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◦ Motivation

◦ Marginal extremes

◦ Multivariate conditional extremes
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Motivation

Motivation
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Motivation

Modelling ocean storm environment

◦ Multiple coupled physical processes

◦ Rare, extreme events
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Motivation

Modelling structural risk

◦ Ocean environment is harsh

◦ Marine structures at risk of failure

◦ Reliability standards must be met
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Motivation

Spectacular scale

Offshore Portugal, 24m wave height, November 2017 (The Guardian)

◦ Nazaré is a great source of huge coastal waves
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Motivation

Spectacular scale

Laser readings, 1 January 1995. Wave 25.6m, crest 18.5m (Statoil / Equinor)

◦ Maximum recorded wave height > 30m (multiple events, various sources)

◦ Maximum recorded significant wave height : 19.0m (buoy, North Atlantic, 4 Feb 2013, WMO)
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Motivation

Wave impact damage

Norwegian Dream, Atlantic, 2007
(gcaptain.com)

Ike, Gulf of Mexico, 2008
(Joe Richard)
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Motivation

Optimal design

Set-up

◦ A marine system with “strength” specifications S

◦ An ocean environment X dependent on covariates Θ

◦ A structural “loading” Y as a result of environment X and covariates Θ

◦ System utility (or risk) U(Y |S) for loading Y and specification S

◦ Desired U typically specified in terms of annual probability of failure

◦ Y |X , Θ and X|Θ (and U?) subject to uncertainty Z

◦ Z, Θ, X, Y are multidimensional random variables

Optimal design

◦ Estimate a model fX|Θ,Z for the environment

◦ Estimate a model fY |X ,Θ,Z for environment-structure interaction

◦ Estimate a model fΘ|Z for the covariates

E[U|S ] =
∫

z

∫

y

∫

x

∫

θ
U(y|S , Z) fY |X ,Θ,Z(y|x,θ, z) fX|Θ,Z(x|θ, z) fΘ|Z(θ|z) fZ(z) dθ dx dy dz

⇒ solve for S to achieve required (safety) utility
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Motivation

Return values : conventional engineering practice

◦ Estimating E[U|S ] is difficult

◦ Design to extreme quantile of marginal annual distribution of single X instead

FA(x) =
∫

Z

∫

θ

∫

k
Fk

X|Θ,Z(x|θ, Z) fC|Θ,Z(k|θ, z) fΘ|Z(θ|z) fZ(z) dk dθ dz

where fC|Θ,Z is the density of annual rate of events given covariate Θ.

◦ Set the return value xT (for T = 1000 years say) such that

FA(xT) = 1 −
1

T

◦ Specify conditional return values for other Xs given X = xT

◦ Potentially as a function of covariates

◦ Ambiguous ordering of expectation operators ... a can of worms!
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Motivation

A model for the (non-stationary multivariate extreme) environment

◦ Expected utility and return values are dominated by extreme environments

◦ Have to estimate tails of distributions well

◦ Focus on a simple Z-free 2-D environment with stationary dependence

FX|Θ,Z(x|θ, z) = C
(

FX1 |Θ(x1|θ), FX2 |Θ(x2|θ)
)

for simplicity, so

fX|Θ,Z(x|θ, z) = fX1 ,X2 |Θ(x|θ)

= fX1 |Θ(x1|θ) fX2 |Θ(x2|θ)× c
(

FX1 |Θ(x1|θ), FX2 |Θ(x2|θ)
)

typically

◦ Marginal models (non-stationary, extreme) fX1 |Θ(x1|θ), fX2 |Θ(x2|θ)

◦ Multivariate model on standard marginal scale (stationary, “extreme”) c(u1 , u2)
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Marginal extremes

Marginal extremes

◦ Theory : Embrechts et al. [2003], Beirlant et al. [2004]

◦ Method : Coles [2001], Dey and Yan [2016]
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Marginal extremes

Generalised extreme value distribution

◦ Fn
X is the distribution of the maximum of n independent draws of X

◦ If Fn
X “looks like” Fn′

X , we say FX is max-stable

◦ More formally, FX is max-stable if there exist sequences of constants an > 0, bn,
and non-degenerate Gξ such that

lim
n→∞

Fn
X (anx + bn) = Gξ (x)

