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Extreme Value Analysis of 
North Sea Storm Severity 
In this paper we consider the estimation of  North Sea storm severity, for storms with 
return periods in the interval 100 to 500 yr. The analysis consists of." modeling the 
tail-distribution for a set of data for storm severity (using, e.g., storm hindcast data); 
estimating extreme storm severity; estimating confidence intervals for extreme storm 
severity; validating the bias and variance of estimates using simulation studies, for 
known underlying model forms; and estimating the robustness of  extreme quantile 
estimates with respect to misspecification of  the underlying model for the tail-distribu- 
tion of storm severity. Applications to NESS (Northern European Hindcast Study) 
hindcast data at clusters of locations in the northern, central and southern North 
Sea are considered. Results suggest, in particular, the existence of a physical upper 
limit for storm severity in the North Sea and a close to constant value for the extreme 
value index, ~ ~ -0.2. 

1 Introduction 
Design and re-assessment of offshore structures requires the 

modeling of extreme ocean environments and structural loads, 
which occur on average as seldom as once every 100-10,000 
yr. In the North Sea, meteorological and oceanographic records 
extend over a few decades. Therefore, we need to extrapolate 
to environmental conditions far beyond the domain of the set 
of measurements. 

As a basis for extreme value estimation, we have used data 
sets of significant wave height from the NESS hindcast (Peters 
et al., 1993). NESS uses 25 yr of meteorological data (atmo- 
spheric pressure, wind speed, etc., at various locations) for the 
period 1964-1989 as input to a wave-field model from which 
met-ocean conditions are estimated once every 3 h, on a grid 
of locations throughout the North Sea. The NESS hindcast con- 
tains 3-h sequential estimates for the significant wave height 
Hs (equivalent to average energy density per unit area) within 
the wave field. We identify each storm as an interval within 
which Hs exceeds a certain threshold. The seVerity of each 
storm is then characterized by the most probable maximum 
wave height (HMp) within the storm (Tromans and Vander- 
schuren, 1995). 

We have examined hindcast data for five adjacent NESS grid 
locations (forming a cross configuration with a central point) in 
each of the northern, central, and southern North Seas (denoted 
henceforth as NNS 1-NNS5, CNS 1-CNS5, SNS 1-SNS5, respec- 
tively), and used various extreme value models to make predic- 
tions of extreme storm severity. In the NNS, adjacent grid loca- 
tions are 30 km apart, but in the CNS and SNS, a spacing of 
10 km was employed (Peters et al., 1993). 

An outline of the analysis is given in the forthcoming. The 
first step is to fit a parametric Pareto model to the tail of the 
distribution of storm severity (estimated from the hindcast 
data). This is described in detail in Section 2. Particular atten- 
tion needs to be paid to estimating the variability of model 
parameters; we use a studentized bootstrap resampling scheme. 
The next step is to estimate extreme (e.g. 10"-yr) storm severi- 
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ties and appropriate confidence intervals using the fitted model. 
This is described in Section 3. 

In calculating confidence intervals for model parameter 
and extreme quantile estimates, a number of theoretical as- 
sumptions are necessary. However, we can use brute-force 
simulation studies to test how good our confidence intervals 
actually are. In Section 4, we report the results of extensive 
simulations used to estimate coverage probabilities for the 
interval estimates for model parameters and extreme quan- 
tiles, assuming always that the true underlying distribution 
is GPD. In fitting a particular model to the hindcast data, we 
naturally assume that the model is appropriate for the hind- 
cast data, but there is no way to prove this in general. We 
would, therefore, like to estimate the robustness of our model 
parameter and extreme quantile estimates with respect to 
(small) misspecifications of the underlying model. We do 
this; again by means of simulation, in Section 4. Finally, 
conclusions are drawn in Section 5. 

This paper documents an approach to the estimation of ex- 
treme storm conditions for locations in the North Sea. The 
results quoted should be viewed as examples of the methodol- 
ogy: estimates not polished values for use in design. We have 
made no allowances for the severe storms which occurred after 
the NESS period, bias and noise in the data set and/or in compa- 
rable measurements and other modifications commonly made 
on the basis of the intuition of the oceanographic community 
(see Maes and Gu, 1995). 

2 Fitting a Model for the Tail Distribution 

For each of the 15 NESS grid locations used in the present 
study, we have a sample of at least 500 storm severities. For 
each sample, the empirical distribution function is shown in 
Fig. 1. From the figure, a number of features are evident. In 
particular, in the CNS, the distributions appear to be very 
similar, whereas in the SNS there a remarked  differences 
between the distributions for adjacent grid locations. 

