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 SUMMARY

 Currently popular techniques such as experimental spectroscopy and computer-aided molecular
 modelling lead to data having very many variables observed on each of relatively few individuals.
 A common objective is discrimination between two or more groups, but the direct application
 of standard discriminant methodology fails because of singularity of covariance matrices. The
 problem has been circumvented in the past by prior selection of a few transformed variables, using
 either principal component analysis or partial least squares. Although such selection ensures non-
 singularity of matrices, the decision process is arbitrary and valuable information on group
 structure may be lost. We therefore consider some ways of estimating linear discriminant functions
 without such prior selection. Several spectroscopic data sets are analysed with each method, and
 questions of bias of assessment procedures are investigated. All proposed methods seem worthy
 of consideration in practice.

 Keywords: Antedependence modelling; Canonical variates; Cross-validation; Eigenvalues and
 eigenvectors; Error rate estimation; Partial least squares; Ridge techniques

 1. Introduction

 Chemical samples are frequently examined by using a test method to assign each
 sample to one of two or more distinct groups. Sometimes these test methods are
 expensive or involve a long time delay before the group assignment is determined.
 However, cheap and readily available alternative information can often be obtained
 on the samples. With the aid of a prediction rule, such information can be used
 to predict the group memberships that would have been assigned if the test method
 had been used.

 tAddress for correspondence: Department of Mathematical Statistics and Operational Research, University of
 Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK.
 E-mail: W.J.Krzanowski@uk.ac.exeter
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 102 KRZANOWSKI, JONATHAN, McCARTHY AND THOMAS

 A common characteristic of many useful alternative sources of information is
 that they involve a large number of variables. For example, experimentally mea-
 sured spectra can be used in this way to identify the sources of complex material
 such as bitumen. Also, calculated grids of electrostatic potential around molecular
 structures are similarly used to derive relationships between these structures and
 their chemical properties. Various groups can be defined corresponding to different
 multivariate regions of chemical properties.

 Discriminant analysis can be performed when the test method assignment is
 known for each sample in a training set, along with the variables that measure the
 alternative information. The analysis provides a small number of (linear) combina-
 tions of these variables that maximize in some sense the group information in the
 samples. A classification rule can be developed in terms of the new variables so that
 the application of this rule to the alternative information on future samples provides
 a prediction of group assignment. However, application of discriminant analysis by
 standard packages can run into severe problems when the number of variables
 exceeds the number of samples. At best, generalized inverses are used in place of
 ordinary inverses and a wa-rning message is printed, whereas at worst the package
 simply refuses to provide any analysis at all.

 Recent chemometric studies at Shell Research Limited, Sittingbourne, have
 involved the use of various sets of spectroscopic data. The most common examples
 are those arising from infra-red (IR) reflectance analysis, in which the reflected
 energy from the substance is recorded continuously over a range of wavelengths.
 The continuous trace is preprocessed by discretizing the wavelength scale and taking
 second differences of log(l /reflectance) at the resulting wavelength values (although
 differencing is not advocated by some practitioners). Near infra-red (NIR) spectra
 yield p = 700 and IR spectra yield p = 1738 correlated variables in this way, differ-
 ent portions of the wavelength range being considered in the two techniques. In most
 applications at Sittingbourne the number of samples analysed has been less than
 50, and the two-group situation has been the most prevalent. Table 1 gives brief
 details of three such data sets that have been presented recently for analysis, showing
 for each data set the spectroscopic technique (NIR or IR), the group sizes, the
 number of variables and the average over these variables of the absolute value of
 the univariate two-sample t-statistic for testing differences between the group
 means. This last statistic has values lying between 1 and 2 for all three data sets,
 reflecting the fact that the two groups are typically distinguishable for at least a
 subset of wavelengths. For illustration, a plot of data set NIRI is shown in Fig. 1;

 TABLE 1

 Summary of data sets examined

 Data set No. of observations No. of t
 variables

 Group I Group 2

 NIRI 18 17 700 1.09
 NIR2 22 23 700 1.51
 IRI 22 25 1738 1.39
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 DISCRIMINANT ANALYSIS 103

 1100 Wavelength (nm) 2500

 Fig. 1. Plot of the NIRI data: the horizontal axis is wavelength; the vertical axis is the second-
 differenced log(l/reflectance) value

 areas of low variability of the curves are thought to correspond to wavelengths
 where the two groups overlap completely, whereas areas of high variability are
 thought to indicate wavelengths at which the groups are reasonably distinguishable.
 Industrial confidentiality prevents a further description, either of these data sets or
 of the problems that generated them; we can only mention that the study of crop
 enhancement agents, the identification of new varieties and the monitoring of
 uniformity of production processes are the broad application areas producing data
 of this type.

