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Abstract

Climate change is frequently reported to be the cause of an apparent increase in the occurrence and intensity of
extreme events around the globe. Recent studies have found that increases can be expected in sea state extremes for
some regions of the world’s oceans. We investigate temporal trends in storm peak significant wave height for a central
Tasman Sea location, using output from the FIO-ESM v2.0 CMIP6 Earth System Model of Bao et al. (2020), Song
et al. (2020). These data include time-series of significant wave height for several Shared Socioeconomic Pathways
(SSP) as well as 165-year historical and 700-year pre-industrial realisations. This allows estimates to be made of
100-year return values for significant wave height at the end of the 21st century, for several future atmospheric forcing
scenarios, and comparison of these against estimates for present day, based on the historical data base, and estimates
for pre-industrial conditions. The estimates are made with a non-stationary extreme value analysis method that allows
return values of storm peak significant wave height to be estimated as a function of time and to quantify if changes in
return values are statistically significant. Evidence supporting climate-related changes at the Tasman location studied
is weak. Estimates of most probable changes in 100-year return value for storm peak significant wave height between
2015 and 2100, for the three SSP scenarios considered, suggest the assumption of a 2m increase in 100-year return
value to be reasonable, whilst noting that this value is small compared to the inherent uncertainty (of at least ±5m)
present.

1. Introduction

The effect of climate change on the reliability of marine structures is of considerable concern, yet estimating future
extreme ocean environments is problematic. There is agreement on some effects, such as an increasing proportion
of intense tropical cyclones (Category 4–5) and peak wind speeds of the most intense tropical cyclones globally with
increasing global warming (IPCC 2021). However, uncertainties in specifying a realistic description of climate forcing,
and the variability of climate model output notionally corresponding to the same climate forcing, are large. Estimating
design conditions is a challenging task even when climate change effects are ignored, due generally to small sample
sizes for extreme value model fitting, the effects of covariates, and the assumption of asymptotic model forms (e.g.
Jonathan and Ewans 2013). In the presence of climate change, estimating design conditions is more challenging still.
It is reasonable to expect that estimates of future extreme metocean conditions will be more uncertain as a result of
climate change.

It is likely that typical samples of historical metocean data from measurements and hindcasts incorporate the effects
of long-term (e.g. inter-annual and multi-decadal) atmospheric oscillations, and that existing metocean databases
spanning several decades are in reality not stationary: 100-year return values for significant wave height (HS) estimated
from data representing different decades might themselves be different. In order to assess the strength of evidence for
climate-driven changes in return value, better understanding of the inherent temporal variability of historical data is
also necessary.

Estimates of future extreme sea states can be made from the output of General Circulation Models (GCMs) run
under different climate scenarios at relatively coarse spatial and temporal resolutions. Until recently, these have
not included estimates of sea state parameters. Predictions of wave fields involves either statistical or dynamical
downscaling (e.g. Ewans and Jonathan 2020). Dynamical downscaling involves running numerical wave prediction
models using the GCM data as boundary conditions, providing estimates of HS and other sea-state variables in
space and time at typical hindcast resolutions. We examine the change in 100-year return value for storm peak HS

(Section 3) over a fixed period of P = 86 years, using data sets produced from numerical wave models forced by GCMs.
We focus on output from the CMIP6 FIO-ESM v2.0 model for a neighbourhood of five locations in the Tasman Sea,
at 3 hour temporal resolution. The data considered consist of a quasi-equilibrium 700-year pre-industrial (piControl)
set, a Historical set (of length 165 years), and three future scenario sets (for scenarios SSP126, SSP245, and SSP585,
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each of length 86 years); see Section 2 for more information. For a given location and scenario, values of storm peak
HS (referred to henceforth as Hsp

S ), corresponding to the most intense sea state of individual storm events (assumed
independent) are isolated from time-series of HS (Section 2). Return values for Hsp

S are then estimated using extreme
value (EV) analysis of peaks over threshold (POT). A non-stationary EV model is assumed, with all parameters
varying linearly in time. Parameter estimation is achieved using Bayesian inference (Section 3).