It can be shown, for a wide class of distributions, that 
the excesses over some high threshold tend to be distributed 
according to a generalized Pareto distribution (GPD),  pro- 
vided that the distribution is in the domain of attraction of 
one of three extreme value distributions (Leadbetter et al., 
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1983; Pickands, 1975). In this study, we fit the GPD with 
distribution function 

FGpD(X; 77, ~r) = 

( ) 1 - 1 + 77(x S - u )  -1/v 
O" 

for 77 ~ 0, x >  u, cr + 7 7 ( x -  u) > 0, 

1 - exp a 

for 7 7 = 0 ,  x > u ,  a > O  

and density fGPD for some threshold u, to the tail of  an empirical 
distribution function generated using the NESS data shown in 
Fig. 1. More colloquially, we assume that there is a power law 
scaling between the number of storms above some threshold 
and the value of that threshold. Mandelbrot (1983) gives an 
interesting discussion of  similar scaling behavior in other appli- 
cation areas such as economics and statistical physics, where 3, 
> 0 .  

Fitting the Model. We use a max imum likel ihood proce- 
dure to est imate the scale parameter  a and the so-called " e x -  
t reme value index , "  77. Hereafter,  estimates are denoted by 
the superscript ( ). The actual fitting is achieved by min- 
imizing the negat ive of  the log l ikelihood, L(X;  77, a ) ,  g iven 
by 

L(X;  77, or) = loge (HfGPD(Xi ;  77, 0")) 
i 

for observations X~, using a conjugate gradient numerical 
solver. For the NESS data considered here, results for fits to 
the 400 largest storm severities at each location are given in 
Table 1. 

One important feature of  the GPD is that, for 77 < 0, a finite 
upper limit exists for the largest possible value of  x, seen from 
the foregoing equation to be (u - a/77). In contrast, for 77 > 
0, there is no upper limit; larger values just become increasingly 
rarer instead. From Table 1 it is evident that, regardless of  
geographical location, the estimates for the extreme value index 
for the present data are negative, with values near 77 = -0 .2 .  
That is, for each location, there is a maximum storm severity 
which cannot be exceeded. Recall that we have defined storm 
severity in terms of  the most probable maximum wave height, 
related directly to the average energy density within the wave 
field. It is then not unreasonable that this could have a physical 
upper limit (arising from limited fetch, limits on wind speed, 
l imited duration of  storm winds in the same direction, energy 
dissipation due to wave breaking, etc.). However,  we have no 
physical explanation for a common value for the extreme value 
index 77, although this has been seen elsewhere (e.g., Coles and 
Tawn, 1994). 

We have also examined the effect of  the number of  storms 
used for the fit, equivalent to the threshold u, on the parameter 
estimates ~. Results are shown in Fig. 2. For the smallest values 
of  threshold, the assumption of  being in the tail of  a distribution 
is probably not valid. In the central and southern North Sea, 
the estimates are relatively insensitive to the number of  data 
( >  100) used to define the empirical-distribution. In the NNS, 
however, we believe that physical processes such as wave 
shielding by island groups like the Shetlands make storm sever- 
ity very sensitive to wave direction. In Fig. 3, we show scatter 
diagrams of  storm severity as a function of  mean wave direction 
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to illustrate this point. One approach to overcome directional 
effects would be to perform analyses based on directionally 
partitioned data; but this is hampered by the sparsity of  observa-' 
tions. 

Estimating Confidence Intervals for Model Parameters. 
The results in Table 1 show not only estimates ~, & for 77, a,  
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Table 1 

Data set 

NNSI 
NNS2 
NNS3 
NNS4 
NNS5 

CNS 1 
CNS2 
CNS3 
CNS4 
CNS5 

SNS 1 

SNS2 
SNS3 
SNS4 

SNS5 

Maximum likelihood estimates for 1-' and or, w i th  bootstrap 95-percent confidence intervals 

Threshold u ~, 95% CI for ~, b" 95% CI for ~" 

