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SUMMARY 

A computationally efficient approach has been developed to perform two-group linear discriminant 
analysis using high-dimensional data. The analysis is based on Fisher’s method and incorporates two 
important validation stages: 1, full leave-one-observation-out cross-validation; 2, randomized permutation 
distribution testing. The resulting algorithm and software are known as CREDIT kross-validated random- 
permutation-tested efficient discrimination based on an adjusted generalized inverse for the sample total 
covariance matrix). 

The algorithm has been implemented in the SAS/IML matrix programming language and provides 
dramatic improvements in computational efficiency compared with existing software for discriminant 
analysis incorporating validation stages 1 and 2 above. Application of CREDJT to nine multivariate data 
sets indicates that the predictive performance of the approach, assessed using cross-validation, is 
comparable with that of other methods for discriminant analysis. Comparisons with two specific methods 
are included. 

Randomized permutation tests show that success rates using the true response classes are almost always 
better than success rates using random permutations of the classes. This gives confidence that there is a 
useful linear discriminant relationship present in the data being analysed. 

For a rundornly selected training set (used to construct the discriminant rule) the success rates for 
CREDIT are unbiased predictive success rates for allocating other observations to groups. Predicting 
group memberships for future observations using any discriminant model based on singular estimates of 
covariance matrices must be performed with great care. A discussion of methods to test the concordance 
of future observations with the training set is given. 

KEY WORDS concordance; discriminant analysis; permutation test; principal components; QsAR 

INTRODUCTION 

The ability to interpret and utilize high-dimensional data is becoming increasingly important in 
countless fields of science and technology. In analytical chemistry, for example, spectroscopy 
provides huge quantities of data to characterize a chemical. Spectroscopy and multivariate 
statistics have been used in tandem to provide a method to quantify the properties of complex 
chemicals, such as the octane number of gasolines and the concentration of trace substances in 
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a complex mixture. The major motivation for adopting a statistical solution to these problems is 
that actual measurement of octane number, for example, is time-consuming and expensive; the 
combination of spectroscopy and statistics is far more efficient. 

We have been particularly concerned with applications of multivariate statistics in molecular 
design. Here we want to find novel useful performance chemicals. Only in the most elementary 
of cases is it feasible to generate reasonable theoretical models for the chemical/physicaI 
system under examination. In almost every useful application we are again forced to adopt a 
statistical solution. Molecular modelling can provide high-dimensional theoretical descriptions 
of chemicals; these descriptors can be used as training data to develop quantitative 
structure-activity relationships (QSARs) or quantitative structure-property relationships 
(QSPRs) which characterize a chemical’s performance (as a pharmaceutical or gasoline 
additive, for example) in terns of the theoretical description of that chemical. Various 
statistical methods for prediction using multivariate data have been used for QSAR studies.”’ 
Discriminant analysis is just one method to establish rules with which to predict the properties 
of a chemical. 

QSAR - a chaUenging area for chemometrics 

The development of useful QSARs is frequently difficult, even when the ratio of observations to 
variables in the sample is high. In the situation addressed here, the number of variables exceeds 
the number of observations! In many applications of chemometrics in analytical chemistry, 
physical theory supports the application of linear statistical techniques; for example, in 
multivariate calibration using near infrared spectroscopy, we know that the intensity of measured 
absorbance of a chemical solution should be linearly related to the concentration of solute in the 
solution provided that the solution is sufficiently weak. In molecular design, however, it is often 
impossible to justify specific assumptions concerning the nature of the relationship between cause 
and effect. Consequently, we cannot justify the application of particular statistical methods to 
establish the QSAR. Instead, the chemometrician is forced to adopt a pragmatic approach: a QSAR 
{and the statistical methodology used to establish it> is judged by the quality of its predictions. The 
CREDIT method introduced here is motivated by these considerations. 

The generation of data for QSAR modelling is expensive in terms of both the time of 
biologists and chemists and the expense of performing complex sequences of chemical 
synthesis and in subsequent evaluation of chemical performance. As a result, chemometricians 
are often presented with inadequate data. Specifically, the ratio of observations to variables is 
usually very low and the variability of response data is very high. Even when experimental 
design methods are used in an effort to ensure efficient use of resources, the eventual data 
sample is usually incomplete owing to the prohibitive complexity of some syntheses (which 
often cannot be judged a priori). Nevertheless, decisions will be taken based on the data 
gathered; the chemometrician’s task is to ensure that the data are used as effectively as possible 
to influence those decisions. Model validation assumes increased importance in such 
circumstances. CREDIT incorporates both cross-validation and randomized permutation testing 
in order to check the usefulness of a particular QSAR prediction rule as rigorously as possible 
given the limitations outlined here. 