Estimating a non-stationary EV model over a long period of time is statistically more efficient that estimating a
series of stationary models over shorter intervals. For example, Vanem (2015) demonstrates that statistically significant
changes in extreme waves can be identified using a non-stationary analysis of historical and future periods together, but
not when stationary models are fitted to each period separately and compared. Numerous authors have commented on
the advantages of spatial aggregation of estimates to mitigate arbitrary effects in individual GCM runs. For example,
McSweeney and Jones (2013) shows that spatial smoothing of model projections can provide more informative estimates
for a neighbourhood than estimates for single locations in the neighbourhood. The choice of EV threshold level for
analysis of peaks over threshold is also typically a large source of uncertainty in return values. For this reason, we also
ensure that spatial variation of estimates of return value, and their variation with EV threshold level, are not large.
Given this, we generally quantify our findings below in terms of model aggregate estimates of changes in 100-year
return value over all spatial locations and EV threshold levels considered.

The long piControl output allows us to assess the inherent uncertainty of changes in 100-year return value carefully,
based on EV modelling of multiple samples of length 86 years drawn from the 700 years of piControl output. The
Historical output allows comparison of the change in 100-year return value over 86 years from the start to the end of
the Historical period. The SSP output provides a means to estimate the change in 100-year return value of Hsp

S over a
period of 86 years, for three scenarios of different severity, and hence potentially a basis for establishing future offshore
design criteria.

Ewans and Jonathan (2023) provides a detailed analysis of trends in the 100-year return value of Hsp
S from FIO-

ESM v2.0 including piControl, and from a number of CMIP5-driven models, for a variety of climate scenarios, for
locations east of Madagascar and south of Australia. They provide a brief review of recent literature concerning
the effect of climate change on the extreme ocean environment, noting the contributions of Young and Ribal (2019),
Meucci et al. (2020), Morim et al. (2020), Meucci et al. (2022), Albuquerque et al. (2022), Casas-Prat et al. (2022)
and Sardana et al. (2022).

Objective and outline of article

The objective of this article is to quantify the change in 100-year return value for Hsp
S over a period of 86 years at

the specified neighbourhood in the Tasman Sea, based on FIO-ESM v2.0 piControl, Historical and SSP output. The
quantitative assessment of the inherent uncertainty of change in return value corresponding to no climate forcing is
essential in providing a “steady state” or “null distribution”, with which to frame our assessment of changes in return
value under the Historical and SSP forcing scenarios.

The layout of the article is as follows. Section 2 introduces the data, and Section 3 outlines the non-stationary EV
methods used, and the method of estimation of (change in) 100-year return value. Section 4 provides illustrations of
our findings, in terms of the inherent (piControl) uncertainty in change in return value (Section 4.1), the change in
return value seen in the Historical output (Section 4.2), and the change in return value seen for the three SSP scenarios
(Section 4.3). Section 5 provides a brief discussion and conclusions.

2. Data

The data considered are taken from output of the FIO-ESM v2.0 model (Bao et al. 2020, Song et al. 2020), and
consist of values for Hsp

S at a star configuration of five locations in the central Tasman Sea between Australia and New
Zealand, shown in Figure 1. The locations are referred to as Centre (C), North (N), South (S), East (E) and West
(W). At each location, data for three CMIP6 experiments are considered (Table 2 of Song et al. 2020) : a 700-year
pre-industrial period (piControl: nominal years 301-1000), a 165-year historical period (years 1850-2014), and three
86-year future scenarios (SSP126, SSP245 and SSP585, corresponding to radiative forcing of 2.5, 4.5 and 8.5 Wm−1

respectively in 2100, all for the years 2015-2100). Storm peak values are isolated from the time-series of 3-hourly HS in
each case, using the method of Ewans and Jonathan (2008). Storm events are identified for statistical analysis of peaks
over threshold, by isolating continuous intervals of HS between consecutive up- and down-crossings of a pre-specified
threshold level, specified so that more than 20 but not exceeding 25 peaks are selected per annum, for each data set.
The maximum value in a storm is referred to as the storm peak HS (Hsp

S ), the input for subsequent non-stationary
extreme value analysis.