9.3 
10.2 
10.4 
8.6 
8.6 

9.2 
9 . 7  
8.9 
9.6 
8.8 

7.4 
7.1 
7.4 
7.1 

6.7 

-0.20 
-0.19 
-0.24 
-0.26 
-0.22 

-0.24 
-0.26 
-0.23 
-0.25 
-0.22 

-0.20 
-0.20 
-0.22 
-0.22 

-0.25 

-0.26, -0.I0 
-0.26, -0.08 
-0.31, -0.14 

-0.33, -0.17 
-0.29, -0.11 

-0.31 -0.12 
-0.32 -0.14 
-0.30 -0.10 
-0.31 -0.14 
-0.29 -0.09 

-0.26 -0.11 
-0.26 -0.12 
-0.28 -0.12 
-0.27 -0.14 

-0.31 -0.17 

3.8 
3.7 
4.2 

4.4 
4.3 

2.9 
2.9 
2.8 
3.0 
2.8 

2.8 
2.4 
2.3 
2.5 

2.3 

3.4 4.2 
3.2 4.1 
3.7 4.7 
4.0 5.0 
3.7 4.9 

2.5 3.3 
2.5 3.3 
2.4 3.2 
2.6 3.3 
2.4 3.2 

2.5 3.1 
2.2 2.7 

2.0 2.5 
2.3 2.8 

2.1,2.6 

but also 95-percent confidence intervals for these estimates. The 
width of the confidence intervals gives essential information 
about the precision of the estimates. Taking NNS1 as an exam- 
ple, we calculate an estimate of -0 .20 for "~; further, we expect 
the true but unknown value for "y to lie in the interval ( -0 .26  
to - 0 . I 0 )  with a probability of 0.95. 

We estimate these confidence intervals using a bootstrapping 
approach (see Efron, 1982), which consists of three important 
stages: 

1 For the actual NESS data sample of size n at some loca- 
tion, we fit a GPD and estimate "~,, 6 as described in the forego- 
ing. 

2 Next, we generate a large number P of random samples 
from this model GPD (~, 6"). For each random sample, we refit 
the GPD model and estimate new parameters "~ ,  #}~, j = 1, 
. . . .  P. This stage is called "parametric resampling" because 
we are attempting to generate more samples from the distribu- 
tion from which the actual NESS data was assumed to be drawn, 
using a parametric model. 

3 Finally, we use the sample statistics of the ~}~, &~ to 
estimate the statistics of q, #, and hence calculate confidence 
intervals for the latter. More precisely, we use (q~ - q)/s~;, 
j = 1 . . . . .  P, to estimate the distributional properties of (~ - 

2. is an estimate for the variance of ~T using 3,)~cry, where s~j 
just the information from the j th  resample, and a~ is the vari- 
ance of q. We perform a similar calculation to obtain confidence 
intervals for #. The process of standardising with respect to 
scale is known as "studentizing" (Hall, 1988). 

To achieve this final stage, we need to obtain estimates s~; and 
s2~;. These are obtained by making the assumption that the 
estimates ~ ,  &~ for ~, & are reasonably good. That is, we can 
neglect O ( . ~  - .~)3 and O(#} ~ - #)3, and hence assume 

(Kalbfleisch, 1979) that (^* - Tj q)/s¢; and (#~ #)ls~; are 
both normally distributed with zero mean and unit variance. 
Then, making use of the limiting behavior (*/f' - q)/s¢; 
(~ - "y)/a¢ (and likewise for a ) ,  we can trivially calculate the 
appropriate 95-percent confidence limits for q, &. The assump- 
tion of normality means that we can use the inverse of the 
information matrix I (~ f  ~, 8"fl) to estimate the variances of 
q~,  b~ (Kalbfleisch, 1979) 

var ( ~ ? )  coy (~/7, ~/~) ) 
cov ( q ? ,  #~') var ( # 7 )  = 1-'(~?, &?) 

/ \-, 

evaluated at . ~ ,  ~-f' 

We obtain the estimates (Tiago de Oliveira, 1983) s~; = (1 + 
2. = 2#~ 2(1 + ~ ) .  Using the parametric stu- ~?)2 and sat 

dentized bootstrap approach, we obtained the 95-percent confi- 
dence limits for ~, 6- shown in Table 1. In the central and 
southern North Sea, the estimates are somewhat more precise 
that in the northern North Sea, but the confidence intervals are 
still quite large, reflecting the general difficulty of fitting the 
tails of distributions. 

