
◦ The N-year return value x′N of X can be found from FAN for large N, assuming

independent annual maxima since

FA(xN) = 1 − 1
N

⇒ FAN (xN) =

(
1 − 1

N

)N
≈ exp(−1)

◦ Use FAN (x′N) = exp(−1) to define an alternative return value x′N
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Conventional approach: estimating return values and associated values

Estimating a return value

◦ To estimate xN , we need knowledge of the distribution function FA of the annual
maximum

◦ We might estimate FA using extreme value analysis on a sample of independent
observations of A

◦ Typically more efficient to estimate the distribution FX|X>ψ of threshold
exceedances of X above some high threshold ψ using a sample of independent
observations of X, and use this in turn to estimate FA and xN

◦ How is this done?
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Conventional approach: estimating return values and associated values

Estimating a return value

◦ Asymptotic theory suggests for high threshold ψ ∈ (−∞, ∞) that

FX|X>ψ(x|ψ,σ ,ξ) = 1 −
(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+

for x > ψ, shape ξ ∈ (−∞, ∞) and scale σ ∈ (0, ∞)

◦ The full distribution of X is FX(x) = τ + (1 − τ)FX|X>ψ(x) where τ = Pr(X ≤ ψ)

◦ Thus

FA(x) = Pr(A ≤ x) =
∞
∑
k=0

fC(k)Fk
X(x)

where C is the number of occurrences of X per annum, with probability mass
function fC to be estimated (say with a Poisson model with parameter λ)

◦ So what’s the problem?
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Conventional approach: estimating return values and associated values

Parameter uncertainty

◦ xN can be estimated easily in the absence of uncertainty

◦ In reality, we estimate parameters λ, ψ, σ and ξ from a sample of data, and we
cannot know their values exactly

◦ How does this epistemic uncertainty affect return value estimates?

◦ A number of different plausible estimators for return values under uncertainty

◦ Different estimators perform differently (bias and variance)

◦ Which estimators are likely to perform reasonably in fairly general circumstances?

◦ Is it even sensible or desirable to estimate return values?
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Conventional approach: estimating return values and associated values

Incorporating uncertainty

◦ If a distribution FY|Z of random variable Y is known conditional on random
variables Z, and the joint density fZ of Z is also known, the unconditional
predictive distribution F̃Y can be evaluated using

F̃Y(y) =
∫
ζ

FY|Z(x|ζ) fZ(ζ) dζ

◦ Th expected value of deterministic function g of parameters Z given joint density
fZ is

E[g(Z)] =
∫
ζ

g(ζ) fZ(ζ) dζ

◦ ζ = (λ,ψ,σ ,ξ), Y = A (or Y = AN)
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Conventional approach: estimating return values and associated values

Different estimators of return value

◦ Uncertain estimates of GP model parameters from fit to sample represented by
random variables Z

◦ Estimate distribution FA|Z of annual maximum event using Z

◦ Estimate N-year return value by finding the 1 − 1/N quantile of FA|Z

◦ Various options available, including:

q1 = F−1
A|Z(1 − 1/N | EZ [Z]) = F−1

A|Z(1 − 1/N |
∫
ζ
ζ fZ(ζ)dζ)

q2 = EZ [F−1
A|Z(1 − 1/N | Z)] =

∫
ζ

F−1
A|Z(1 − 1/N | ζ) fZ(ζ)dζ

q3 = F̃−1
A (1 − 1/N) where F̃A(x) =

∫
ζ

FA|Z(x | ζ) fZ(ζ)dζ

q4 = F̃−1
AN

(exp(−1)) where F̃AN (x) = F̃N
A (x)

q5 = medZ [F−1
A|Z(1 − 1/N | Z)]

◦ For small samples, these have very different properties

Jonathan Ocean extremes November 2022 12 / 36



Conventional approach: estimating return values and associated values

Fractional bias of return value estimators

Fractional bias of return value estimates from different estimators using maximum likelihood, as a function of sample size and true GP shape ξ .
LHS top to bottom: q3, q2, q5, q1, q4.