Our main interest is to understand changes in the tail characteristics of Hsp
S over a period of 86 years of output, for

the different climate scenarios. Since 86 years is the longest period of data available for all scenarios, we choose this
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Figure 1: Locations considered in the central Tasman Sea, referred to as Centre (C), North (N), South (S), East (E) and West (W) in the
obvious sense. Also shown are the land masses of Australia (left) and New Zealand (right), and bathymetry.

as the standard period for all comparisons below. As a base case, corresponding to inherent steady-state conditions,
we quantify changes in Hsp

S tail for the piControl output over the time period 86 years. Since the piControl data
is of length 700 years, we can achieve this by selecting a representative number of subintervals of piControl data,
each of length 86 year, selected from 700 years of piControl data (for years 301-1000) such that the starting year
for subintervals is approximately uniformly distributed on the interval of piControl data. A total of 25 subintervals
are used in the current work. The spread of estimates (e.g. of return value) over the 25 subintervals gives a direct
quantification of inherent piControl uncertainty. Furthermore, we can isolate Start and End periods of the Historical
data (length 165 years), as the first and last 86 years of that output (recognising that there will be some overlap
between the two subintervals), and then assess whether the changes in the 100-year return value for the Start and End
Historical subintervals are similar.

Figure 2 illustrates the tail characteristics of all data considered in terms of scatter plots of the ordered 40 largest
values ofHsp

S from a particular climate scenarios against the piControl “Standard” or “expected” tail. This is estimated
as the mean ordered sequence of top 40 values of Hsp

S over the 25 random subintervals of piControl data. That is,
if x(i),j is the ith largest value of Hsp

S from random subinterval j, j = 1, 2, ..., 25, then x̄(i) =
∑
j x(i),j/25 is the ith

largest value of piControl Standard tail. Lines falling above the y = x guide indicate tails “longer” than the piControl
Standard tail in each panel. From the top left panel, we see that there is some difference between the tails of Hsp

S

for the Start and End Historical data, and the piControl Standard. It appears that the largest values in the Start
Historical period are larger than their counterparts in the piControl Standard, but that the largest values in the
End Historical period are smaller than their piControl counterparts. The remaining panels indicate little evidence
of disparity between SSP and piControl Standard for scenarios SSP126 and SSP245. For SSP585, it appears that
the largest values of Hsp

S are larger than their piControl Standard counterparts. Nevertheless, there is considerable
variability in the position of lines for different locations.
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Figure 2: Comparison of the ordered 40 largest values of Hsp
S from different climate scenarios with the piControl “Standard” tail: Start

and End Historical period (top left), SSP126 (top right), SSP245 (bottom left) and SSP585 (bottom right). In each panel, individual lines
illustrate the relationship for each of five locations (C, N, S, E, W). The line y = x is added for guidance.

3. Methodology

The statistical methodology used is described in Ewans and Jonathan (2023) and is summarised here. We use
generalised Pareto (GP) regression to estimate a model for a set of observations {xti , ti}ni=1 of peaks over threshold of
storm peak HS events Xt at times ti ∈ (0, P ), within which all model parameters are assumed to vary linearly over
the period of observation, unless stated otherwise. That is, for any model parameter η, we assume that

ηt = η(t) = ηS +
t

P
(ηE − ηS), for t ∈ (0, P ] (1)

in year t, where ηS and ηE are the parameter values at the start year (e.g. 2015) and end year (e.g. 2100) of P (e.g.86)
years of data to be estimated. We assume that Xt|Xt > ψt follows the GP distribution with threshold parameter
ψt ∈ R, scale σt > 0 and shape ξt ∈ R for t ∈ (0, P ) with distribution function

FGP(x|Xt > ψt, ψt, σt, ξt) = 1−
[
1 +

ξt
σt

(x− ψt)