3 E s t i m a t i n g  E x t r e m e  S t o r m  Sever i ty  

The GPD model established can now be used to estimate 
extreme storm severity corresponding to a return period of T 
years (e.g., 100-yr). The estimate ,~r of the extreme quantile qr 
can be written in terms of the GPD model parameter estimates 
~, # as 

~ r =  " ~ ( p - ~ -  1) + u 
3' 

To 
where p = - -  

TNo 
and u is the threshold severity 

Here, To is the period of the NESS data (25 yr), and No is the 
size of the NESS sample (taken as 400). Results obtained are 
reported in Table 2. It is apparent that storms in the NNS are 
more severe than in the central or southern regions, due to 
longer fetches. For the shallow waters of the SNS, seabed topog- 
raphy causes wave refraction and promotes wave breaking, 
which limits storm severity. For the CNS, quantile estimates at 
adjacent locations are very similar. In contrast, in the SNS, 
estimates vary considerably with location, due primarily to local 
changes in water depth. 
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Estimating extreme storm severity alone is not sufficient 
for reliable applications of extreme value statistics in offshore 
engineering; confidence intervals for those estimates should 
be estimated also. The confidence intervals for qr in Table 2 
were again estimated using a parametric studentized boot- 
strap, following the approach outlined in Section 2. This time, 
however, the studentization stage requires that we specify an 
estimate s~s for the variance of Or (obtained from resample 

j only).  This estimate can also be obtained (Kalbfleisch, 
1979) from the inverse of the information matrix, suitably 
transformed 

var (0~) = a l - ~ a '  evaluated at q~,  &~, 

Oqr Oqr~ 
where ~ =  077 ' O a ]  

which eventually leads to the result 
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Data set 

NNSI 
NNS2 
NNS3 
NNS4 

NNS5 

CNS 1 
CNS2 
CNS3 

CNS4 
CNS5 

Table 2 

025 
22.6 
23.4 
23.6 
22.0 

22.8 

18.3 
18.4 
17.8 

18.6 
18.1 

Extreme quantile estimates with bootstrap 95-percent confidence intervals 

95% CI for q25 qlO0 95% CI for qlO0 q500 
21.3,25.3 
22.0,26.4 
22.5,26.1 
21.0 24.1 
21.5 25.6 

17.5 20.1 
17.8 20.0 
17.0 19.7 

17.9 20.2 
17.2 20.0 

24.0 
24.9 
24.8 
23.0 
24.3 

19.1 
19.2 
18.7 
19.4 
19.0 

18.1 
16.3 
15.7 
16.4 

14.4 I 

22.3 27.7 
22.9 29.1 
23.3 28.3 
21.8 25.9 
22.5 28.1 

18.2 21.7 

18.4 21.5 
17.6.21.4 
18.6.21.7 
17.9.21.9 

17.0.20.6 
15.5 18.2 
14.9. 17.7 
15.6. 18.3 
13.9,15.8 

25.2 
26.1 
25.7 
23.9 
25.5 

19.8 
19.8 
19.4 

20.1 
19.8 

19.0 

17.0 
16.3 
17.1 
14.9 

95% CI for '~5oo 

23.6.30.3 
24.3 31.8 
24.3 30.4 
22.7.27.6 

23.8 30.5 

18.9.23.3 

19.0.22.8 
18.4.23.2 

19.3,23.2 
18.7,23.9 

SNS1 17.1 16.2 18.9 
SNS2 15.4 14.8 16.8 
SNS3 15.0 14.3 16.4 
SNS4 15.6 15.0 17.0 
SNS5 13.9 13.4 14.9 

17.9,22.4 
16.2,19.6 
15.5,19.0 
16.3,19.5 
14.4,16.7 

s~rj = Kz(1 + ~/j,)2 + 2K0.j* 1 + ¢/j* (p_~; _ 1) 

+ 20., 2 1 + ~,~' )2 (p - f ; -  1 

^ 0 .~  . 

where K = a~ (p_~. _ 1) + .~2_p-~j logep 

from which confidence intervals for Or can be estimated. As 
would be expected, the precision of ~r degrades as T increases 
(i.e., as we extrapolate further). Estimates for 25 and 100-yr 
quantiles are reasonably precise, but for longer return periods, 
confidence intervals are very wide. 

We have also calculated the extreme quantile estimates 010o 
as a function of the number of data points used (equivalent to 
the storm severity threshold u). Results are given in Fig. 4. In 
the NNS, the estimates are relatively stable when a high thresh- 
old is used, i.e., we only keep the largest storm severities to 
estimate the 100-yr quantile. When we decrease the threshold, 
the extreme quantile estimate becomes quite unstable (sug- 
gesting mixed behavior--more than one family of storms?). 
In the CNS and SNS, the 100-yr quantile estimate is much less 
sensitive to the threshold. 