 In the rest of this paper- we identify the problems that arise with standard analy-
 ses, outline some alternative approaches, investigate their performance on the above
 data sets and discuss issues arising in the assessment of these performances.

 2. Background Theory

 Let n be the number of units in the training set, p the number of alternative
 information variables and g the number of groups. Denote by X = (X1, . . ., Xp)T
 the vector of alternative -information variables, by xij = (xi,1 . . ., x1jp)T the vector
 of values on these variables for the jth training set unit in the ith group and suppose
 that there are ni units in the ith group. Typical assumptions underlying discrimin-
 ant analysis are that the training units form random samples from g populations
 which have different mean vectors y1, . . ., ug but the same dispersion matrix E.
 Different approaches to the derivation of a classification rule are available, some
 of which require the additional assumption of normality of data to be made (see,
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 104 KRZANOWSKI, JONATHAN, McCARTHY AND THOMAS

 for example, Krzanowski (1988), chapters 12 and 13). If population parameters
 are known, many of these approaches lead to a classification rule based on the
 quantities

 (x - U)T E-I (X _ U) (i=1 ... g) (1)

 where x is the vector of values for the sample to be classified (Mardia et al., 1979).
 In the special case of two-group discrimination (g = 2), the classification rule
 reduces to a rule based on Fisher's linear discriminant function (Krzanowski (1988),
 pages 356-358):

 (-1 ,2)T 1X. (2)

 In applications, the population parameters are unknown. Then, although alter-
 native ways of deriving classification rules have been proposed (Krzanowski (1988),
 p. 338), by far the most common procedure in practice is to replace the unknown
 parameters in expressions (1) and (2) by their estimates jt and 1 from the training
 data. Thus classification is performed by calculating either

 (x -U qiT x-y) ( = 1, ... ., g) (3)
 or

 (Jul ^2) (if g =2) (4)
 where

 = 1 i

 J -i = Xi xij

 and

 1g ni

 s = S =- E E ~(Xij-jXi) (Xi; i
 n g i= 1 j= 1

 For application of any of these classification rules, both E and E must be non-
 singular. Although the former is generally so by assumption (but see Mardia et al.
 (1979), p. 304), the latter requirement will fail in most agrochemical applications.
 This is because we require n - g > p for non-singularity of E, but in such applica-
 tions n is typically between 30 and 200 whereas p lies between 200 and 4000.

 Chemometricians have faced the problem of singular E for many years and have
 generally circumvented it by a preliminary transformation from X to Y = (Y1,

 Y "m)T where m < n - g, followed by standard application of expressions (3)
 or (4) to Y. The most common approaches to selection of Y have been by choosing
 the first m components in either a preliminary principal component (PPC) analysis
 or a partial least squares (PLS) analysis of the data. Some relevant references are
 Gunst and Mason (1979), Naes and Martens (1985), Manne (1987), Geladi (1988),
 Hoskuldsson (1988), Yendle and MacFie (1989) and Stone and Brooks (1990).
 Although the results of such an approach have often been successful in broad terms,
 the conceptual problems are that an arbitrary decision must be made regarding how
 many components to retain and how many to discard, and that valuable between-
 group information may be lost in the later components that are discarded (see Chang
 (1983), Jolliffe (1986), chapter 9.1, and Krzanowski (1992)). We now consider alter-
 native approaches to a solution of the problem.
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 DISCRIMINANT ANALYSIS 105

 3. Methodology

 3.1. Augmenting the Within-groups Covariance Matrix
 Since S is necessarily singular when n - g < p, we have rank(S) = r < p. One

 possible approach is to augment S in such a way that it retains its major character-
 istics but it becomes non-singular and so can be used in expressions (3) and (4).
 In achieving this aim, we clearly want to minimize the perturbation to preserve as
 much as possible of the original sample information. If principal component analy-
 sis is viewed as providing the best r-dimensional approximation to a p-dimensional
 set of data, then our present objective can be seen as exactly the reverse, namely to
 provide the 'nearest' p-dimensional non-singular approximation to an r-dimensional
 singular set of data.