]−1/ξt

(2)

when ξt ̸= 0 and 1 − exp(−(x − µt)/σt) otherwise. Model parameters ηt ∈ {σt, ξt} vary with t as described in
Equation 1. To use Equation 2 in practice also requires a model for EV threshold ψt. Here we use quantile regression
with lack-of-fit criterion

ℓψ = τ

n∑
i,ri≥0

|ri|+ (1− τ)

n∑
i,ri<0

|ri| (3)

for residuals ri = xti−ψti , and some fixed quantile non-exceedance probability τ ∈ [0, 1]. Equation 3 can be interpreted
as a Laplace likelihood for estimation. Since estimation of an optimal τ is problematic in general, models are estimated
for a wide range of values of τ exceeding the mode of the empirical distribution of Xt, and sensitivities of inferences
to τ assessed. In this work, we examine the performance of GP models over four choices of EV threshold. These
are specified in terms of the non-exceedance probability (NEP) to which they correspond, and referred to henceforth
as NEP1-4. NEP1 corresponds to τ = 0.5, and NEP4 to the non-exceedance probability which leaves 30 threshold
exceedances remaining for EV analysis. Values of τ for intermediate NEP2 and NEP3 are then equally spaced (on log
scale) between those of NEP1 and NEP4. The asymptotic GP model form is likely to be more appropriate for NEP4
in general, and hence the bias of inference smallest; but the uncertainty in parameter estimates is likely to be lowest
for NEP1: a classic bias-variance trade-off. To use Equation 2 for return value estimation, we also need to estimate
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the annual rate of occurrence ρt of threshold exceedances in time for given τ . We achieve this using Poisson regression
(e.g. Chavez-Demoulin and Davison 2005, Ross et al. 2017) with density

f({ct} | ρt) = exp

(
−

P∑
t=1

ρt

)
P∏
t=1

ρctt (4)

where {ct}Pt=1 are empirical annual counts of threshold exceedances, and ρt is also parameterised as in Equation 1.
For GP-distributed threshold exceedances, and Poisson-distributed rate of threshold exceedance, the distribution

of the annual maximum is known to be GEV-distributed (e.g. Jonathan and Ewans 2013). Hence, in the absence
of parameter uncertainty, the T -year return value Qt at year t (for T = 100 years) is estimated as the p = 1 − 1/T
quantile of this distribution. Specifically

Qt =
σt
ξt

[(
− log p

ρt

)−ξt
− 1

]
+ µt (5)

when ξt ̸= 0 and µt − σt log[−(1/ρt) log p] otherwise. Note that since all model parameters change in time, then so
does the value of Qt.

Parameter estimation is undertaken in a sequential manner using Bayesian inference. First we perform quantile
regression, generating a sample {ψ̂Sk , ψ̂Ek }

nI

k=1 of size nI from the joint posterior distribution of EV threshold parameters.
We then use the non-stationary threshold corresponding to posterior mean parameter estimates from the quantile
regression, (a) in Poisson regression, to generate a sample {ρ̂Sk , ρ̂Ek }

nI

k=1 from the joint posterior of ρ; and (b) in GP

regression to sample {σ̂Sk , σ̂Ek , ξ̂Sk , ξ̂Ek }
nI

k=1 from the joint posterior of GP parameters, where nI > 10000. These sets of
posterior parameters are used to estimate the distribution of T -year return value, and in particular to compare the
estimates Q1 (for the first year) with QP (for the last year, P = 86) with T = 100. Further details are provided in
Ewans and Jonathan (2023).

4. Analysis

Here we quantify climate-related trends in the 100-year return value for Hsp
S for the neighbourhood of interest,

under the various forcing scenarios. We use the piControl data as a base case for comparison, corresponding to inherent
steady-state behaviour.