Estimates for the maximum (upper limit) value for storm 
severity (u - a /T )  have also been examined. In the NNS, these 
are ~20 percent higher than the largest values in the hindcast 
data (see Table 1 and Fig. 1), whereas in the CNS and SNS 
the difference is only ~ 10 percent. Thus, in some sense, we 
appear to be extrapolating "further," the further north we go. 
This has important implications for structural reliability assess- 
ment. Although, the extrapolation of storm severity to very long 
return periods requires a great extrapolation in time (from the 
25 yr of the hindcast to 10,000 yr, say), it does not require an 
equivalently large extrapolation in storm severity: the 10,000- 
yr storm will be almost as severe as the upper limit on storm 
severity, which is only 10-20 percent larger than the most 
severe storms in the hindcast. Then, if the numerical models 
used to create the hindcast adequately capture the physics for 
those storms within it, there is little room for new physics to 
enter for rarer, more severe storms. As a note of caution, even 
if an upper limit on storm severity exists, this does not necessar- 
ily imply that there is a corresponding limit on load and struc- 
tural response due to short-term wave variability within storms 
(e.g., Tromans and Vanderschuren, 1995), which is not ac- 

counted for in our extrapolation. This would be incorporated in 
a full reliability analysis. 

Confidence intervals for the maximum value of storm severity 
are of course wider that confidence intervals for q25, q~oo and 
qs00, since we are again extrapolating further. Typical values 
for the confidence limits in the NNS are ( - 3  m, +10 m), 
although there is variation from location to location (with one 
interval as large as ( - 4  m ,+ 18  m)). In the CNS and SNS, the 
intervals are generally somewhat narrower. 

4 On the Quality of  the Est imates  Obtained 

In the analysis presented in Sections 2 and 3, we have made 
a number of assumptions concerning the properties of the NESS 
data and the various parameter and quantile estimates. Using 
numerical simulation, we can test the validity of a number of 
these assumptions. 

In particular, in this section we examine the coverage proba- 
bilities for the interval estimates of ~, 0., and Or. That is, we 
seek to confirm that the 95-percent confidence intervals for each 
of ~, 0., and Or, derived using the bootstrap procedure, actually 
give 95 percent coverage for simulated data drawn from a 
known GPD distribution. 

We also examine the effect of misspecifying the underlying 
probability distribution from which the NESS data is assumed 
to be drawn. Specifically, we use the GPD fitting and quantile 
estimation procedure for data drawn from a known Weibull 
distribution (for which y = 0, as opposed to GPD for which y 
* 0 in general). In this situation, what is the bias and variance 
of extreme quantile estimates? 

Bias and Coverage Probabilities for Model Parameter and 
Extreme Quantile Estimates. Using simulation studies, we 
can check the coverage of the bootstrap 95-percent confidence 
intervals for return periods up to 500 yr. We proceed as follows: 
For 1000 simulated data sets drawn from a known GPD repre- 
sentative of the NESS data, we estimate 95-percent confidence 
intervals for T-yr storm severity using the bootstrap method, 
and check whether the true (known) T-yr storm severity lies 
inside the confidence interval. Results are given in Table 3 for 
y, a, and the 25, 100, and 500-yr quantiles, for sample sizes 
of 100, 400, and 1000, corresponding to a known underlying 
GPD distribution with 7 = -0 .2  and cr = 1. For perfect agree- 
ment, we require that the left-hand and right-hand tail probabili- 
ties (P(lhs) and P(rhs),  respectively) are both 0.025 (so that 
the estimates are unbiased and the coverage probability is 1 - 
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2*0.025 = 0.95). The table also gives the relative bias for the 
25, 100, and 500-yr quantiles, defined in the key. As the magni- 
tude of the bias is small ( ~ 1 ) ,  we conclude that the estimation 
method presented in Sections 2 and 3 is relatively unbiased. 

From Table 3, bootstrap estimates of 95-percent confi-. 
dence intervals for 25 and 100-yr storm severity include 
the estimated 100-yr storm severity for approximately 95 
percent of the simulations performed, confirming that the 
bootstrap procedure and studentization of estimates works 
well in these cases. 