Numerous different molecular properties have been used for QSAR, ranging from simple 
physicochemical measures of molecular size and shape to highly multivariate IR and NIR 
spectroscopic data. In this paper we consider the application of two-group linear discriminant 
analysis to IR and NIR data. We also consider applications involving theoretical chemical 
descriptors derived from molecular modelling, namely CoMFA and EVA. 

 1099128x, 1996, 3, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-128X
(199605)10:3<

189::A
ID

-C
E

M
410>

3.0.C
O

;2-I by <
Shibboleth>

-m
em

ber@
lancaster.ac.uk, W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DISCRIMINANT ANALYSIS WITH SINGULAR COVAFUANT MATRICES 191 

The CoMFA (comparative molecular field analysis) descriptor3 characterizes a chemical in 
terms of the values of electronic interaction between the chemical and a small probe species 
(such as a carbon cation) placed in turn at points on a grid surrounding the chemical. The 
chemical is therefore represented as a 3D lattice of numbers. The current method for statistical 
analysis of such data is to unwrap the lattice into a long 1D spectrum-like vector, thereby 
ignoring the spatial correlation structure of the original descriptor. A number of promising 
QSAR analyses using CoMFA have been rep~rted.~” 

The EVA (gigenvalue) descriptor developed by L. Phillips and co-workers at Shell 
Research, Sittingbourne is based on a theoretical analysis of molecular vibrational motion. 
The so-called normal modes of vibration, calculated by spectral decomposition of the 
molecular vibrational Hessian matrix, are used to create a spectrum-like vector which can be 
viewed as a theoretical approximation for an IR spectrum (although EVA was not developed 
for this purpose). 

For each of the applications under consideration here, we are thus faced with analysis of 
multivariate observations in the form of spectra. In order to establish the QSAR, descriptor and 
response data are required for a training set of chemicals, the members of which are typically 
chosen systematically rather than at random. In general, measuring the response data is time- 
consuming and expensive (for example, screening a pharmaceutical or engine testing a gasoline 
additive). As a result, the training set usually contains far fewer observations (<lo0 typically) 
than there are variables (>500) in each multivariate observation. Classical techniques of 
multivariate statistics are therefore not immediately applicable. 
The available statistical tools for QSAR using high-dimensional data can be partitioned into two 
classes: regression methods (for continuous responses) and classification methods (for 
categorical responses). A number of regression methods have been used for QSAR purposes, in 
particular techniques such as partial least Squares‘ (PLS). Techniques such as projection pursuit 
regression and MARS’ hultivariate adaptive regression splines) have received increasing 
attention. In this report, however, attention is focused on classification. 

Probably the most popular methods for classification are discriminant analysis839 and 
SIMCA” (soft independent modelling of class analogy). Quadratic and most forms of linear 
discriminant analysis assume that the class populations are multivariate normal; these techniques 
function adequately when the training data provide reasonable estimates of the population 
means and covariances. SIMCA was specially developed for problems with low numbers of 
observations compared with variables. Each class is represented by a principal component 
model; classification of a test observation is made according to its distances from each of the 
classes. SIMCA has become a popular tool for chemometricians. 

Campbell” suggested the use of shrunken estimators in discriminant and canonical 
variate analysis. Friedman” and Frank13 have respectively reported their regularized 
discriminant analysis and DASCO (cjiscriminant analysis with Shrunken =variances). These 
utilize biased estimates of class covariances; this bias helps to overcome the problem of 
highly variable covariance matrix estimates, typical in applications for which the number of 
variables greatly exceeds the number of observations. Friedman,” Frank13 and Frank and 
FriedmanI4 report the results of simulation studies to assess the relative predictive 
performance of the various classification techniques available. Friedman” points out that 
the adoption of the pooled within-group covariance matrix (even if the population class 
covariances are different) introduces a considerable degree of regularization. The decrease 
in variance often leads to superior performance of linear discriminant analysis compared 
with more complex approaches such as quadratic discriminant analysis, especially when the 
ratio of observations to variables is low; hence the popularity of linear discriminant 
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analysis. Hastie et al. 
using optimal scoring. 

have recently proposed a novel approach to discriminant analysis 

Background to current developments and the need for rigorous model validation 

Work at Shell Research, Sittingbourne has focused on the development of novel techniques for 
two-group linear discriminant analysis for high-dimensional data. This research is motivated by 
the need to provide two-way classifications of chemicals in analytical chemistry and molecular 
modelling. Following initial work based on MacFie’s principal component/canonical variate 
analysis, a method based on ideas proposed by Campbell and Atchleyt6 was developed; this 
method, referred to henceforth as MCA (modified Campbell and Atchley) is the motivation for 
the new approach, CREDIT, reported here. Subsequently, McCarthy developed a form of 
generalized ridge discriminant (GRD) analysis. Both the MCA and GRD methods are 
summarized below and reported in Reference 17 and will be used here to facilitate comparison 
of predictive performance for CREDIT. 