◦ Knock-on effects for associated values of the form EZ(Y |X = q, Z)
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Better approach: multivariate model of environment

Modelling the non-stationary multivariate extreme environment

◦ Expected utility and return values are dominated by extreme environments

◦ Have to estimate tails of distributions well

◦ Think of a simple Z-free 2-D environment with stationary dependence. Then

FX|Θ,Z(x|θ,ζ) = C
(

FX1 |Θ(x1|θ), FX2 |Θ(x2|θ)
)

and so

fX|Θ,Z(x|θ,ζ) = fX1 ,X2 |Θ(x|θ)

= fX1 |Θ(x1|θ) fX2 |Θ(x2|θ)× c
(

FX1 |Θ(x1|θ), FX2 |Θ(x2|θ)
)

typically

◦ Marginal models (non-stationary, extreme) fX1 |Θ(x1|θ), fX2 |Θ(x2|θ)
◦ Multivariate model on standard marginal scale (stationary, “extreme”) c(u1 , u2)
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Marginal extremes in practice

Generalised Pareto distribution

◦ Suppose we have an exceedance X of high threshold ψ ∈ R
◦ The Pickands-Balkema-De Haan theorem states

lim
ψ→∞P[X ≤ x|X > ψ] = lim

ψ→∞ FX(x)
1 − FX(ψ)

= GP(x|ξ ,σ ,ψ)

= 1 −
(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+
, σ > 0, ξ ∈ R

Theory Practicalities

◦ Derived from max-stability of FX

◦ Threshold-stability property

◦ “Poisson × GP = GEV”

◦ How to isolate independent threshold
exceedances from observed time-series?

◦ How to specify extreme threshold ψ?

◦ ξ , σ , ψ functions of covariates
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Marginal extremes in practice

Motivation

◦ Environmental extremes vary smoothly with multidimensional covariates

◦ Generic modelling framework for different covariate representations

◦ Statistical and computational efficiency for n-D covariates

◦ Thorough Bayesian uncertainty quantification

Typical data for northern North Sea. Storm peak HS on direction, with τ = 0.8 extreme value threshold.
Rate and size of occurrence varies with direction.
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Marginal extremes in practice

Model for size of occurrence

◦ Sample of storm peaks Y over threshold ψθ ∈ R, with 1-D covariate θ ∈ Dθ
◦ Extreme value threshold ψθ assumed known

◦ Y assumed to follow generalised Pareto distribution with shape ξθ , (modified)
scale νθ

fGP(y|ξθ ,νθ) =
1
σθ

(
1 +

ξθ
σθ

(y −ψθ)
)−1/ξθ−1

+
with νθ = σθ(1 +ξθ)

◦ Shape parameter ξθ ∈ R and scale parameter νθ > 0

◦ (Non-stationary Poisson model for rate of occurrence, with rate ρθ ≥ 0)
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Marginal extremes in practice

Covariate representations in 1-D

◦ Index set Iθ = {θs}m
s=1 on periodic covariate domain Dθ

◦ Each observation belongs to exactly one θs

◦ On Iθ , assume
ηs =

n

∑
k=1

Bskβk , s = 1, 2, ..., m, or

η = Bβ

◦ η ∈ (ξ ,ν) (and similar for ρ)

◦ B = {Bsk}m;n
s=1;k=1 basis for Dθ

◦ β = {βk}n
k=1 basis coefficients

◦ Inference reduces to estimating nξ , nν , Bξ , Bν , βξ , βν (and roughnesses λξ , λν)

◦ P-splines, BARS and Voronoi are different forms of B

◦ Tensor products and slick GLAM algorithms for n-D covariate representations
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Marginal extremes in practice

Basis representations ... BARS and others

Bayesian adaptive regression splines (BARS)

◦ n irregularly-spaced knots on Dθ
◦ B consists of n B-spline bases

◦ Order d
◦ Each using d + 1 consecutive knot

locations

◦ Local support

◦ Wrapped on Dθ
◦ Knot locations {rk}n

k=1 vary

◦ Number of basis functions n varies Periodic BARS knot birth and death

P-splines and Voronoi partition

◦ P-splines use fixed number of regularly-spaced knots

◦ Voronoi partition uses piecewise-constant representation, trivially extended to n-D
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Marginal extremes in practice

Posterior parameter estimates for ξ , ν and ρ for northern North Sea

◦ MCMC inference (Gibbs sampling, reversible jump, etc.)

