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We describe a Monte Carlo investigation of a number of variants of cross-validation for the assessment
of performance of predictive models, including different values of k in leave-k-out cross-validation,
and implementation either in a one-deep or a two-deep fashion. We assume an underlying linear
model that is being fitted using either ridge regression or partial least squares, and vary a number
of design factors such as sample size n relative to number of variables p, and error variance. The
investigation encompasses both the non-singular (i.e. n> p) and the singular (i.e. n≤ p) cases. The
latter is now common in areas such as chemometrics but has as yet received little rigorous investigation.
Results of the experiments enable us to reach some definite conclusions and to make some practical
recommendations.
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1. Introduction

1.1. Assessment of predictive models

We consider the classical problem of modelling the behaviour
of a dependent variable Y by a linear function of explanatory
variables X1, X2, . . . , X p, i.e.

Y = a0 + a1 X1 + · · · + ap X p + ε

where ε is a N (0, σ 2) random departure term, and the values of
the Xi are observed without error. Typically we have a random
sample of (p+ 1)-tuples {xi1, xi2, . . . , xip, yi }ni=1={xi , yi }ni=1
as the training or design set of data. Multiple regression analysis
uses the principle of least squares to obtain estimates âi of the
constants ai (i = 0, 1, . . . , p) and hence to define the predictor
of Y as

Ŷ = â0 + â1 X1 + · · · + âp X p.

A fundamental question is how best to assess the performance
of this predictor. One way is to obtain a test set of m further
observations from the same population, {xi , yi }n+m

i=n+1 say, and
to compare the observed yi in this set with their predictions ŷi

from the model using a single criterion measure such as the

standardised prediction sum of squares

sPRESS =
n+m∑

i=n+1

(yi − ŷi )
2

/
n+m∑

i=n+1

(yi − ȳ)2

where ȳ= 1
m

∑n+m
n+1 yi is the mean of the dependent variable in

the test set.
When no test set is available, we need to base assessments

on the training set data only. The simplest idea is resubstitu-
tion, i.e. comparing the predictions {ŷi }ni=1 for the individuals
in the training set with their counterparts yi . However, this will
give an optimistically biased value of sPRESS, because least
squares perforce finds those ŷi that are closest to the yi in the
training set and such close matching will not occur for indepen-
dently gathered data. For a formal demonstration, compare the
expected sPRESS for a test set in equation (3.10) on page 45 of
Brown (1993) with its training set counterpart as deduced from
the third equation on page 41 of the same reference.

A favoured alternative is cross-validation (Lachenbruch and
Mickey 1968, Stone 1974). Here we divide the training data
into g equal-sized groups and conduct g separate operations.
Each group is omitted in turn from the data, the model is fitted
to the remaining (g− 1) groups, and the predictions ŷi are ob-
tained for the omitted group. This yields n predictions ŷi , none
of which has used the corresponding yi as part of the modelling
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stage, so the sPRESS formed from them should not be opti-
mistically biased. The number of individuals in each omitted
group is k= n/g, so this method of assessment will be termed
leave-k-out. One complication is caused by the fact that there are
n!/(g!(k!)g) ways of dividing the training set into g groups each
of size k, and different partitions may yield very different perfor-
mance assessments. One solution is to average sPRESS values
over different partitions to arrive at an overall assessment. An-
other is to take g= n and hence k= 1, in which case we have
leave-one-out assessment and an unambiguous partitioning into
n groups each containing a single individual.

1.2. Model selection and tuning

Complicated predictive models often depend on parameters that
can only be optimised (estimated) through data-based inspec-
tion, in addition to ones estimated analytically. Two such mod-
els are those for ridge regression (RR) and partial least squares
(PLS). The former introduces bias into the linear model es-
timator through an extra “ridge” parameter, with the aim of
achieving lower mean square error of estimation, but selec-
tion of this parameter must be done before application of least
squares (Montgomery and Peck 1982, p. 310). The latter refor-
mulates the model in terms of a set of components optimally
related to the dependent variable, but requires a prior selec-
tion of the number of such components before fitting the model
(Garthwaite 1994). Such prior model selection can itself be done
using cross-validation (Stone 1974). For example, the number
of PLS components to include in the model can be chosen as
the number that yields the lowest sPRESS when successively fit-
ting one, two, three components and so on. We call this process
tuning.

Assessment of performance of such tuned models on test data
is again the best approach, but what if we don’t have a test set?
The sPRESS value for the chosen model is clearly an optimisti-
cally biased assessment, because the model has been chosen to
give the lowest sPRESS on the training data. For unbiased as-
sessment, we need a second layer of cross-validation: leave out
each group of individuals in turn, use cross-validation on the
remaining individuals to both tune and fit the model, and then
predict the yi values for the omitted individuals using the fitted
model. This process involves a two-deep cross-validation and
associated sPRESS, as opposed to the one-deep cross-validation
described earlier.