◦ We say FX ∈ D(Gξ ) or that FX lies in the max-domain of attraction of Gξ

◦ The Fisher–Tippett–Gnedenko theorem states that Gξ is the generalised extreme
value distribution with parameter ξ

Gξ (y) = exp
(

− (1 +ξy)−1/ξ
)

, ξ ∈ R

◦ For large n, makes sense to model block maxima of n iid draws using Gξ (with
(x −µ)/σ in place of y above)
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Marginal extremes

Generalised Pareto distribution

◦ Now suppose we have an exceedance X of high threshold ψ ∈ R

◦ The Pickands-Balkema-De Haan theorem states

lim
ψ→∞

P[X ≤ x|X > ψ] = lim
ψ→∞

FX(x)

1 − FX(ψ)

= GP(x|ξ ,σ ,ψ)

= 1 −

(

1 +
ξ

σ
(x −ψ)

)−1/ξ

+
, σ > 0, ξ ∈ R

Theory Practicalities

◦ Derived from max-stability of FX

◦ Threshold-stability property

◦ “Poisson × GP = GEV”

◦ How to isolate independent threshold
exceedances from observed time-series?

◦ How to specify extreme threshold ψ?

◦ ξ , σ , ψ functions of covariates

◦ Davison and Smith [1990]
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Marginal extremes in practice

Marginal extremes in practice

◦ Motivation : Chavez-Demoulin and Davison [2005]

◦ Practicalities : Jonathan and Ewans [2013], Feld et al. [2019]

◦ Semi-parametric : Randell et al. [2016], Zanini et al. [2020]

◦ Lots more : Wood [2003]

◦ Non-stationary marginal extremes
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Non-stationary marginal extremes

Motivation

◦ Environmental extremes vary smoothly with multidimensional covariates

◦ Generic modelling framework for different covariate representations

◦ Statistical and computational efficiency for n-D covariates

◦ Full (Bayesian or Bayes-Price?) uncertainty quantification

Typical data for northern North Sea. Storm peak HS on direction, with τ = 0.8 extreme value threshold.
Rate and size of occurrence varies with direction.
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Non-stationary marginal extremes

Model for size of occurrence

◦ Sample of storm peaks Y over threshold ψθ ∈ R, with 1-D covariate θ ∈ Dθ

◦ Extreme value threshold ψθ assumed known

◦ Y assumed to follow generalised Pareto distribution with shape ξθ , (modified)
scale νθ

fGP(y|ξθ ,νθ) =
1

σθ

(

1 +
ξθ

σθ
(y −ψθ)

)−1/ξθ−1

+
with νθ = σθ(1 +ξθ)

◦ Shape parameter ξθ ∈ R and scale parameter νθ > 0

◦ (Non-stationary Poisson model for rate of occurrence, with rate ρθ ≥ 0)
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Non-stationary marginal extremes

Covariate representations in 1-D

◦ Index set Iθ = {θs}m
s=1 on periodic covariate domain Dθ

◦ Each observation belongs to exactly one θs

◦ On Iθ , assume
ηs =

n

∑
k=1

Bskβk , s = 1, 2, ..., m, or

η = Bβ

◦ η ∈ (ξ ,ν) (and similar for ρ)

◦ B = {Bsk}
m;n
s=1;k=1 basis for Dθ

◦ β = {βk}
n
k=1 basis coefficients

◦ Inference reduces to estimating nξ , nν , Bξ , Bν , βξ , βν (and roughnesses λξ , λν)

◦ P-splines, BARS and Voronoi are different forms of B
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Non-stationary marginal extremes

Basis representations ... BARS and others

Bayesian adaptive regression splines (BARS)

◦ n irregularly-spaced knots on Dθ

◦ B consists of n B-spline bases

◦ Order d

◦ Each using d + 1 consecutive knot
locations

◦ Local support

◦ Wrapped on Dθ

◦ Knot locations {rk}
n
k=1 vary

◦ Number of basis functions n varies
Periodic BARS knot birth and death

P-splines and Voronoi partition

◦ P-splines use fixed number of regularly-spaced knots

◦ Voronoi partition uses piecewise-constant representation, trivially extended to n-D