 We therefore consider the spectral decomposition of S:

 S = LDLT (5)

 where D is the diagonal p x p matrix. of ranked eigenvalues d, > d2 .. . d >
 dr,+I = ... = dp = 0 of S, and L is the orthonormal p x p matrix whose columns
 11 ... ., lp are the corresponding eigenvectors of S.

 We can therefore write

 S= (L- L2 DI 0 ? LIT (6)
 where L1 contains the first r columns of L, L2 contains p - r columns that are
 mutually orthogonal to each other and to those of L1 but otherwise arbitrary and
 D1 is the r x r diagonal matrix containing the non-zero di only.

 To achieve the objectives stated earlier, it was decided that the following criteria
 should be satisfied when forming an augmented covariance matrix E from S:

 (a) E is symmetric,
 (b) E has full rank p,
 (c) the first r principal axes of E are the same as those of S, and they are in

 the same order,
 (d) the last p - r principal axes are indeterminate, i.e. the corresponding eigen-

 values of E are identical, and
 (e) trace(E) = trace(S).

 These criteria are all upheld by the matrix E defined by

 1 TJD~ + l \/01
 E = -(LI L2) ( ++I01LT) (7) c ' 0'k (+ 13)IJLTJ

 where a and f3 are parameters satisfying a > 0, f3 < dr and a + ,3> 0, and c is a
 normalizing constant given by

 r r

 C= {P + (p - r) + Z di / di.

 To conduct discriminant analysis we would need to estimate a and f3 from the
 training data and then to insert E into expression (3) or (4). Given the 'principal
 axes' representation of E in equation (7), the inverse follows very readily so that
 we can telescope these operations. For example, we find for two groups that Fisher's
 linear discriminant function (4) reduces to
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 106 KRZANOWSKI, JONATHAN, McCARTHY AND THOMAS

 - T- LIdiag(d, d (8)

 Suppose that y is the observation vector of an unclassified individual; we allocate
 this individual to group 1 if the value obtained by inserting y - I(YI + x2) in place
 of x in expression (8) is greater than 0 and to group 2 otherwise. Analogous
 simplification results in the g-group case from equation (3). We recommend estima-
 tion of a and ,B by cross-validation on the training data. To do this we found it
 convenient to set up a mesh of (a, f3) pairs over a range of parameter values (in
 practice a 41 x 41 mesh with each axis running from 10-20 to 1020 on the log-scale)
 and for each point on this mesh to calculate the success rate of the resulting alloca-
 tion rule using the leave-one-out procedure (Lachenbruch and Mickey, 1968). The
 estimated values &, f3 are then given by those values that yield the optimum success
 rate. Fig. 2 shows the pattern of classification success rates across this mesh for
 one of the data sets discussed in Section 4.

 We refer to such parameter estimation by performance optimization as tuning.
 Equation (8) gives rise to some limiting cases of interest.

 (a) Taking the limit as both a and 3- 0+ gives (Fl - x2)T(I - LIL T)x = -
 x2)TL2LT2X, which can be shown to be the same as the two-group zero-
 variance discriminator (Section 3.3).

 (b) Putting ,3 = 0 gives

 T- L ( dr \TY (11- Z2 - LIdi+g + dr +, IT x.
 When a is a small positive finite constant then this is the usual expression for
 ridge discriminant analysis using all p original variables.

 (c) Taking the limit as a -+ oo for finite f3 gives (xl - x2)Tx, the result that would
 be obtained assuming p independent and identically distributed random
 variables.

 In view of (b), we term the above discrimination procedure as generalized ridge
 discrimination (GRD). Friedman (1989) also provided discrimination methods based
 on augmented covariance matrices, but in a somewhat different context to ours. He
 assumed that groups have different dispersion matrices and formulated the
 mathematics in such a way that the explicit use of augmented matrices is required.
 That formulation is impractical in our context, as it would involve the use of huge
 matrices when applied to spectroscopic or molecular modelling data.