1.3. Cross-validation and high dimensionality

The aim of cross-validation is to mimic the prediction of future
individuals from the population. This will be achieved if the
training data fully represents the sample space and each omitted
individual can lie anywhere in this space. Large samples and
small dimensionality generally satisfy these requirements. Many
modern application areas such as spectroscopy, however, give
rise to data of very high dimensionality with severe restrictions
on the size of samples (e.g. Krzanowski et al. 1995). With such

small samples and high dimensionality, the training data are
likely to fall in a very small fraction of the sample space (the
“curse of dimensionality”; Bellman 1961), and any omitted unit
from the training set will only come from this restricted area.
Cross-validation may therefore fall far short of replicating the
conditions of a test set, so that as dimensionality increases the
method may become less reliable.

1.4. Previous work

Cross-validation was developed for error rate estimation in dis-
criminant analysis, with theoretical contributions by Hills (1966)
and Lachenbruch and Mickey (1968) and an application to the
classification of the Federalist papers by Mosteller and Tukey
(1968). These papers all used one-deep leave-one-out assess-
ment of error of a classification rule. Stone (1974) considered
the full range of situations as outlined above and coined the
term “two-deep” for cross-validatory assessment of a model it-
self chosen by cross-validation. Efron (1982) gave a theoretical
formulation, including asymptotic theory and connections with
other data resampling methods such as the jackknife and boot-
strap. A recent extension to multivariate predictions using multi-
ple regression by Breiman and Friedman (1997) included cross-
validatory estimation of shrinkage and ridge parameters. Of the
various offshoots of cross-validation, the method of generalized
cross-validation (Golub, Heath and Wahba 1979) is notewor-
thy in that it permits analytical approximation to the numerical
process.

Leave-k-out cross-validation was popularised in the chemo-
metrics area, where it is often termed “g-fold” cross-validation,
through applications such as that by Wold (1978) into cross-
validatory choice of number of components in principal com-
ponent analysis. Mertens et al. (1995) give some recent de-
velopments in the context of principal component regression.
Theoretical and computational investigations have been con-
ducted into the influence of k on results. Shao (1993) establi-
shed that consistency improves as k increases, while Altman and
Leger (1997) came to similar conclusions in respect of asymp-
totic optimality.

Another consideration is numerical speed and accuracy.
Rannar et al. (1995) compared the numerical accuracy of sev-
eral algorithms for partial least squares, which involves cross-
validation as an integral issue. Breiman (1996) provides a full
discussion of the problems of instability in model selection, in-
cluding suggestions for improving stability in the presence of
cross-validation.

The necessity for two-deep cross-validation has been stressed
by Ganeshanandam and Krzanowski (1989) whenever discrimi-
nant rules are constructed by optimising cross-validation error
rates, and by Krzanowski (1995) whenever selection of variables
is based on cross-validated error rates. Despite such warnings,
there is often still a reluctance to use the two-deep variant.

Many other references to cross-validation may be found in
the literature, but we have focussed above purely on its use in
assessment of performance of predictive rules.
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1.5. Objectives

We wished to investigate the efficacy of different variations of
cross-validation as methods of assessing performance in multi-
variate prediction, especially when tuning is necessary to obtain
the predictive model. Using simulation, it is always possible to
generate a test set against which to assess predictions made by
any given model, so the benchmark is the test-set sPRESS value
for any given combination of experimental factors. Against this
benchmark we computed sPRESS values for both one-deep and
two-deep cross-validation over a range of values of k in leave-k-
out, in order to investigate the properties of the methods and
arrive at some general recommendations. We also looked at
different random partitions of the training data when k> 1 in
leave-k-out in order to investigate their effects.

The data were generated from a specific linear model (but
see 3.7), and certain factors were varied over the experiment.
Sample size n was in the range [10, 100] with dimensionality p
set at 50 as a typical value in practice, covering both the non-
singular (n> p) and the singular (n≤ p) cases. Also, we applied
both RR and PLS to all the data sets. The presumption was
that they would perform comparably, but we wished to discover
whether any particular conditions were more favourable to one
or other method. We describe the simulation experiment in detail
in Section 2, give the results from it in Section 3, and present
the conclusions together with discussion in Section 4.

2. Description of simulation experiment

2.1. The covariance structure

An orthonormal basis {γ
j
}pj=1 for Euclidean p-space Rp to-

gether with an eigenvalue decay profile {λ j }pj=1 defines the co-
variance structure of the explanatory-variable space,6=030T

in obvious notation. Observations x can then be drawn at random
from the multivariate normal distribution N (0, 6).