Comparisons are made in terms of two quantities, ∆Hsp
S100 and med∆Hsp

S100. For a given location, EV threshold
level, climate scenario and potentially subinterval of the climate output, we define ∆Hsp

S100 as the difference between the
estimates of 100-year return value at the end (QP , see Equation 5) and the start (Q1) of each sample of P = 86 years
of data considered. EV analysis of this sample using MCMC provides 1000 estimates from the posterior distribution
of ∆Hsp

S100 (namely the final 1000 iterations from the MCMC analysis post burn-in). The median value of ∆Hsp
S100

over MCMC iterations, referred to as med∆Hsp
S100 is a useful central summary statistic of these 1000 estimates.

Since we believe that the Hsp
S tail for the five locations under consideration will be very similar (for given EV

threshold level, climate scenario and potentially subinterval of the climate output), and in particular that differences
between locations are more likely due to arbitrary GCM-wave model run effects rather than long-term physics, it
is reasonable to model average estimates for the change in 100-year return value over locations (providing location
differences are not implausibly large, indicating more fundamental issues with GCM-wave model output, or the EV
analysis performed). Similarly, selection of a single best EV threshold level for POT analysis is problematic; therefore
it is reasonable to model average estimates over a set of plausible threshold choices. Final estimates for the distribution
of the change in 100-year return value over 86 years (or summary statistics of that distribution, such as the median) for
a given climate scenario will therefore be model averages over five locations, and four EV thresholds and potentially
25 subintervals of the piControl output.

In Section 4.1, we estimate the distribution of ∆Hsp
S100 and med∆Hsp

S100 for subintervals of length 86 years of the
piControl output. In Section 4.2, we compare estimates for the distribution of ∆Hsp

S100 and med∆Hsp
S100 for the Start

and End Historical output with that for the piControl output. In Section 4.3, we compare estimates for the distribution
of ∆Hsp

S100 and med∆Hsp
S100 for the SSP126, SSP245 and SSP585 output with that for piControl.

4.1. Inherent variability in return value over 86 years

We begin by considering the inherent uncertainty of ∆Hsp
S100 and med∆Hsp

S100. The black dashed curve in Figure 3
represents the empirical density of ∆Hsp

S100 over all locations, EV threshold levels and piControl subintervals (therefore
estimated using a set of 5× 4× 25× 1000 = 500, 000 values). The black dotted line in the figure is the corresponding
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Figure 3: Empirical density (black dashed) of ∆Hsp
S100 over all locations, EV threshold levels and piControl subintervals. Empirical density

(black dotted) of ∆Hsp
S100 for the Centre location, NEP4 and the 13th piControl subinterval (with starting value at year approximately

650). Empirical density (black solid) of med∆Hsp
S100 over all locations (C, N, S, E, W), EV threshold levels (NEP1-NEP4) and piControl

subintervals (with 25 starting years uniformly spread on the interval of piControl data).

density for the Centre location, EV threshold level NEP4 and the 13th piControl subinterval (with starting year
approximately midway between years 301 and 1000, at around year 650). Comparing the dashed and dotted curves
therefore gives some impression of the size of inherent uncertainty, with likely contributing factors from genuine
temporal non-stationarity combined with epistemic uncertainty from a limited sample for EV analysis. The black solid
curve is the empirical density of med∆Hsp

S100 over locations, EV threshold levels and piControl subintervals (therefore
estimated using a set of 5× 4× 25 = 500 values).

From the figure we see that the most probable value of the change ∆Hsp
S100 in the 100-year return value over

a period of 86 years (black dashed) is approximately zero, as would be expected given that the piControl output
represent a pre-industrial climate with no climate forcing. Further, the most probable med∆Hsp

S100 (black solid) is
also approximately zero. However, empirical densities for ∆Hsp

S100 and med∆Hsp
S100 are very broad, approximately

±5m at half height. The density of ∆Hsp
S100 for the specific combination of location, EV threshold level and piControl

subinterval indicated, is similar in general shape to that of ∆Hsp
S100 over all combinations, except that the density is

displaced to the left by approximately 2m. That is, estimates of med∆Hsp
S100 and med∆Hsp

S100 from analysis of Hsp
S

from an SSP output, with magnitudes up to 5m are entirely consistent with the inherent uncertainty of the piControl
data.