◦ Note colour scheme

◦ Rate ρ and ν very
similar

◦ Voronoi gives almost
constant ξ

◦ Voronoi piecewise
constant

◦ Land shadow effects

◦ General agreement

◦ ... for other
parameters also
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Marginal extremes in practice

Directional posterior predictive distribution of T = 1000-year
maximum

◦ Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles

◦ General agreement

◦ This is more-or-less what the engineer needs to design a “compliant” structure
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Marginal extremes in practice

Extension to 2D : directional-seasonal

2-D tensor product P-spline bases for same northern North Sea location

Marginal posterior median estimates (plus posterior density for τ)
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Multivariate extremes

Recap: model the non-stationary multivariate extreme environment

◦ Expected utility dominated by extreme environments

E[U|S ] =
∫
ζ

∫
y

∫
x

∫
θ

U(y|S ,ζ) fY |X ,Θ,Z(y|x,θ,ζ) fX|Θ,Z(x|θ,ζ) fΘ|Z(θ|ζ) fZ(ζ) dθ dx dy dζ

◦ Copulas (suppressing Z for clarity)

FX|Θ(x|θ) = C
(

FX1 |Θ(x1|θ), FX2 |Θ(x2|θ), ..., FXp |Θ(xp|θ)|θ
)

◦ We already have marginal models FX j |Θ(x j|θ), j = 1, 2, ..., p

◦ Now we need a dependence model or copula C = C(u1 , u2 , ..., up)
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Multivariate extremes

Which dependence function?
Max-stability == multivariate extreme value distribution, MEVD
◦ The copula is not unique
◦ Max-stability is one popular assumption, which itself involves a common but

often unrealistic assumption of component-wise maxima

◦ On uniform margins, extreme value copula: C(u) = Ck(u1/k)

◦ On Fréchet margins (G j(z) = exp
(
−z−1)), G(z) = exp (−V(z)), for exponent

measure V such that V(rz) = r−1V(z), homogeneity order -1
◦ Rich spatial extensions to max-stable processes, MSPs
◦ Multivariate generalised Pareto distribution, MGPD

AD and AI
◦ All MEVD distributions exhibit asymptotic dependence (AD)
◦ Many common distributions (e.g. the multivariate Gaussian) exhibit asymptotic

independence (AI)
◦ So extreme value copulas are not general enough to describe extremal dependence

in nature
◦ Other copula forms do exhibit AI
◦ The conditional extremes model admits AD (on the boundary) and AI
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Multivariate extremes

Conditional extremes ... moving beyond component-wise maxima

◦ X = (X1 , ..., X j , ..., Xp)

◦ Each X and Y have standard Laplace margins ( f (x) = exp(−|x|)/2, x ∈ R)
◦ Seek a model for X|(Y = y) for y > u

◦ Assume we can find p-dimensional scaling a, b > 0 such that

P(Z ≤ z|Y = y) → G(z) as u → ∞
for Z =

X − a(y)
b(y)

◦ Non-degenerate G is unknown, and estimated empirically

◦ Typical scaling is a = αy and b = yβ,α ∈ [−1, 1]p, β ∈ (−∞, 1]p

◦ So simply fit regression model

X|(Y = y) = αy + yβZ, for y > u

◦ α = 1, β = 0 : perfect dependence and AD, andα ∈ (0, 1) : AI

◦ Heffernan and Tawn [2004] find choices forα and β for popular bivariate cases
◦ Bivariate Gaussian : α = ρ2, β = 1/2
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Conditional extremes in practice

Developments of the conditional extremes model

Canonical extensions

◦ Basic: X|(Y = y), y > u
◦ Temporal: “heatwave model” X1 , X2 , ..., Xτ |(X0 = x0), x0 > u
◦ Spatial: “spatial conditional extremes” X1 , X2 , ..., Xs|(X0 = x0), x0 > u