 3.2. Modified Canonical Analysis
 One possible approach to the derivation of classification rules (3) and (4)

 is by seeking the linear combinations y = aTx which maximize the ratio V =
 (aTBa)/(aTSa), where S is as defined earlier and B is the between-groups covariance
 matrix

 g

 1 Z ni(1 - j)(ji-_)T

 for

 nx = I 11
 _n1_
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 108 KRZANOWSKI, JONATHAN, McCARTHY AND THOMAS

 The appropriate coefficients are given by the eigenvectors ai corresponding to the
 non-zero eigenvalues Ai of the generalized eigenproblem (B - AiS)ai = 0. The result-
 ing variables yi = aiTx are the canonical variates, and the squares of the Euclidean
 distances between a point to be classified and the group mean points in the canonical
 variate space are equivalent to the- quantities (3) (see, for example, Krzanowski (1988),
 chapter 11). When g = 2 then

 B = l 2 (X1 - X2)(X1 - 12)T

 is of rank I so there is only one non-zero eigenvalue A and the corresponding eigenvec-
 tor reduces to expression (4).

 Campbell and Atchley (1981) demonstratea chat canonical analysis in the non-
 singular case can be achieved by a two-stage spectral decomposition process. The first
 stage is the spectral decomposition LDLT of S, as given by equation (5). This is
 followed by the transformation from x to w = D -l/2LTx, followed by the calcula-
 tion of the between-groups covariance matrix with respect to w, i.e.

 C 1 E ni(Wi - w)( T -

 in obvious notation. Finally the spectral decomposition of C yields eigenvalues
 A1, . . ., As and eigenvectors cl, . . ., cs (where s = min[p, g - 1]), from which the
 required canonical variate coefficients are recovered as ai = LD - 2C .

 If S is singular then only r of the eigenvalues di are non-zero so that D -1/2 does
 not exist. We propose setting D-112 - diag(d 1/2, . . ., dr-1/2 0, . . ., 0) in the
 standard canonical procedure, which is equivalent to the use of the Moore-Penrose
 generalized inverse of S; we call this procedure the modified canonical analysis
 (MCA) method.

 3.3. Zero-variance Discrimination
 If sQdenotes the p-dimensional space of all vectors a then when S has rank r we

 can write X1= M + #where Wand #denote the range and null spaces of S respec-
 tively. One way of viewing MCA defined above is as the maximization of V =
 (aTBa)/(aTSa) for a in M. We can therefore ask: is there a corresponding maximum
 of aTBa in X i.e. over those vectors a such that Sa = 0?

 From equation (6) it is evident that the columns of L2 form a basis for X1< Thus
 if a e#then there is a unit vector aet RP' such that a = L2a. Hence our problem
 reduces to that of finding a ERP' such that aTL TBL2a is maximized subject to
 IIL2aII2 = aTLTL2a = 2ail2 = 1. Since LTBL2 is symmetric, standard theory (e.g.
 theorem A.9.2 of Mardia et al. (1979)) shows that a is a normalized eigenvector
 of L TBL2 corresponding to a non-zero eigenvalue. Thus the eigenvectors ai corres-
 ponding to non-zero eigenvalues of L TBL2 provide a system of canonical variates

 yi = aTx in the null space of S via ai = L2a1. We term this method the zero-variance
 discrimination (ZVD) procedure. Considerable algebraic simplification can be
 achieved in the two-group case to expedite computation of this procedure, but details
 are omitted here.

 If Ps denotes the symmetric projection matrix LI(LTLI) - ILT = LIL T onto the
 range of S (theorem A.10.1 of Mardia et al. (1979)) and if P* = I - Ps then E- =

This content downloaded from 
������������148.88.67.84 on Fri, 16 Jun 2023 16:30:16 +00:00������������ 

All use subject to https://about.jstor.org/terms



 DISCRIMINANT ANALYSIS 109

 P* = L2L1f corresponds to the ZVD procedure. In the extreme where there is just
 one observation per group (i.e. ni = 1 for all i) this rule reduces to E = I, i.e.
 classification based on Euclidean distance in the sample space of the spectroscopic
 data.

 3.4. Antedependence Modelling
 All the preceding approaches for obtaining E are either empirical or purely data

 based. An alternative general approach is to postulate and fit to the data a suitable
 stochastic model which has fewer parameters, taking care that the dispersion matrix
 E implied by the model is non-singular. Having estimated the model parameters we
 can then obtain E1 readily for use in expression (3) or (4).