4.2. Variability in return value over early and late historical periods of 86 years

Now we consider the variability of ∆Hsp
S100 and med∆Hsp

S100 for the Start and End Historical intervals introduced
in Section 2. Figures 4 and 5 show estimated empirical distributions for ∆Hsp

S100 and med∆Hsp
S100 over locations and

EV threshold levels for the Start and End Historical samples in orange dashed and brown dashed respectively. The
figures also show corresponding “null distribution” estimate from the piControl data, reproduced from Figure 3.

For the Start Historical period, the figures indicate negative mode estimates of approximately -1m for ∆Hsp
S100

(Figure 4) and approximately -1.5m for med∆Hsp
S100 (Figure 5). Otherwise, differences between empirical densities for

∆Hsp
S100 and med∆Hsp

S100 for the Start and End Historical periods, and the corresponding “null densities” estimated
using the piControl data are small. There is some evidence, e.g. a left-hand shoulder on the empirical densities
for ∆Hsp

S100 and med∆Hsp
S100 for the End Historical period, suggesting a further reduction in return value, but this

evidence is very weak.

4.3. Variability in return value over 86 years under SSP climate scenarios

Finally, we consider the variability of ∆Hsp
S100 and med∆Hsp

S100 for the SSP126, SSP245 and SSP585 output.
Figures 6 and 7 give empirical densities for ∆Hsp

S100 and med∆Hsp
S100 (over locations and EV threshold levels) for

each scenario, and compare these with the corresponding “null distribution” estimates from the piControl data, again
reproduced from Figure 3.
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Figure 4: Empirical densities for ∆Hsp
S100 estimated over all locations (C, N, S, E, W) and EV threshold levels (NEP1-NEP4), for the Start

(orange dashed) and End (brown dashed) Historical periods. Also shown for comparison (black dashed) is the corresponding empirical
density for ∆Hsp

S100 from the piControl data (over all locations, NEP levels and piControl subintervals), reproduced from Figure 3.

Figure 5: Empirical densities for med∆Hsp
S100 estimated over all locations (C, N, S, E, W) and EV threshold levels (NEP1-NEP4), for

the Start (orange solid) and End (brown solid) Historical periods. Also shown for comparison (black solid) is the corresponding empirical
density for med∆Hsp

S100 from the piControl data (over all locations, NEP levels and piControl subintervals), reproduced from Figure 3.
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Figure 6: Empirical densities for ∆Hsp
S100 estimates over all locations (C, N, S, E, W) and EV threshold levels (NEP1-NEP4) for the

SSP126 (red dashed), SSP245 (green dashed) and SSP585 (blue dashed) climate scenarios. Also shown for comparison (black dashed)
is the corresponding empirical density for ∆Hsp

S100 from the piControl data (over all locations, NEP levels and piControl subintervals),
reproduced from Figure 3.

Figure 7: Empirical densities for med∆Hsp
S100 estimates over all locations (C, N, S, E, W) and EV threshold levels (NEP1-NEP4) for

the SSP126 (red solid), SSP245 (green solid) and SSP585 (blue solid) climate scenarios. Also shown for comparison (black solid) is the
corresponding empirical density for med∆Hsp

S100 from the piControl data (over all locations, NEP levels and piControl subintervals),
reproduced from Figure 3.
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From the figures we see that the modes of the distributions of ∆Hsp
S100 and med∆Hsp

S100 lie at approximately +2m
and +1.5m respectively for SSP126, and at approximately +2m and +3m for SSP245, suggesting an increase in return
value for these scenarios. However, for scenario SSP585, the most probable values for both ∆Hsp

S100 and med∆Hsp
S100

are both less than 0.5m in magnitude. It is interesting that the density of med∆Hsp
S100 for scenario SSP585 is narrower

than for the other scenarios and piControl, and centred around zero. That is, the median value of the posterior for
∆Hsp

S100 over location and threshold NEP under SSP585 appears for some reason more stable for the data analysed.
Figure 9 in the discussion section provides further illustration. Once again however, we note that all these differences
are small compared to the inherent uncertainties present.