2.2. The underlying model

A model of the form y= ∑p
j=1 β j xT γ

j
+ e was taken, where

{β j }pj=1 specifies the regression relationship in terms of the
principal components {xT γ

j
}pj=1. (The model is equivalent to

y= ∑p
j=1 xTα j + e for α j =β jγ j

, j = 1, 2, . . . , p.) The error
term e, independent of x , was taken to be normally-distributed
N (0, ε2 σ 2

0 ) for a constant ε ∈ [0, 1], where σ 2
0 is the variance

of the “error-free response” m= ∑p
j=1 β j xT γ

j
, easily shown

to be σ 2
0 = var(

∑p
j=1 β j xT γ

j
)= ∑p

j=1 β
2
jλ j , a constant. Re-

sponse variance σ 2 is therefore given by σ 2= (1+ ε2)σ 2
0 , so

that the proportion of σ 2 due to error is specified via ε.

2.3. Estimating the predictive model and assessing
its performance

For a given realisation {xi }ni=1 of a sample of explanatory data,
a corresponding set of responses {yi }ni=1 was generated using

the model yi =
∑p

j=1 β j xT
i γ j
+ ei , i = 1, 2, . . . , n. If we write

mi =
∑p

j=1 β j xi
T γ

j
then s2

0 = 1
n− 1

∑
(mi − m̄)2 is an estimate

of σ 2
0 . We drew {ei }ni=1 randomly from N (0, ε2s2

0 ) rather than
from N (0, ε2σ 2

0 ) in order to keep a fixed ratio between the
amount of information in the error-free and error components
for each realisation. PLS and RR were then used to develop a
predictive model for the response in terms of the explanatory
data. Tuning was performed using leave-k-out cross-validation,
for some value of k.

There were three measures of assessment for each simulation:

1. The sPRESS value on applying the chosen model to an inde-
pendent sample (size 1000) of test data; this is the one-deep
external assessment.

2. The optimal value of sPRESS obtained during model tuning;
this is the one-deep internal assessment.

3. The sPRESS value following a nested cross-validation strat-
egy; this is the two-deep internal assessment.

2.4. The simulations

nReal realisations of the training sample were generated for
each factor combination, and values k={1, 2, 5, 10} were used
for leave-k-out cross-validation, except for the smallest sam-
ple sizes. For k> 1, the data must be partitioned into g groups,
where g is the smallest integer greater than or equal to n/k. Here
n has been chosen as a multiple of k. To quantify the effect of
partitioning on the variability of sPRESS, nPart = 20 different
partitions of the data were taken for each realisation.

Elements of the orthonormal basis {γ
j
}pj=1 were obtained by

Gram-Schmidt orthonormalisation of vector elements randomly
sampled from N (0, I ). For most simulations, a linear eigenvalue
decay profile {λ j }pj=1={50, 49, . . . , 1}was chosen; some varia-
tions from this are described in 3.7. In the underlying model, the
form {β j }pj=1={1, 0, 1, 0, 1, 0, 0, . . . , 0} was taken, so that the
response is defined in terms of a linear combination of the first,
third and fifth principal components of the explanatory data. Fur-
ther, simulations for each of the values ε={0.3, 0.4, 0.6} were
undertaken. Again, some variations are described in 3.7.

3. Results

For each combination of sample size n, error factor ε, method
(RR or PLS), value of k in leave-k-out cross-validation, and
assessment method (1-deep internal, 1-deep external or 2-deep
internal), we report the median, mean and standard error of the
mean for sPRESS estimated from modelling nReal realisations
of the sample. To allow for the nPart random partitions of the
data when k> 1, we use a repeated measures-type estimate for
the standard error:

Standard error =
√√√√nReal∑

i=1

(ri• − r ••)2

nReal (nReal− 1)
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Table 1. A brief guide to the simulation experiments reported

Description Section Figure

Original model Error ε= 0.3; Sample size n= 10, 20, 30, 40, 70, 100; 2
Methods = RR, PLS; Leave-out-k= 1, 2, 5, 10; 20 random data partitions
Results (for n= 100, 70, 40, 30, 20, 10 respectively) A.1–A.6
• Effect of sample size on sPRESS 3.2 2
• Empirical densities for sPRESS 3.2 3
• Comparison of PLS and RR 3.3 4
• Effect of k in leave-k-out 3.5 6
• Variability due to choice of random partition 3.6
• Effect of n on optimal ridge parameter/number of PLS factors 4.2 7

Original model Error ε = 0.4, 0.6; Sample size n= 40;
Methods = RR, PLS; Leave-out-k= 1, 2, 5, 10; 20 random data partitions
Results (for ε= 0.4 and 0.6 respectively) A.7–A.8
• Effect of error variance 3.4 5

Modified models (i ) “PC 5+ 7+ 9” and (ii ) “quickly decaying
eigenspectrum” Error ε = 0.3; Sample size n = 20;

Methods = RR, PLS; Leave-out-k= 1, 2, 5, 10; 20 random data partitions
Results (for modified models (i) and (ii) respectively) A.9–A.10
• Effect of varying the model specification 3.7

where ri j is the value for sPRESS for the i th realisation of the
data and the j th random partition, and dots represent averages
over the corresponding suffix.