Jonathan Extreme oceans May 2022 19 / 44



Non-stationary marginal extremes

Prior specification

Prior for β

prior density of β ∝ exp

(

−
1

2
β′Pβ

)

◦ P = λD′D, D is a n × n (wrapped) differencing matrix

◦ P-splines: D represents first-difference; prior equivalent to local roughness penalty

◦ BARS and Voronoi: D is In; prior is “ridge-type” for Bayesian regression

Prior for λ

λ ∼ Gamma

Prior for n (BARS and Voronoi)

n ∼ Poisson

Prior for rk , k = 1, 2, ..., n (BARS and Voronoi)

rk ∼ Uniform
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Non-stationary marginal extremes

Inference for GP

Parameter set Ω

◦ P-splines: Ω = {βξ , λξ ,βν , λν} with nξ , rξ , nν and rν pre-specified

◦ BARS and Voronoi: Ω = {nξ , rξ ,βξ , λξ , nν , rν ,βν , λν}

◦ r = {rk}
n
k=1, β = {βk}

n
k=1

Inference

◦ Gibbs sampling when full conditionals available

◦ Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal
mechanisms, mMALA where possible

◦ Reversible-jump for n, r (satisfy dimension-jumping detailed balance)

Basic conditional structure for non-dimension-jumping

f (βη|y, Ω \βη) ∝ f (y|βη , Ω \βη)× f (βη|λη)

f (λη|y, Ω \ λη) ∝ f (βη|λη)× f (λη)

f (rη|y, Ω \ rη) ∝ f (y|rη , Ω \ rη)× f (rη),

◦ η ∈ (ξ ,ν) (and ρ)
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Non-stationary marginal extremes

Posterior parameter estimates for ξ , ν and ρ for northern North Sea

◦ Note colour scheme

◦ Rate ρ and ν very
similar

◦ Voronoi gives almost
constant ξ

◦ Voronoi piecewise
constant

◦ Land shadow effects

◦ General agreement

◦ ... for other
parameters also
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Non-stationary marginal extremes

Fit diagnostic

◦ Empirical tail (blue)

◦ Posterior means and
95% credible
intervals for quantile
levels from different
models

◦ General consistency
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Non-stationary marginal extremes

Directional posterior predictive distribution of T = 1000-year
maximum

◦ Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles

◦ Uncertainties larger for P-splines?

◦ General consistency

◦ This is more-or-less what the engineer needs to design a “compliant” structure
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Non-stationary marginal extremes

Extension to 2D : directional-seasonal

2-D tensor product P-spline bases for same northern North Sea location

Marginal posterior median estimates (plus posterior density for τ)
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Multivariate extremes

Multivariate extremes

◦ Theory : Beirlant et al. [2004]

◦ Copulas : Joe [2014]

◦ Method : Dey and Yan [2016]

◦ Key ideas in AI : Ledford and Tawn [1996], Ledford and Tawn [1997], Coles et al.
[1999], Heffernan and Tawn [2004]

◦ Modelling across dependence classes : Wadsworth et al. [2017], Huser and
Wadsworth [2020]
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Multivariate extremes

Multivariate extreme value distribution, MEVD

◦ Xi = (Xi1 , ..., Xi j , ..., Xip), i = 1, ..., n iid p-vectors, distribution F

◦ Mn, j = maxi Xi j, component-wise maximum

◦ The component-wise maximum is not “observed” (especially as n → ∞)

◦ Then for Zn, j = (Mn, j − bn, j)/an, j, normalised with scaling constants:

P(Z ≤ z) = Fn (anz + bn) → G(z) as n → ∞

◦ Non-degenerate G(z) must be max-stable, so ∀k ∈ N, ∃αk > 0,βk s.t.