Robustness of Estimates With Respect to Model Mis- 
specification. There is no guarantee that the data sets of 
storm severity from NESS correspond to a tail distribution 
which is exactly GPD. For example, the adoption of a GPD 
distribution as opposed to a Weibull distribution cannot be 
justified in general, based on data alone. Thus, we need to 
test the robustness of our extreme value analysis with respect 
to misspecification of the underlying tail distribution. The 
simulation strategy is similar to that described in the forego- 
ing, except that we now produce 1000 simulated samples 
from a Weibull  distribution (not a GPD).  As before, we then 
estimate 25, 100, and 500-yr extreme storm severities using 
the GPD model. The quality of the agreement obtained in 
reported in Table 4 in terms of coverage probabilities for the 
bootstrap 95-percent confidence intervals. 

I t  is somewhat surprising that the coverages in Table 4 are 
still very good, even when the (synthetic) data is drawn from 
a Weibull tail distribution, especially for the 25 and 100-yr 
quantiles. This is of some importance, since Weibull-fitting (in 
particular) has been prevalent in the oceanographic community. 
For events with relatively low-return periods (25-100  yr, say), 
fits to Weibull and generalized Pareto distributions yield similar 
results. Table 4 also suggests that the bias introduced by the 
estimation procedure is larger than in Table 3, as might be 
expected. Note that positive bias here indicates that the GPD 
modeling and extrapolation overestimates the extreme quantiles 
considered. However, for extrapolation to very long return peri- 
ods, this will inevitably be reversed: a GPD can, and for the 
NESS data does, have an upper limit, whereas a Weibull fit can 
never have any such limit. 

5 Con c lu s ion s  and  R e c o m m e n d a t i o n s  

In this paper, we present a method for estimation of extreme 
quanriles using a generalized Pareto model. The precision of 
extreme quantiles estimated is calculated using a parametric 
studentized bootstrap procedure. 

Using simulation studies, we have demonstrated that the esti- 
marion procedure is effectively unbiased for known underlying 
GPD or Weibull-distfibuted data. We have also demonstrated 
that the coverage of bootstrap-esrimated 95-percent confidence 
intervals for model parameters and extreme quantiles is ~0.95, 
provided that we do not extrapolate too far. 

In application to 15 samples from the NESS hindcast data- 
base, we have found that the estimated extreme value index is 
consistently negative, with a value of ~ - 0 . 2 .  This suggests the 
existence of a finite upper bound for storm severity in the North 
Sea. In the central and south North Sea, the value of the extreme 

Table 3 Bias and coverage of estimates for synthetic GPD data 

Sample 
size N O 

100 
400 
1000 

Y 
P(lhs) ] P(rhs) 

0.025 0.099 
0.022 ] 0.018 
0.029 0.017 

o" 
P(lhs) [ P(rhs) 

0.078 0.029 
0.031 0.021 
0.019 0.027 

q25 ql00 
P(lhs) [ P(rhs) P(lhs) I P(rhs ) 

0.031 0.041 0.031 0.040 
0.032 i 0.011 0.029 0.011 
0.032 0.014 0 . 0 3 3 1 0 . 0 1 6  

q500 Bias 1 
P(lhs) I P(rhs) in ql00 

0.036 0.032 -0.26 
0.027 0.011 -0.20 
0.037 0.016 -0.19 

1 Bias estimated as the difference between the mean ~1oo over all simulations and the true value of ql0o, divided by the standard deviation of 6/10o 
estimated from simulation. A negative bias indicates underestimation of the true qloo. 
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Table 4 Bias and coverage of extreme quantile estimates using a GPD model for Weibull 
data 

Sample 
size N O 

100 
400 

q25 
P(lhs) [ P(rhs) 

0.019 0.031 
0.022 0.034 

ql00 
P(lhs) [ P(rhs) 

0.017 0.033 
0.027 0.028 

q500 
P(lhs) [ P(rhs) 

0.024 0.150 
0.032 0.097 

Bias 
in ql00 

+1.16 
+0.87 

iDefinition of bias as in Table 3] 

value index i s  relatively insensitive to the choice of threshold 
selected for GPD modeling. For the northern North Sea, the 
Pareto fits are less robust but the extreme value index is still 
approximately - 0.2. 

Results also indicate that storm severities at adjacent grid 
locations in each of the northern, central, and southern North 
Seas are correlated. However, we have not attempted to use 
this correlation structure to improve our estimates. Note fur- 
ther that the correlation structure appears weakest in the south- 
ern North Sea, where storm severity varies rapidly between 
grid locations due to varying water depth, among other things. 
This suggests that modeling the water depth dependence of 
extreme storm severity in the southern North Sea might be 
worthwhile. 
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