We are particularly interested in comparing different assess-
ment methods. For this reason, values of the differences in
sPRESS between the 3 assessment methods are also provided.
To allow comparison of RR and PLS performance, differences
in sPRESS between RR and PLS are given for each assessment
method (see Section 3.3).

Simulations consisting of 100 realisations were performed for
sample sizes of 100, 70, 40 and 30. As sample size decreases, the
variability of estimates for the location and spread of distribu-
tions of sPRESS (and differences in sPRESS) tend to increase.
For this reason, 1 000 realisations were simulated for sample
size 20, and 10 000 for sample size 10. Section 3.2 examines
the effect of sample size more generally in these simulations.
For sample size 40, simulation results are reported for different
error variance factors ε= 0.3, 0.4 and 0.6 (see Section 3.4 for
further detail).

Table 1 provides a concise overview of the simulation exper-
iments undertaken:

Comprehensive tables of results are included as an appendix
(Appendix A.1–A.10). In the sections below, we extract the more
salient features from those tables to illustrate the main findings
of the simulations.

3.1. Overview for sample size n = 70

Figure 1 gives a flavour for the results obtained, using sam-
ple size n= 70 and ε= 0.3 for illustration (see Appendix A.2
for fuller results). Figure 1(a) shows the values of sPRESS ob-

tained for RR prediction using leave-1-out cross-validatory as-
sessment. sPRESS values corresponding to 1-deep external (1de,
‘o’) and 2-deep internal assessment (2di, ‘*’) are shown. Values
range from about 0.1 to about 0.3, and the mean sPRESS for
2-deep internal assessment appears to be somewhat larger that
the corresponding value for 1-deep external assessment. If we
take the latter as characteristic of true performance, this obser-
vation implies that 2-deep internal assessment provides slightly
pessimistic estimates of future predictive performance on av-
erage for this simulation. Figure 1(b) shows the corresponding
very similar results for PLS modelling. The difference between
1-deep external and 2-deep internal values for each simulation
is shown in Fig. 1(c), for RR (‘o’) and PLS (‘*’) modelling.
The mean value of this difference is negative for both RR and
PLS. The results in Fig. 1(d) suggest, on average, that PLS per-
forms slightly more poorly than RR for this simulation, since the
mean value of the difference between sPRESS values for PLS
and RR is positive for both 1-deep external and 2-deep internal
assessment (see Section 3.3).

Estimates for the mean and median sPRESS (and differences
in sPRESS) values, and the standard error of the mean, are
shown in Appendix A.2. In particular, we note that the mean
difference (‘1di-1de’) between 1-deep internal and 1-deep exter-
nal sPRESS values for PLS using leave-1-out assessment (‘PLS
lo1’) is not significant (mean=−0.004, standard error= 0.004),
whereas both the corresponding mean differences between
2-deep internal and 1-deep external (‘2di-1de’, mean= 0.016,
standard error= 0.005), and 1-deep internal and 2-deep internal
(‘1di-2di’, mean=−0.020, standard error= 0.001) are signifi-
cant. Differences in estimates of predictive performance from
different assessment methods are highlighted in Sections 3.2
and 3.3.
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(a) (b)

(c) (d)

Fig. 1. (a) sPRESS values for 100 realisations of n= 70 RR leave-1-out (b) sPRESS values for 100 realisations of n= 70 PLS leave-1-out
(c) Difference in sPRESS values for 100 realisations of n= 70 leave-1-out (d) Difference in sPRESS values for 100 realisations of n= 70
leave-1-out

Also included with the results for ‘PLS lo1’ are median, mean
and standard error estimates for the optimal number of PLS fac-
tors chosen for 1-deep internal and 2-deep internal assessment
(‘nFac1di’, ‘nFac2di’ respectively). For leave-1-out ridge regres-
sion (‘RR lo1’), the corresponding optimal shrinkage factors
‘Shri1di’ and ‘Shri2di’ are given. In the case of 2-deep assess-
ment, the number of PLS factors or the value of the shrinkage
factor obtained in each run was in fact the average over the val-
ues obtained for each unit omission in the outer loop. The sum-
mary statistics in Appendix A.2 are therefore means, medians
and standard errors of these averages. Averaging means gives
smaller standard errors for the 2-deep assessments (column 8)
than for the 1-deep assessments (column 7) where only sin-
gle values are averaged. The shrinkage factor is expressed as a
fraction of the total sample variance; for ‘RR lo1’, the median
optimal shrinkage factor for 1-deep internal assessment is 0.400,

with a mean value of 0.387 and a standard error of 0.015. That
is, a shrinkage factor of approximately 0.4 times the total sample
variance is typically used in this case. The effect of sample size
and assessment method on the choice of the optimal number
of PLS factors and RR shrinkage factor is discussed further in
Section 4.