 Most spectroscopic data are obtained by a 'moving window' process which aggre-
 gates points within a prespecified width while scanning across the range of wave-
 lengths involved. Since a typical point will appear in three or four successive
 windows, the resulting data will be serially correlated and will exhibit the general
 features of a non-stationary time series. A nested series of models suitable for such
 data structures are the antedependence models introduced by Gabriel (1962) and
 used recently in the analysis of repeated measurements by Kenward (1987). A set
 of p ordered variables is said to have an antedependence structure of order r if the
 ith variable (i > r), given the preceding r, is independent of all further preceding
 variables. Under the antedependence structure of order r, the inverse of E has non-
 zero elements only on the leading diagonal and on the r diagonals immediately above
 and immediately below it. Complete independence (r = 0) and general dependence
 (r = p - 1) are special cases of this structure.

 Full theory behind these models can be found in Gabriel (1962) and Kenward
 (1987). For fitting the models in the present discriminant context we merely need
 the following summary (M. G. Kenward, personal communication).

 Suppose that Xi = .,i + ei where the error terms ei follow an antedependence
 structure of order r, i.e.

 r

 ei= E ei jAji +f,
 j = I

 and the fi are independent (0, ail) variables for i= 1, ..., n. Let

 1 0 0 0 ... 0

 -All 1 0 0 ... 0
 -A22 -A12 1 0 ... 0

 Fr = Arr Ar, 1, -Ar -2,r . .. 0
 o -Ar,r+I -Ari ,r+ .*.. 0

 o 0 0 ... -A2,p2 -A1,p 1/

 i.e. a lower triangular matrix with Is on the leading diagonal and r non-zero
 subdiagonals. Estimates of Aij are obtained by setting the values in the lower r
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 110 KRZANOWSKI, JONATHAN, McCARTHY AND THOMAS

 bands (ignoring the diagonal) of FrS to 0 and solving the resulting series of linear
 equations recursively. This gives Fr, from which we derive

 r= FGrFr (9)
 where Gr = diag(FrS).

 To date we have implemented the fitting of antedependence models of order
 r = 1, 2 and 3 to spectroscopic data. The resulting classification rules (on using
 equation (9) in expression (3) or (4)) will be termed the ADI, AD2 and AD3 methods
 respectively.

 4. Applications and Comparisons

 The data sets described in Section 1 were subjected to all the discrimination
 procedures above. To compare the results of these new methods with those that
 would be obtained by chemometricians using existing methodology, PPC and PLS
 discriminant functions were also calculated for each data set. The comparison was
 made by calculating the success rate for each classification method on each data
 set by using the leave-one-out method of Lachenbruch and Mickey (1968). Follow-
 ing an analogous approach to that of Campbell and Rayment (1978), very small
 eigenvalues were slightly increased when performing PPC analysis to overcome
 instability associated with the smallest eigenvalues.

 To make the preliminary selection of components in PPC analysis, the compon-
 ents were ranked according to the discriminatory measure given by Jolliffe (1986),
 chapter 9.1, rather than by the more usual eigenvalue criterion. This optimizes the
 choice of components for discrimination purposes. The smallest number of these
 ranked components that accounted for at least 95% of the trace of the overall
 covariance matrix was used in deriving the allocation rule. Fig. 3 shows the rate
 of decay of eigenvalues of the overall covariance matrix obtained from the complete
 samples in each data set. Data set NIRI shows a relatively rapid decay, and 21 of

 1.0000001

 0.1I0 0 000

 :313

 C: 0 .01 0 000

 o9%

 0 E001000 Xo
 0. 0001000

 C:

 *(:;: 0.0000107

 0. 000001

 0 10 20 30 40 50

 Eigenvalue number, i

 Fig. 3. Eigenvalue decay of the overall covariance matrix for each of the three data sets: *, NIR1;
 O; NIR2; O, IR1

This content downloaded from 
������������148.88.67.84 on Fri, 16 Jun 2023 16:30:16 +00:00������������ 

All use subject to https://about.jstor.org/terms



 DISCRIMINANT ANALYSIS 111

 the 34 non-zero eigenvalues accounted for the required percentage of the trace. The
 other two sets show much slower rates of decay, and no reduction of components
 was possible. This ranking and selection requires only eigenvalue calculations so
 is fast and could be conducted afresh for each omitted unit in the leave-one-out
 process, thereby ensuring unbiasedness of assessment of performance.