Gk(αkz +βk) = G(z)

◦ We say F ∈ D(G)

◦ Margins G1 , ..., Gp are unique GEV, but G(z) is not unique
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Multivariate extremes

MEVD on common margins

◦ On uniform margins, we have extreme value copula: C(u) = Ck(u1/k)

◦ On standard Fréchet margins (G j(z) = exp
(

−z−1
)

)

G(z) = exp (−V(z)) , for exponent measure V

◦ Max-stability : V(rz) = r−1V(z), homogeneity order -1

◦ Rich spatial extensions to max-stable processes, MSPs

◦ Multivariate generalised Pareto distribution, MGPD
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Multivariate extremes

MEVD on common margins

◦ On standard Fréchet margins with pseudo-polars (r, w)

G(z) = exp (−V(z))

with V(z) =
∫

∆

max
j

{
w j

z j
} S(dw), on ∆ = {w ∈ R

p : ||w|| = 1}

and 1 =
∫

∆

w j S(dw), ∀ j, for angular measure S

◦ Condition of multivariate regular variation, MRV

1 − F(tx)

1 − F(t1)
→ λ(x) as t → ∞, x ∈ R

p

useful to prove that F ∈ D(G) for some MEVD G

◦ Lots more
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Multivariate extremes

Asymptotic dependence ... admitted by MEVD

◦ On uniform margins

χ(u) =
P(U > u, V > u)

P(U > u)
=

C̄(u, u)

1 − u
→ χ as u → 1

◦ χ = 1 perfect dependence

◦ χ ∈ (0, 1) asymptotic dependence, AD

◦ χ = 0 perfect independence

θ(u) =
logP(U ≤ u, V ≤ u)

logP(U ≤ u)
=

log C(u, u)

log u
→ θ as u → 1

◦ θ = 2 − χ

◦ χ and θ describe AD

◦ MEVD admits AD
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Multivariate extremes

Asymptotic independence ... not admitted by MEVD

◦ On uniform margins

χ̄(u) = 2
logP(U > u)

logP(U > u, V > u)
− 1 = 2

log(1 − u)

log C̄(u, u)
− 1 → χ̄ as u → 1

◦ χ̄ = 1 perfect dependence and AD

◦ χ̄ ∈ (0, 1) asymptotic independence, AI

◦ χ̄ = 0 perfect independence

◦ On Fréchet margins (F(z) = exp
(

−z−1
)

), assume

P(Z1 > z, Z2 > z)

(P(Z1 > z))1/η
= L(z)

where L is slowly varying : L(xz)/L(z) → 1 as z → ∞

◦ χ̄ = 2η− 1

◦ Idea : use non-extreme value copulas or inverted EV copulas

◦ Also P(Z2 > z|Z1 > z) ≈ Cz1−1/η from above

◦ Idea : assume a max-stable-like normalisation for conditional extremes
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Multivariate extremes

Extremal dependence (bivariate Gaussian)

◦ Many (almost all?) environmental extremes problems involve asymptotic
independence, at least in part ... bivariate Gaussian is one example!

χ(u) and χ̄(u) for bivariate Gaussian (⇒ χ = 0, χ̄ = ρ)
Colours are correlations ρ on -0.9, -0.8, ..., 0.9 (Recreated from Coles et al. 1999)
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Multivariate extremes

Conditional extremes ... moving beyond component-wise maxima

◦ X = (X1 , ..., X j , ..., Xp)

◦ Each X and Y have standard Laplace margins ( f (x) = exp(−|x|)/2, x ∈ R)

◦ Seek a model for X|(Y = y) for y > u

◦ Assume we can find p-dimensional scaling a, b > 0 such that

P(Z ≤ z|Y = y) → G(z) as u → ∞

for Z =
X − a(y)

b(y)
◦ Non-degenerate G is unknown, and estimated empirically

◦ Typical scaling is a = αy and b = yβ,α ∈ [−1, 1]p, β ∈ (−∞, 1]p

◦ So simply fit regression model

X|(Y = y) = αy + yβZ

◦ α = 1, β = 0 : perfect dependence and AD, andα ∈ (0, 1) : AI

◦ Heffernan and Tawn [2004] find choices forα and β for popular bivariate cases

◦ Bivariate Gaussian : α = ρ2, β = 1/2
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Conditional extremes in practice

Conditional extremes in practice

◦ Non-stationary : Jonathan et al. [2014]

◦ Time-series : Winter and Tawn [2016], Tendijck et al. [2019]

◦ Mixture model : Tendijck et al. [2021]

◦ Spatial : Shooter et al. [2021b], Shooter et al. [2021a]

◦ Lots more

◦ Multivariate spatial : Shooter et al. [2022]
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MSCE

Multivariate spatial conditional extremes (MSCE)

Motivation

◦ How useful are satellite observations of ocean waves and winds?