Appendix A.2 also illustrates how the choice of k in leave-
k-out affects predictive performance. Typically, as the value of
k increases, the mean (and median) value of sPRESS increases
for internal assessment methods using both RR and PLS. The
choice of k has less effect on performance measured using
1-deep external assessment. These issues are explored more fully
in Section 3.5.

The final block of results in Appendix A.2 compares the per-
formance of PLS with respect to RR for this simulation. Values
for the median and mean (and its standard error) difference in
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sPRESS values for each of the 3 assessment approaches are
quoted, for each leave-out possibility. For sample size n= 70,
1-deep internal assessment suggests that PLS will perform
slightly better than RR. In contrast, the more reliable 1-deep
external and 2-deep internal assessment methods suggest the
converse (see Section 3.3).

3.2. The effect of sample size on assessment method

Intuition suggests that predictive performance will become pro-
gressively poorer as design sample size decreases. Simulation
results confirm this. Figure 2(a) shows mean sPRESS for leave-
1-out assessment as a function of sample size. For large sample
sizes (n= 100, 70) there is good agreement between mean val-
ues for 1-deep internal, 1-deep external, 2-deep internal assess-

(a)

(b)

Fig. 2. (a) Effect of sample size on mean sPRESS for leave-1-out
(b) Differences in sPRESS between assessment methods for leave-1-out

ment for both RR and PLS predictions. As sample size decreases,
however, the bias of 1-deep internal assessment becomes clear,
with PLS suffering slightly more than RR. In contrast, 2-deep
internal assessment compares well with the 1-deep external data
for sample sizes of 30 and larger. For the very smallest sample
sizes (n= 20, 10) however, it appears that even estimates of pre-
dictive performance based on 2-deep internal assessment are
biased with respect to the 1-deep external results. Inspection of
Appendices A.5 and A.6 (for n= 20, 10) demonstrates this effect
further. Figure 2(b) gives mean differences in sPRESS between
the three assessment methods, for each of RR and PLS analysis,
and shows clearly the bias of 1-deep internal and 2-deep internal
values with respect to 1-deep external.

Interestingly, the mean difference between sPRESS values
corresponding to 1-deep internal and 2-deep internal assess-
ment is still relatively small, even for small sample sizes. This
can be perhaps attributed to the fact that during cross-validation
the sample space is bounded by the training data, but an external
test set may easily produce data far outside these bounds.

The bias of 2-deep internal assessment, with respect to 1-deep
external, is most marked for sample size n= 10. To quantify the
effect as precisely as possible, a simulation of 10 000 realisations
of samples size 10 was performed. Empirical density functions
for the distributions of sPRESS from RR and PLS analyses (for
both 1-deep external and 2-deep internal assessment) are given
in Fig. 3(a) and (b). The distributions are all seen to be skewed
(note the log scales on the axes), with the distributions for 1-deep
external assessment extremely so. The largest values of 1-deep
external sPRESS are in the region of 30, whereas the largest
values of 2-deep internal sPRESS are around 3, for both RR
and PLS. It is important to note, however, that the realisations
which yield large values for 1-deep external sPRESS for RR
also yield large values for PLS analysis. This can be seen from
inspection of Fig. 3(c) which gives empirical density functions
for the differences between sPRESS values for PLS and RR, for
each of 1-deep external and 2-deep internal assessment (note
log scale on ordinate axis only). The distributions in Fig. 3(c)
have much lower spread than those in Fig. 3(a) and (b). The
minimum and maximum values recorded, for 1-deep external
and 2-deep internal differences respectively, are −0.43, 0.64
and −0.51, 0.83.

For small sample sizes, Figs. 2 and 3 back the suppositions
made towards the end of Section 1.3: the training data will nec-
essarily fall in a small fraction of the data space, so are not truly
representative of the population and hence the 2-deep internal
assessment will occasionally be far more optimistic than reality
as characterized by 1-deep external assessment. The fact that
choice of tuning parameter is based on n− 2 observations and a
prediction model is based on n− 1 observations will add to this
effect.

3.3. Comparison of RR and PLS

Results in Sections 3.1 and 3.2 have already alluded to
some small difference in the performance of PLS and RR in
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(a)

(b)

(c)

Fig. 3. (a) Empirical density for sPRESS: n= 10 RR leave-1-out (b)
Empirical density for sPRESS: n= 10 PLS leave-1-out (c) Empirical
density for difference in sPRESS: n= 10 leave-1-out

Fig. 4. Mean differences in sPRESS between PLS and RR for leave-
1-out

simulations. In general, results (see Appendix) suggest that for
1-deep internal assessment (regardless of sample size or choice
of k in leave-k-out), values of mean and median sPRESS for
PLS are smaller than for RR. This trend is illustrated in Fig. 4
for leave-1-out analyses, which also shows the corresponding
trends for 1-deep external and 2-deep internal assessment.