5. Discussion and conclusions

In this work, we examine data for storm peak significant wave height (Hsp
S ) from the FIO-ESM v2.0 Earth System

Model, for five locations in a neighbourhood in the central Tasman Sea between Australia and New Zealand, for a
number of different climate scenarios.

The piControl output provides a useful base case to assess the size of changes in 100-year return value for Hsp
S .

We find that the most probable value of the change ∆Hsp
S100 in the 100-year return value over a period of 86 years is

approximately zero, and that the most probable change med∆Hsp
S100 in the median 100-year return value over 86 years

is also approximately zero. However, empirical densities for ∆Hsp
S100 and med∆Hsp

S100 are very broad: we would not
be particularly surprised by a change in the 100-year return value for Hsp

S over 86 years, or its median value, of ±5m.
Exploratory analysis of Historical Hsp

S (for years 1850-2014) indicates that the largest values of Hsp
S in the first

86 years (1850-1935, referred to as “Start Historical”) are somewhat larger than the typical largest values observed
in a contiguous period of 86 years from the pre-industrial piControl data (for nominal years 301-1000); further, the
largest values of Hsp

S in the last 86 years (1929-2014, referred to as “End Historical”) are somewhat smaller than the
typical largest values observed in a contiguous period of 86 years from the pre-industrial piControl data. Overall, this
represents weak evidence in support of a slight reduction in storm severity over the course of the Historical period.
The typical reduction in maximum Hsp

S is approximately 1m; however, this change cannot be regarded as “significant”
in a statistical sense. Non-stationary extreme value analysis for the Start Historical period provides weak evidence in
favour of a reduction in the 100-year return value (e.g. a negative mode estimate of approximately -1m for ∆Hsp

S100 and
approximately -1.5m for med∆Hsp

S100). The differences between the empirical densities for ∆Hsp
S100 and med∆Hsp

S100

and the corresponding “null densities” estimated using the piControl data are small. There is some evidence, e.g. a
left-hand shoulder on the empirical densities for ∆Hsp

S100 and med∆Hsp
S100 for the End Historical period, suggesting a

further reduction in return value, but this evidence is very weak. Moreover, the magnitudes of these effects are small
relative to the inherent uncertainty (±5m) observed in the piControl output.

There is no evidence that the largest values of Hsp
S from model output corresponding to forcing scenario SSP126

and SSP 245 are different to typical largest values from the piControl output. For scenario SSP585 however, the
very largest values of Hsp

S are approximately 1.5m larger than typical largest values from piControl. Estimates for
the distributions of ∆Hsp

S100 and med∆Hsp
S100 from non-stationary extreme value analysis suggest that the 100-year

return value for Hsp
S increases under scenario SSP126; the modes of the distributions of ∆Hsp

S100 and med∆Hsp
S100 lie at

approximately +2m and +1.5m respectively. The story is similar for scenario SSP245; the modes of the distributions
of ∆Hsp

S100 and med∆Hsp
S100 lie at approximately +2m and +3m. However, for scenario SSP585, the most probable

values for both ∆Hsp
S100 and med∆Hsp

S100 are both less than 0.5m in magnitude.
In order to investigate the different characteristics of the empirical densities for ∆Hsp

S100 corresponding to piControl
and SSP scenarios shown in Figure 6, Figure 8 provides plots of densities estimated with specific choices of location
and EV threshold level. The figure is comprised of four panels, one for each of piControl, SSP126, SSP245 and SSP585.
Within each panel, dashed lines represent densities estimated using either EV threshold levels NEP1 or NEP2, for
each of the five spatial locations. Similarly, solid lines represent densities estimated using either EV threshold levels
NEP3 or NEP4. Hence there are 10 lines, 5 dashed and 5 solid, per panel. Estimates for piControl and SSP585
show considerable consistency; we cannot see obvious differences associated with change of location or EV threshold.
However, for SS126 and SSP245, a right-hand shoulder is present. Further investigation indicates that the shoulder
appears at least in part to be associated with zonal variation in ∆Hsp