Model validation is an essential step in performing the classification analysis. Because of the 
sparsity of observations, it is possible to find linear combinations of the explanatory variables 
which allow the training data to be fitted perfectly during model building; that is, 100% 
resubstitution success rates can be obtained. The corresponding model possesses impressive 
descriptive power but often almost no predictive power. Krzanowslu et aLi7 have demonstrated 
this for the so-called zero-variance discriminator. In view of this problem, leave-one-out cross- 
validation” has become a popular approach to estimating the predictive power of a classifier; 
almost all the classification techniques discussed above use cross-validatory assessment. 
Computationally, cross-validation is expensive since it involves the generation of T I  different 
classifiers (where n is the number of observations in the training set). For suitably formulated 
problems, however, Friedman’* showed that a rank one matrix inverse updating approach can be 
employed, thereby dramatically reducing the computational burden of cross-validation. 
Similarly, Dunne and StoneI9 have recently reported the use of rank one matrix pseudoinverse 
downdating”. Unfortunately, matrix inverse up- and downdating are not applicable to CREDIT 
and MCA since they both involve the selection of a subset of principal components with which 
to form the discriminant rule. Matrix inverse up- and downdating have not been considered for 
GRD to date. 

Estimation of prediction success rate alone is insufficient to assess the usefulness of a 
discriminant rule; its significance should also be estimated. In order to quantify the extent to 
which a measured cross-validated success rate is ‘significant’, we use the method of randomized 
permutation testing. Discriminant models for a large number of random permutations of the 
responses are developed and the predictive power of each is assessed using cross-validation. A 
distribution of randomized permutation success rates is then constructed, the actual predictive 
performance is deemed to be ‘significant’ if it is in the extreme right-hand tail of the 
distribution. The application of randomized permutation testing in singular discriminant analysis 
has been discussed by Krzanowski et ai. ’. 

There are many different measures to assess the predictive performance of the discriminant 
rule; for example, we could adopt the overall success rate or the classification rate for an 
individual group or any combination of these, as assessed by cross-validation. These measures 
can be referred to as utilities. Randomized permutation tests can be used to test whether such 
utilities are biased. 

In practice, the results of the randomized permutation tests are most desirable because they 
give confidence that there is a useful linear discriminant relationship (between explanatory 
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variables and the response class) in the data being analysed. For example, analyses of two 
different data sets might yield discriminant rules A and B with unbiased predictive success rates 
(assessed using cross-validation) of 80% but with tail probability (p-value) estimates of 0.001 
and 0.05 respectively. The result for rule A suggests that the actual predictive performance is 
much better than could be obtained from any other permutation of the class allocations. This 
gives confidence that a specific link between molecular cause and chemical effect actually exists 
for these data, which can be identified using discriminant analysis. On the other hand, the result 
for rule B indicates that the actual predictive performance could be bettered quite easily by 
choosing a different permutation of class allocations. In turn, this suggests that the link between 
cause and effect is not particularly special and hints that different molecular descriptors and 
other methods to establish the predictive rule should be explored. 

Randomized permutation tests are computationally very intensive, necessitating an R 
(>200)-fold increase in the computational complexity of the analysis. The development of 
algorithms which overcome this heavy computational burden is clearly of some importance. 

In this paper we introduce a method known as CREDIT (cross-validated random-permutation- 
tested efficient discrimination based on an adjusted generalized inverse for the sample total 
covariance matrix) for two-group discriminant analysis. CREDIT performs efficient randomized 
permutation testing, facilitated by a reformulation of the discriminant problem. The sections 
below report, in turn, an overview of the method, application of the method, discussion and 
conclusions. An algorithm for CREDIT is given in the Appendix. However, first, to put 
CREDIT in context, we give a brief outline of two-group linear discriminant analysis. 