Approximate (point-wise) 95% confidence bands for each of
the three trends are also shown, but it should be noted that sim-
ulations for sample sizes n= 10 and n= 20 involve different
numbers of realisations compared with the remainder of sample
sizes explored.

For 2-deep internal assessment, Fig. 4 suggests that PLS per-
forms more poorly than RR, especially for small sample sizes.
This behaviour is largely confirmed by the 1-deep external curve.
The latter does however suggest that 2-deep internal assessment
understates the difference between PLS and RR performance.
(It is not our intention to establish superiority of either method,
and we don’t believe that there are good reasons why RR should
perform better than PLS for our simulation set-up).

3.4. The effect of error variance

Data in Appendices A.3, A.7 and A.8 permit us to compare sim-
ulation results for sample size n= 40 for different error variance
factors ε= 0.3, 0.4 and 0.6 respectively. For leave-1-out assess-
ment, values for mean sPRESS are illustrated in Fig. 5. It is
interesting to compare Fig. 5 (for increasing ε) with Fig. 2(a)
(for decreasing sample size, n); there is a strong similarity in the
trends observed. In general, as ε increases, both 1-deep internal
and 2-deep internal assessment tend towards over-optimistic as-
sessment of future predictive performance. This is rather like the
behaviour reported in Section 3.2 above for decreasing sample
size, and in fact the two effects are probably related: as error
variance increases, cross-validation is unable to capture the true
variation in the population values.
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Fig. 5. Effect of model error variance on mean sPRESS for leave-1-out
analysis on n= 40

3.5. The value of k in leave-k-out

For sample size n= 70, the behaviour of mean sPRESS for RR
and PLS models, assessed using each of 1-deep internal, 1-deep
external and 2-deep internal approaches is illustrated in Fig. 6(a).
It is apparent that the mean 1-deep external sPRESS is relatively
unaffected as the value of k in leave-k-out increases, for both
PLS and RR. For both internal assessment approaches, however,
the mean sPRESS increases gradually with increasing k.

It is interesting to note (Appendix A.2) that the mean opti-
mal RR shrinkage factor decreases with increasing k (and the
corresponding mean optimal number of PLS factors increases).

The corresponding result for n= 30 is given in Fig. 6(b). The
trends observed are quite similar to those in Fig. 6(a). In this
situation (Appendix A.4), however, the mean optimal number of
PLS factors decreases with increasing k, and no obvious trend
is apparent for the size of the RR shrinkage factor.

The trend in these figures has the following possible explana-
tion. All 1-deep external estimates are based on models that use
n observations regardless of k, which accounts for the (relative)
flatness of the corresponding plots. However, the choice of tun-
ing parameter for 1-deep and 2-deep internal estimates is based
on models using n− k and n− 2k observations respectively.
Prediction models are each based on n− k observations. The
increasing sPRESS for these methods reflects the decreasing
amount of data available.

3.6. Variability attributable to the choice
of random partition

For leave-k-out cross-validation, with k> 1, arbitrary partition-
ing of the data is necessary to facilitate assessment of predictive
performance. Partitioning therefore provides an extra source of
variation for sPRESS. In the simulations reported here, predic-
tive rules were generated based on nPart= 20 different random

(a)

(b)

Fig. 6. (a) Effect of k in leave-k-out on mean sPRESS for n= 70 (b)
Effect of k in leave-k-out on mean sPRESS for n= 30

partitions for each realisation of the training sample. Simula-
tion results therefore allow us to estimate the proportion of total
variance in sPRESS (for any particular case) attributable to the
partitioning. Results are given in Table 2 below for RR models;
the corresponding results for PLS are very similar.

The table explores the effect of sample size and error vari-
ance on the percentage of sPRESS variance attributable to parti-
tioning. We see that, for 1-deep internal assessment, percentage
variance attributable to partitioning decreases with increasing
sample size, increasing error variance and decreasing value of k
in leave-k-out. Results for 2-deep internal assessment were very
similar to those for 1-deep internal assessment so are not given.
For 1-deep external assessment, the proportion of variance at-
tributable to partitioning is much smaller. Note however that the
percentage variance attributable to partitioning now increases
with increasing error variance.
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Table 2. Percentage of sPRESS variance in ridge regression attributable to sample partitioning for leave-k-out (k > 1) cross-validation

Varying sample size, n (Constant ε= 0.3) Varying ε (Constant n= 40)