Idea

X1 , X2 , ..., Xp|(Y = y) = αy + yβZ

◦ Impose appropriate structure on parametersα, β and distribution of Z
e.g. α evolves smoothly in space
e.g. Z follows a multivariate Gaussian or extension thereof with appropriate mean and
covariance forms

◦ Make a simplifying assumption
e.g. apply a low-order model repeatedly Xt+1 , Xt+2|(Xt = x) = [α1α2]x + x[β1β2 ][Z1Z2]

Further extensions

◦ Non-stationary and multivariate temporal and spatial models
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Conditional extremes in practice

Multivariate spatial conditional extremes (MSCE)

Motivation

◦ How useful are satellite observations of ocean waves and winds?

◦ Could they become the primary data source for decisions soon?

◦ What are the spatial characteristics of extremes from satellite observations?

Overview

◦ A look at the data : satellite wind, hindcast wind, hindcast wave

◦ Brief overview of methodology

◦ Results for joint spatial structure of extreme scatterometer wind speed, hindcast
wind speed and hindcast significant wave height in the North Atlantic

◦ Implications for future practical applications

Jonathan Ocean extremes November 2022 27 / 36



Conditional extremes in practice

Satellite observation

[Ribal and Young 2019]

Features

◦ Altimetry: HS and U10

◦ Scatterometry: best for U10 and direction

◦ > 30 years of observations

◦ Spatial coverage is by no means
complete: one observation daily if all
well

◦ Calibration necessary (to buoys and
reanalysis datasets, Ribal and Young
2020)

◦ METOP(-A,-B,-C) since 2007

HS : significant wave height (m)

U10: wind speed (ms−1) at 10m (calibrated to 10-minute average wind speed)
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Conditional extremes in practice

JASON and METOP

[n2yo.com, accessed 06.09.21 at around 1100UK] [stltracker.github.io, accessed 27.08.2021 at around 1235UK]

◦ JASON and METOP similar polar orbits

◦ JASON all ascending, METOP all descending over North Atlantic

◦ Joint occurrence of JASON and METOP over North Atlantic rare
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Conditional extremes in practice

In a nut-shell

◦ Transform to standard margins using
independent non-stationary GP models

◦ Condition on large value x of first quantity X01 at one
location j = 0 (green square)

◦ Estimate “conditional spatial profiles” for m > 1
quantities {X jk}

p,m
j=1,k=1 at p > 0 other locations (green,

orange and blue circles)

X jk ∼ Lpl

x > u

X|{X01 = x} = αx + xβZ

Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ MCMC to estimateα, β, µ,σ , δ and ρ, κ, λ

◦ α, β, µ,σ , δ spatially smooth for each quantity

◦ DL = delta-Laplace = generalised Gaussian

◦ Residual correlation Σ for conditional Gaussian
field, powered-exponential decay with distance
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Conditional extremes in practice

Swath wind speeds

Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident
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Conditional extremes in practice

Inference

X jk ∼ Lpl, x > u, X|{X01 = x} = αx + xβZ, Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ Delta-Laplace residual margins

fZ j,k (z j,k) =
δ j,k

2κ j,kσ j,kΓ
(

1
δ j,k

) exp

−
∣∣∣∣∣ z −µ j,k

κ j,kσ j,k

∣∣∣∣∣
δ j,k
 , κ2

j,k = Γ
(

1/δ j,k

)
/Γ
(

3/δ j,k

)
◦ Gaussian residual dependence

Σ∗
A∗( j,k)A∗( j′ ,k′) = λ

|k−k′ |
k,k′ exp

(
−
(

dist(r j , r j′ )

ρk,k′

)κk,k′
)

◦ Piecewise linear forms forα, β, µ,σ , δ with distance using nNod spatial nodes

◦ Adaptive MCMC, Roberts and Rosenthal [2009]
◦ Total of m(5nNod + (3m + 1)/2) parameters
◦ Rapid convergence, 10k iterations sufficient
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Conditional extremes in practice