◦ Could they become the primary data source for decisions soon?

◦ What are the spatial characteristics of extremes from satellite observations?

Overview

◦ A look at the data : satellite wind, hindcast wind, hindcast wave

◦ Brief overview of methodology

◦ Results for joint spatial structure of extreme scatterometer wind speed, hindcast
wind speed and hindcast significant wave height in the North Atlantic

◦ Implications for future practical applications
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MSCE

In a nut-shell

◦ Condition on large value x of first quantity X01 at one
location j = 0 (green square)

◦ Estimate “conditional spatial profiles” for m > 1

quantities {X jk}
p,m
j=1,k=1 at p > 0 other locations (green,

orange and blue circles)

X jk ∼ Lpl

x > u

X|{X01 = x} = αx + xβZ

Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ MCMC to estimateα, β, µ,σ , δ and ρ, κ, λ

◦ α, β, µ,σ , δ spatially smooth for each quantity

◦ DL = delta-Laplace = generalised Gaussian

◦ Residual correlation Σ for conditional Gaussian
field, powered-exponential decay with distance
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MSCE

Swath wind speeds

Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident
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MSCE

Scatter plots on physical scale

Scatter plots of registered data : StlWnd (green), HndWnd (orange), HndWav(blue)
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MSCE

Covariate dependence on physical scale

Directional and seasonal dependence. “Direction” is that from which fluid flows measured clockwise from North
StlWnd (green), HndWnd (orange), HndWav(blue)
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MSCE

Scatter plots on Laplace scale

Registered data on Laplace scale: StlWnd (green), HndWnd (orange), HndWav(blue)
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MSCE

Inference

X jk ∼ Lpl, x > u, X|{X01 = x} = αx + xβZ, Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

◦ Delta-Laplace residual margins

fZ j,k
(z j,k) =

δ j,k

2κ j,kσ j,kΓ

(

1
δ j,k

) exp







−

∣

∣

∣

∣

∣

z −µ j,k

κ j,kσ j,k

∣

∣

∣

∣

∣

δ j,k







, κ2
j,k = Γ

(

1/δ j,k

)

/Γ
(

3/δ j,k

)

◦ Gaussian residual dependence

Σ
∗
A∗( j,k)A∗( j′ ,k′) = λ

|k−k′ |
k,k′ exp

(

−

(

dist(r j , r j′ )

ρk,k′

)κk,k′
)

◦ Piecewise linear forms forα, β, µ,σ , δ with distance using nNod spatial nodes

◦ Adaptive MCMC, Roberts and Rosenthal [2009]

◦ Total of m(5nNod + (3m + 1)/2) parameters

◦ Rapid convergence, 10k iterations sufficient
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MSCE

Parameter estimates

Estimates forα, β, µ, σ and δ with distance, and residual process estimates ρ, κ and λ. Model fitted with τ = 0.75
StlWnd (green), HndWnd (orange), HndWav(blue)

Residual Gaussian field : ρ=scale (need to ×100km), κ=exponent (need to ×5), λ=cross-correlation
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MSCE

Summary

Why?

◦ Careful quantification of “rare-event” risk

◦ Characterise tails of (multivariate) distributions

◦ Limited observations

◦ Immediate real-world consequences

The next 10 years?

◦ Univariate : fuller covariate descriptions, exploit measurement scale /
sub-asymptotics, UQ, provide real-world decision-support

◦ Multivariate : theoretical development, computational tractability, expansion in
scope (time-series, spatial), serious real-world applications

An interesting field for research?

◦ Environmental extremes is a nice area if you like a mix of statistical theory,
method, computation and serious physical science-based application
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MSCE
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