20 30 40 70 100 0.3 0.4 0.6

1-deep internal assessment
lo2 7.9 6.7 4.7 2.4 1.5 4.7 3.8 3.3

lo5 27.4 20.9 16.4 9.6 6.6 16.4 13.7 12.6

lo10 – 37.9 30.4 19.5 13.4 30.4 25.2 24.8

1-deep external assessment

lo2 0.9 0.5 2.8 0.9 0.6 2.8 5.0 12.9

lo5 2.3 2.0 4.4 1.4 1.1 4.4 6.6 4.5

lo10 – 4.6 6.6 2.1 1.9 6.6 7.8 8.2

3.7. The effect of varying the model

All the above results came from the same underlying model,
as described in Sections 2.2 and 2.4. At the instigation of one
of the referees, we did some further simulations to check on
consistency of results when varying the model. Specifically, we
looked at the case n= 20, ε= 0.3, nReal = 500 and nPart = 20
and conducted two variations of the previous model:

(i) we defined the response in terms of a linear combination
of the fifth, seventh and ninth principal components of the
explanatory data instead of the previous first, third and fifth
components;

(ii) we used a “quickly decaying” eigenspectrum {λ j }pj=1=
{50, 45, 40, . . . , 10, 5, 0, . . . , 0} in place of the previous
regular one {λ j }pj=1={50, 49, . . . , 1}.

Results for (i) and (ii) are shown in Appendix A.9 and A.10
respectively; these results may be compared most directly with
those in Appendix A.5. Although the sPRESS values are larger
in A.9 than in A.5, and those in A.10 are smaller than in A.5,
the trends within both A.9 and A.10 are consistent with those
within A.5. Moreover, since the quickly decaying eigenstructure
of A.10 implies a dimensionality 10< n= 20, the results in A.10
mimic those in A.1 and A.2 for n> p. It would thus appear that
our results show consistency across model changes.

4. Conclusions, discussion
and recommendations

4.1. Conclusions

The following conclusions can be drawn from the results of the
simulation experiments:

(i) In the presence of tuning one-deep internal assessment pro-
vides biased estimates of predictive performance. The ex-
tent of the bias increases with decreasing sample size and

increasing error variance, and is related to the precision
with which tuning parameters are estimated.

(ii) Two-deep internal assessment provides reasonable esti-
mates of predictive performance for all cases except when
n is much smaller than p. For the smallest sample sizes,
two-deep internal (as well as one-deep internal) assessment
over-estimates predictive performance, due predominantly
to the design set not being sufficiently representative of the
population. In such circumstances, the estimate of predic-
tive performance is valid only for predictions whose regres-
sor variables fall in the subspace defined by the regressor
variables in the design set. Thus any future test data should
be checked for concordance with the design set before ad-
mission for testing.

(iii) The value of k in leave-k-out influences internal estimates
of predictive performance, the size of the effect increasing
with decreasing sample size and increasing value of k. This
effect may be due to the fact that only n− k (for one-deep
assessment) or n− 2k (for two-deep assessment) individ-
uals remain for tuning, and n− k in both cases for model
construction. The size of the effect for 2-deep internal as-
sessment does not differ markedly from the size of the
effect for 1-deep internal assessment. External estimates
of predictive performance are less sensitive to the choice
of k.

(iv) The random partitioning of data is a source of variation
in leave-k-out (k> 1) internal estimates of predictive per-
formance. The proportion of variation in internal estimates
for sPRESS attributable to random partitioning increases
with increasing k and decreasing sample size. As might be
expected, external estimates are less sensitive to the choice
of random partition.

(v) Ridge regression performs slightly better than partial least
squares regression in general. RR appears to give one-
deep internal estimates for sPRESS which are slightly less
biased than those produced by PLS, in general, for the
same assessment method. There is no obvious reason, from
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consideration of the simulation set-up, why RR should out-
perform PLS. (It should be noted, however, that a grid
search method was used for RR. A finer or coarser grid
might have yielded slightly different results.)

4.2. Optimal tuning parameters

A peripheral issue in the results quoted above, but a central one as
regards operation of the predictive model, is the optimal choice
of tuning parameters (i.e. number of PLS factors or RR shrink-
age constant). In all the results above we have simply assumed
that this prior choice has been made, and then concentrated on
the resulting sPRESS values. However, the chosen values of the
tuning parameters also vary from run to run of the experiment,
and this variation merits consideration.

For each sample size n and each value of k in leave-k-out,
we have recorded the value of the optimal tuning parameters
for both 1-deep and 2-deep internal assessment. Since these
tuning parameters are selected using an “effective sample size”
n∗ of n− k and n− 2k observations respectively, by plotting the
value of the optimal tuning parameter against n∗ we can obtain
the optimal tuning parameter value as a function of the actual
numbers of observations used for tuning. Results are shown in
Fig. 7 below.