Parameter estimates

Estimates forα, β, µ, σ and δ with distance, and residual process estimates ρ, κ and λ. Model fitted with τ = 0.75
StlWnd (green), HndWnd (orange), HndWav(blue)

Residual Gaussian field : ρ=scale (need to ×100km), κ=exponent (need to ×5), λ=cross-correlation
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Pragmatic non-stationary multivariate extremes with UQ

Pragmatic non-stationary multivariate extremes with UQ

◦ Fit generalised Pareto marginal models for peaks over threshold data Ẋ and Ẏ
Physics-based identification of peaks from time-series
Multiple thresholds, simple piecewise constant model for covariates Θ
Diagnostics: threshold stability

◦ Transform to standard Laplace scale X and Y
Transform full sample

◦ Fit conditional extremes model X|(Y = y) for y > u
Multiple thresholds, simple piecewise constant covariate model forα
Diagnostics: threshold stability, residual structure

◦ Calculate probabilities of extreme sets
MC simulation, importance sampling
Estimate environmental contours

◦ Free PPC software for MATLAB does all of above
UQ: incorporates epistemic uncertainty using bootstrapping cradle to grave
Model averaging: incorporates multiple models for different threshold combinations
Multidimensional X and covariates
Cross-validation for optimal parameter roughness in marginal and dependence models
Careful return value and associated value definitions
https://github.com/ECSADES/ecsades-matlab
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Summary

Summary

Why?

◦ Careful quantification of “rare-event” risk

◦ Characterise tails of (multivariate) distributions

◦ Limited observations

◦ Combine solid theory and pragmatic application, UQ

◦ Immediate real-world consequences

The next 10 years?

◦ Univariate : fuller covariate descriptions, exploit measurement scale /
sub-asymptotics, UQ, provide real-world decision-support

◦ Multivariate : theoretical development, computational tractability, expansion in
scope (time-series, spatial), serious real-world applications

◦ More demanding regulatory framework

Thanks for listening / Diolch am wrando!
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Summary
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Backup

Marginal extremes

◦ Theory : Embrechts et al. [2003], Beirlant et al. [2004]

◦ Method : Coles [2001], Dey and Yan [2016]

◦ Motivation : Davison and Smith [1990], Chavez-Demoulin and Davison [2005]

◦ Practicalities : Jonathan and Ewans [2013], Feld et al. [2019]

◦ Semi-parametric : Randell et al. [2016], Zanini et al. [2020]

◦ Lots more : Wood [2003]
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Backup

Generalised extreme value distribution

◦ Fn
X is the distribution of the maximum of n independent draws of X

◦ If Fn
X “looks like” Fn′

X , we say FX is max-stable

◦ More formally, FX is max-stable if there exist sequences of constants an > 0, bn,
and non-degenerate Gξ such that

lim
n→∞ Fn

X (anx + bn) = Gξ (x)

◦ We say FX ∈ D(Gξ ) or that FX lies in the max-domain of attraction of Gξ
◦ The Fisher–Tippett–Gnedenko theorem states that Gξ is the generalised extreme

value distribution with parameter ξ

Gξ (y) = exp
(
− (1 +ξy)−1/ξ

)
, ξ ∈ R

◦ For large n, makes sense to model block maxima of n iid draws using Gξ (with
(x −µ)/σ in place of y above)
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Backup

Multivariate extremes

◦ Theory : Beirlant et al. [2004]

◦ Copulas : Joe [2014]

◦ Method : Dey and Yan [2016]

◦ Key ideas in AI : Ledford and Tawn [1996], Ledford and Tawn [1997], Coles et al.
[1999], Heffernan and Tawn [2004]

◦ Modelling across dependence classes : Wadsworth et al. [2017], Huser and
Wadsworth [2020]
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Backup

Multivariate extreme value distribution, MEVD

◦ Xi = (Xi1 , ..., Xi j , ..., Xip), i = 1, ..., n iid p-vectors, distribution F

◦ Mn, j = maxi Xi j, component-wise maximum

◦ The component-wise maximum is not “observed” (especially as n → ∞)

◦ Then for Zn, j = (Mn, j − bn, j)/an, j, normalised with scaling constants:

P(Z ≤ z) = Fn (anz + bn) → G(z) as n → ∞
◦ Non-degenerate G(z) must be max-stable, so ∀k ∈ N, ∃αk > 0,βk s.t.