 With the PLS method, however, the number of factors for use in classification
 was taken to be the smallest number for which the success rate of the resulting allo-
 cation rule (as assessed by cross-validation) was a maximum. This is a much slower
 and more computer-intensive process than eigenvalue calculation; incorporating it
 into the leave-one-out assessment of performance of the final allocation rule pro-
 duces two nested leave-one-out procedures and hence leads to a prohibitive increase
 of computer time. Thus only one selection of factors was made at the outset, using
 the whole data set; eight factors were selected for NIRI, two for NIR2 and one
 for IRL. However, since these selections involve performance optimization (i.e.
 tuning), the final assessment of the method will be necessarily biased.

 A similar computational problem was encountered with GRD, where tuning is
 also embedded into the process, so the parameters were estimated only once for each
 complete data set. Since this parameter estimation again involves performance
 optimization, the results with this method will also show optimistic bias. We discuss
 this problem further in Section 5; all other methods are free of such extraneous
 sources of bias.

 Table 2 presents the success rates for each classification method on each data

 TABLE 2

 Success rates of the various classification rules

 Data set Method Group I rate Group 2 rate Overall rate

 NIRI PPC 1.000 0.824 0.914
 PLSt 0.889 0.882 0.886
 GRDt 1.000 0.882 0.943
 MCA 1.000 0.824 0.914
 ZVD 0.667 0.647 0.657
 ADI 0.944 0.706 0.828
 AD2 0.889 0.824 0.857
 AD3 0.722 0.764 0.743

 NIR2 PPC 0.773 0.739 0.756
 PLSt 0.864 0.783 0.822
 GRDt 0.864 0.826 0.844
 MCA 0.773 0.913 0.844
 ZVD 0.682 0.478 0.578
 ADI 0.773 0.870 0.823
 AD2 0.773 0.957 0.867
 AD3 0.773 0.957 0.867

 IRI PPC 0.864 0.880 0.872
 PLSt 0.864 0.960 0.915
 GRDt 0.864 0.960 0.915
 MCA 0.818 0.880 0.851
 ZVD 0.864 0.920 0.894
 ADI 0.682 0.960 0.830
 AD2 0.591 0.880 0.765
 AD3 0.455 0.840 0.660

 tBiased estimates.
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 112 KRZANOWSKI, JONATHAN, McCARTHY AND THOMAS

 set, as obtained by the leave-one-out method. We show the separate rates for each
 group as well as the overall rate for the whole data set in each case. Taking the
 overall rate as the criterion, there is considerable variation in relative performance
 of the methods between the data sets. GRD comes either top or near the top in each
 data set, but the strictures regarding bias made earlier must be borne in mind and
 will be discussed in the next section. The PLS and antedependence methods come
 out best in one data set each and otherwise perform creditably, although we have
 to take bias into account for PLS. Moreover, the three orders of antedependence
 show some variability in performance; whereas there seems to be some genuine
 competition between AD1 and AD2, AD3 is dominated by AD2 for these data
 sets and performs very poorly on IR1 so need not be considered further. MCA,
 while never actually top, is consistently nearly so: second best in one data set, third
 best in another and fifth best in the remaining data set. The most dramatic variation,
 however, is shown by ZVD which comes last by a long way in both NIR sets but
 is beaten only narrowly by PLS and GRD in the IR data set.

 Various other features of comparison between the methods were also investi-
 gated. One feature was the set of discriminant functions produced by the various
 methods; since each function has at least 700 coefficients for each data set, they
 were summarized by computing pairwise inner products. Again, there was much
 variability across the data sets and the only consistent aspect was the orthogonality
 (or near orthogonality) of the ZVD functions and the others in most situations.
 Some of the methods lend themselves to efficient computer organization, and in
 such a comparison MCA came out strikingly well. However, undoubtedly with extra
 ingenuity the other methods could also be optimized in this sense so such a com-
 parison is not conclusive. In short, it seems difficult to establish a definitive ranking
 of the methods in terms of their effectiveness. The question of bias must also be
 taken up.