For ridge regression (Fig. 7a) there is a minimum shrinkage
factor corresponding to an effective sample size of about 20 or
30, while for PLS (Fig. 7b) there is a maximum number of factors
corresponding to an effective sample size of about 30 or 40.
These results need some explanation, and we might conjecture
as follows.

As n∗ increases beyond 30, then there is enough data to iden-
tify the X subspace of principal components 1, 3 and 5 corre-
sponding to variation in the response, so RR shrinkage increases
(thereby reducing the relative influence of principal components
with small sample variance). As n∗ decreases below 20, however,
then the estimates for the variance associated with any principal
component have large variability (with severe overestimation of
large eigenvalues and underestimation of small ones), so larger
and larger shrinkage is required to yield a more realistic balance
between the variances of the components. For PLS, on the other
hand, as n∗ decreases below 40, there is less and less correla-
tion with the response in successive factors so that the optimal
number of PLS factors decreases too, but as n∗ increases above
40 then PLS is able to capture progressively more concisely the
subspace of X variation corresponding to variation in the re-
sponse. Equilibrium between the two effects is achieved when
n∗ is about 40.

4.3. Recommendations

The following general recommendations can be made, based on
the simulation experiments reported here. In the simulations, the
underlying dimensionality of the explanatory space is equal to
the number of explanatory variables p. In general, it is possible

(a)

(b)

Fig. 7. (a) Effect of sample size on mean optimal ridge parameter (b)
Effect of sample size on mean optimal number of PLS factors

(e.g. for spectroscopic data from analytical chemistry) that the
underlying dimensionality is actually less than p. For this reason,
the recommendations below, although referring to the number
of explanatory variables p, should be understood as referring to
the actual underlying dimensionality.

(i) We recommend the use of 2-deep internal assessment for
cases when the number of explanatory variables exceeds
the number of observations (n< p). However, if n¿ p then
the warning in 4.1(ii) should be borne in mind and caution
exercised when interpreting calculated values.

(ii) For large sample sizes (e.g. n= 100 in this work), the choice
of k in the domain [1, 10] is largely arbitrary. As n de-
creases, however, the effect of k on internal estimates of
predictive performance increases, due to random partition-
ing and the fact that only n− k (for one-deep assessment)
and n− 2k (for two-deep assessment) individuals remain
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for tuning. For n= 20, simulation suggests that there is lit-
tle difference between the choices k= 1 and k= 2 in terms
of estimation of predictive performance. Further, the vari-
ability of sPRESS for k= 2 increases only slightly due to
random partitioning. In addition, leave-2-out is computa-
tionally considerably faster that leave-1-out. For this reason
we recommend the use of leave-2-out cross-validation for
all sample sizes in the interval [20, p].

Appendix: Full tables of simulation results

A.1. sPRESS for sample size n = 100, error factor ε= 0.3, nReal = 100 realisation, nPart = 20 partitions,
k = {1, 2, 5, 10}

(iii) If a leave-k-out assessment approach is adopted with k> 4,
then results here suggest that the estimate of predictive per-
formance can be quite sensitive to the choice of random
partition. For this reason, reanalysis of a number of differ-
ent random partitions of the design sets should always be
considered. This will give some indication of variation in
predictive performance over random partitions, and enable
confidence intervals to be constructed for this quantity.
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A.2. sPRESS for sample size n = 70, error factor ε= 0.3, nReal = 100 realisations, nPart = 20 partitions, k = {1, 2, 5, 10}
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A.3. sPRESS for sample size n = 40, error factor ε= 0.3, nReal = 100 realisations, nPart = 20 partitions, k = {1, 2, 5, 10}
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A.4. sPRESS for sample size n = 30, error factor ε= 0.3, nReal = 100 realisations, nPart = 20 partitions, k = {1, 2, 5, 10}
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A.5. sPRESS for sample size n = 20, error factor ε= 0.3, nReal = 1000 realisations, nPart = 20 partitions, k = {1, 2, 5}
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A.6. sPRESS for sample size n = 10, error factor ε= 0.3, nReal = 10000 realisations, nPart = 1 partitions, k = 1
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A.7. sPRESS for sample size n = 40, error factor ε= 0.4, nReal = 100 realisations, nPart = 20 partitions, k = {1, 2, 5, 10}
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A.8. sPRESS for sample size n = 40, error factor ε= 0.6, nReal = 100 realisations, nPart = 20 partitions, k = {1, 2, 5, 10}
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A.9. A different underlying model, linear combination of PCs 5,7 and 9: sPRESS for sample size n = 20, error factor ε= 0.3,
nReal = 500 realisations, nPart = 20 partitions, k = {1, 2, 5}
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A.10. A different underlying eigenspectrum, linear decay 50, 45, 40, . . . , 10, 5: sPRESS for sample size n = 20, error factor
ε= 0.3, nReal = 500 realisations, nPart = 20 partitions, k = {1, 2, 5}
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