Gk(αkz +βk) = G(z)

◦ We say F ∈ D(G)

◦ Margins G1 , ..., Gp are unique GEV, but G(z) is not unique
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Backup

MEVD on common margins

◦ On standard Fréchet margins with pseudo-polars (r, w)

G(z) = exp (−V(z))

with V(z) =
∫
∆

max
j

{
w j

z j
} S(dw), on ∆ = {w ∈ Rp : ||w|| = 1}

and 1 =
∫
∆

w j S(dw), ∀ j, for angular measure S

◦ Condition of multivariate regular variation, MRV

1 − F(tx)
1 − F(t1)

→ λ(x) as t → ∞, x ∈ Rp

useful to prove that F ∈ D(G) for some MEVD G

◦ Lots more
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Backup

Asymptotic dependence ... admitted by MEVD

◦ On uniform margins

χ(u) =
P(U > u, V > u)

P(U > u)
=

C̄(u, u)
1 − u

→ χ as u → 1

◦ χ = 1 perfect dependence

◦ χ ∈ (0, 1) asymptotic dependence, AD

◦ χ = 0 perfect independence

θ(u) =
logP(U ≤ u, V ≤ u)

logP(U ≤ u)
=

log C(u, u)
log u

→ θ as u → 1

◦ θ = 2 − χ

◦ χ and θ describe AD

◦ MEVD admits AD
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Backup

Asymptotic independence ... not admitted by MEVD

◦ On uniform margins

χ̄(u) = 2
logP(U > u)

logP(U > u, V > u)
− 1 = 2

log(1 − u)
log C̄(u, u)

− 1 → χ̄ as u → 1

◦ χ̄ = 1 perfect dependence and AD
◦ χ̄ ∈ (0, 1) asymptotic independence, AI
◦ χ̄ = 0 perfect independence

◦ On Fréchet margins (F(z) = exp
(
−z−1)), assume

P(Z1 > z, Z2 > z)

(P(Z1 > z))1/η
= L(z)

where L is slowly varying : L(xz)/L(z) → 1 as z → ∞
◦ χ̄ = 2η− 1

◦ Idea : use non-extreme value copulas or inverted EV copulas

◦ Also P(Z2 > z|Z1 > z) ≈ Cz1−1/η from above
◦ Idea : assume a max-stable-like normalisation for conditional extremes
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Backup

Extremal dependence (bivariate Gaussian)

◦ Many (almost all?) environmental extremes problems involve asymptotic
independence, at least in part ... bivariate Gaussian is one example!

χ(u) and χ̄(u) for bivariate Gaussian (⇒ χ = 0, χ̄ = ρ)
Colours are correlations ρ on -0.9, -0.8, ..., 0.9 (Recreated from Coles et al. 1999)

Jonathan Ocean extremes November 2022 9 / 14



Backup

Conditional extremes in practice

◦ Non-stationary : Jonathan et al. [2014]

◦ Time-series : Winter and Tawn [2016], Tendijck et al. [2019]

◦ Mixture model : Tendijck et al. [2021]

◦ Spatial : Shooter et al. [2021b], Shooter et al. [2021a]

◦ Lots more

◦ Multivariate spatial : Shooter et al. [2022]
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Backup

Scatter plots on physical scale

Scatter plots of registered data : StlWnd (green), HndWnd (orange), HndWav(blue)
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Backup

Covariate dependence on physical scale

Directional and seasonal dependence. “Direction” is that from which fluid flows measured clockwise from North
StlWnd (green), HndWnd (orange), HndWav(blue)
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Backup

Scatter plots on Laplace scale

Registered data on Laplace scale: StlWnd (green), HndWnd (orange), HndWav(blue)
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Backup

Estimating return values and associated values

◦ Return values: Serinaldi [2015], Jonathan et al. [2021]

◦ Associated values : Towe et al. [2022]
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