S100 for SSP126 and meridional variation for
SSP245. However, there appears not to be a clear effect with EV threshold level for either scenario. We speculate that
the source of zonal and meridional effects may be the arbitrary GCM-wave model run effects discussed in Section 4,
since in reality we do not expect to find systematic variation in return value over the relatively small extent of the
spatial neighbour examined. Figure 9 illustrates the corresponding values of med∆Hsp

S100 over all locations, thresholds
and SSP scenarios. There is some evidence for systematic effects e.g. higher values across NEPs for location C
and SSP245; lower values across NEPs for location W and SSP585; and lower values across locations for NEP1 and
SSP585. More generally, we believe these results provide a warning against over-interpretation of specific EV analyses
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Figure 8: Empirical densities of ∆Hsp
S100 estimates for individual combinations of each location (C, N, S, E, W) with EV threshold levels

NEP1-NEP2 (dashed) and with NEP3-NEP4 (solid), for piControl (top left, black), SSP126 (top right, red), SSP245 (, bottom left, green)
and SSP585 (bottom right, blue) climate scenarios. Empirical densities for piControl are model averages over estimates for the 25 piControl
subintervals.

Figure 9: VALUES OF med∆Hsp
S100 FOR ALL COMBINATIONS OF LOCATION (Y-AXIS PER PANEL), THRESHOLD NEP (X-AXIS

PER PANEL) AND SSP CLIMATE SCENARIOS (DIFFERENT PANELS). A COMMON COLOUR SCALE IS IMPOSED ACROSS
PANELS.
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which may be sensitive to arbitrary modelling effects, and the prudence of careful model averaging to reveal persistent
features. Accordingly, we believe that model averaging over analysis of output from multiple GCM-wave models, and
ensembles from given GCM-wave model, will prove advantageous.

In conventional statistical model selection, we seek the simplest model that explains the data. When evidence for
non-stationarity in a sample of data is relatively weak, we might decide that a stationary model was the appropriate
parsimonious choice. However, using Bayesian inference, there is little disadvantage to estimating simple non-stationary
EV models over stationary analogues, even when the extent of non-stationarity is small. Indeed, when non-stationary
models are used, we can estimate directly from the posterior distributions of parameters the importance of non-
stationary effects. In the current work, we have chosen to visualise the extent of non-stationarity in terms of the
change in 100-year return value, a structure variable of direct interest for metocean design. From figures such as
Figure 8, we can see that the posterior density of ∆Hsp

S100 includes zero in most cases considered, and therefore that
the effects of non-stationarity are relatively small for the current application. On inspection of posterior distributions
for GP shape parameter from each of the 60 combinations of location, threshold NEP and SSP climate scenario
considered, we find that the median change over the period of data is positive in 45 cases. However, as would be
expected from theory, we also note a general negative correlation between change in GP shape and change in GP
scale over the period of data. Moreover, 44 of the 60 cases yield negative posterior median values for the change in
rate of EV threshold exceedance, suggesting a general reduction in the rate of occurrence of extreme events over the
period of the data. One advantage of presenting inferences for a structure variable such as return value, is that we
combine uncertain knowledge for a number of parameters into uncertainty about a single quantity, which is more easily
interpreted.

From a design perspective for year 2100 at this location, with no preference regarding climate scenario and notwith-
standing large uncertainties, we might conclude that planning for an increase in 100-year return value for Hsp

S of around
2m relative to 2015 would be wise. However, the evidence in favour of a climate-driven change in Hsp

S is weak. More
generally, we hope that the approach adopted in this work, particularly (1) non-stationary extreme value analysis and
the uncertainty quantification it allows, (2) exploitation of piControl data to estimate inherent uncertainty, and (3)
appropriate model averaging over space and other sources of model uncertainty, will prove generally useful to metocean
practitioners.
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