 5. Investigation of Bias

 We conjectured earlier that PLS and GRD will incur bias in the cross-validated
 estimation of prediction success rate outlined in Section 4, owing to the presence
 of tuning. One way of checking this conjecture is by finding permutational distribu-
 tions of the success rates on each data set. To do this, 250 random permutations
 of the rows of each data matrix were generated, a selection of methods was applied
 to each such permutation and the success rate of each method was obtained for each
 permutation by using the leave-one-out procedure. The resulting success rates
 represent the performances of the methods when differences between the groups
 have been removed, so that the distribution of success rates should be peaked at
 0.5 for an unbiased method. We chose, arbitrarily, MCA and ZVD as two 'unbiased'
 methods to compare with PLS and GRD, and fitted kernel density estimates to each
 distribution of success rates (Silverman, 1986). As an example, the densities for the
 IR1 data set are shown in Fig. 4; those for the other data sets exhibited almost
 identical patterns. The presence of bias for PLS and GRD is indicated by the shift
 of the peak in these cases, whereas MCA and ZVD indeed appear to be unbiased.
 However, since different practitioners of PLS use various methods for selecting the
 number of factors, the bias associated with some implementations may differ
 substantially from that reported here.
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 Once the presence of bias has been confirmed, it is important to estimate its likely
 magnitude. As GRD involves tuning of two parameters and will probably therefore
 exhibit the greatest bias of all the methods, we investigated it more intensively. A
 large data set, having two groups each with 74 observations and 800 molecular
 descriptors, was analysed by GRD by using the same 41 x 41 grid mentioned earlier.
 The optimal selection of ridge parameters gave a = 10-2 and f3 = 10-7, at which
 values the cross-validated success rates in each group were 0.7838. 35 separate data
 sets were then randomly selected from this large data set, each set having two groups
 of 18 and 19 individuals respectively. For each such random selection, an 'internal'
 success rate was obtained by leave-one-out cross-validation of the 37 training
 individuals and an 'external' success rate was obtained by calculating the discrimin-
 ant function from the 37 training individuals and using it to classify the remaining
 111 individuals. Table 3 gives the means and standard errors of the 35 internal and
 external success rates and the differences between them. For comparison ZVD, AD1
 and AD2 were assessed in a similar fashion on the same 35 random selections, and
 the results are also given in Table 3. It is clear that the internal success rates are
 optimistically biased for GRD but not for the other methods.

 We can conclude from these comparisons that the leave-one-out assessment
 of success rates is a valid procedure for all methods that do not involve tuning,
 even when dimensionality is very high and sample sizes are small. When tuning is
 involved, the only safeguard is to conduct the tuning afresh for each omitted unit
 (as advocated in other contexts by Ganeshanandam and Krzanowski (1989)). Such
 a procedure may, of course, become prohibitively expensive in terms of computer
 time (as happened in the present study).

 6. Conclusion

 Each of the methods described in this paper has something to offer when discrim-
 inating between groups using very high dimensional data. After allowance has

 TABLE 3

 Means of internal and external success rates over 35 random selections from
 a large data sett

 Discriminant Type of Group 1 mean Group 2 mean
 method success rate

 GRD Internal 0.6415 (0.0187) 0.7859 (0.0154)
 External 0.5992 (0.0156) 0.7228 (0.0148)
 Difference 0.0424 (0.0255) 0.0631 (0.0162)

 ZVD Internal 0.5770 (0.0193) 0.6878 (0.0198)
 External 0.5992 (0.0159) 0.6831 (0.0136)
 Difference -0.0222 (0.0240) 0.0047 (0.0225)

 ADI Internal 0.5369 (0.0167) 0.5962 (0.0149)
 External 0.5388 (0.0141) 0.6566 (0.0132)
 Difference -0.0019 (0.0224) -0.0604 (0.0220)

 AD2 Internal 0.5696 (0.0137) 0.6787 (0.0183)
 External 0.5682 (0.0151) 0.7017 (0.0138)
 Difference 0.0014 (0.0229) -0.0230 (0.0231)

 tStandard errors are given in parentheses.
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 DISCRIMINANT ANALYSIS 115

 been made in Table 2 for the bias in PLS and GRD, no single method dominates
 all others in terms of success rates for all data sets and each method performs well
 on at least one data set. Thus we advocate the inclusion of a selection of methods
 in the basic toolkit for such problems and building up a database, in the hope
 that for each different type of data, e.g. NIR, a specific method can ultimately be
 recommended in view of its historical performance on data of that type.
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