Linear discriminant analysis 

We consider a data matrix X (n x p )  consisting of n observations on a random p-vector taken 
from two distinct populations nl and nz. After reordering its rows, we can partition X into two 
matrices X, ( n l  x p)  and X, ( n 2  x p)  corresponding to observations in groups 1 and 2 
respectively: 

(1) 
Fisher’s linear discriminant function” is a linear function of the p variables that maximizes the 
ratio of the between-group sum of squares to the pooled within-group sum of squares. That is, 
we seek the linear combination y=aTx of the variables defined by the p-vector which 
maximizes 

XT = [x: I x:] 

(aTWa) (aTBa) (2) 
Here W is the sample pooled within-group covariance matrix 

in which H,, is the rn x rn centring matrix 
1 
rn 

H, = I, - - llT (4) 

T the sample total covariance matrix 
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and B is the sample between-group covariance matrix, which has the particularly convenient form 

n1n2 ddT B = ( n  - l)T - (n - 2)W = - 
n 

d is the sample group mean displacement vector 

d=81-f2 (7) 
where Ri  (i = 1, 2) refers to the sample mean vector for group i. When W has full rank, the 
discriminant vector a can be shown to be the eigenvector of W -'B, namely 

a=W-'d (8) 
In problems for which n - 2 < p ,  W is rank deficient and hence the classical solution (8) is not 
accessible; in numerical analytic terms we have an ill-posed problem.'2*22 In such cases a 
solution of the form 

a = W'd (9) 
is usually sought, where W' is calculated from the properties of W and performs the function 
of an inverse. the choice of W' is critical; for instance, we might use W = W-,  a generalized 
inverse2' for W. Once W' is chosen and calculated, a new observation x, (not in the training set) 
can be allocated to one of the two groups using the following rule: 

allocate to group 1 1 aT(x, - a,)  I < I aT(x, - 8,) I (10) 

CREDIT - AN ALTERNATIVE FORMULATION 

In this paper we consider an alternative formulation of the linear discriminant problem. We seek 
a vector a which maximizes the ratio 

(aTTa)-' (aTBa) (1 1) 
where T is now the sample total covariance matrix. The solution to this optimization is the 
principal eigenvector of T-'B (assuming that T-'  exists) given by 

a = T-'d (12) 
This alternative formulation was reported by Fisher,23 who observed that linear discriminant 
analysis can be cast in a regression context by a particular choice of response vector. 

The full rank case 
It is interesting to compare the formulations represented by equations (2) and (1 1). When W 
(and hence T) is full rank, the respective optimizations (2) and (1 1) are identical, since by (6),  
( n  - l)T = (n  - 2)W + B. Indeed, it can be shown that 

T -Id = ( n  - 2)-' [ ( n  - 1) - n-'nl  n,(dTT-'d)]W -Id (13) 
That is, the unit vector solutions of (2) and (1 1) are the same. 

The singular case 

When W (and possibly T ) is singular, the two optimizations (2) and (1 1) are also equivalent, 
but nevertheless motivate different solutions. The solution to (2) is obtained by solving the 
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equation Ba = LWa, where both B and W are now singular. Using (6) to express W in terms of 
T and B, it is trivial to show that a = T -‘d provides a valid solution, where T- is any one of a 
large family of generalized inverses of T that includes the Moore-Penrose generalized inverse. 
Similarly, a = T-d is a solution of optimization (1 1). The basic reason that the ‘generalized’ 
solution T-d holds is the result: 

TT-d=d (14) 

It is apparent that d lies in the range of T; this result is easily demonstrated by expressing the 
LHS of (14) in terms of the singular value decomposition of the centred data matrix HX. 

Conversely, d does not lie in the range of W in general and we cannot write WW -d = kd where 
k is some constant. For this reason W-d does not provide an exact solution for (2) (or (1 1)). The 
example illustrated in Figure 1 serves to emphasize this difference. Consider a data set consisting 
of two groups of observations. Suppose that the data are p (>3)-dimensional but that they can be 
projected into three dimensions without loss of information; hence both T and W are singular. 
Now suppose that the two groups of data occupy the planes x = - 1 and x = 1 respectively and that 
the means of the two groups lie on the x-axis. It is clear that the eigenvectors of W (the within- 
group covariance matrix) will be some pair of orthonormal vectors in the ( y ,  z;-plane. 
Furthermore, the mean displacement vector d lies perpendicular to W; that is, d is in the null space 
of W. Thus WW-d=O and W-d=O does not provide a useful basis for discrimination! 
However, d clearly lies in the range of T , so that the solution a = T -d holds. 

We can generalize this example and consider mean displacement vectors which do not lie 
along the x-axis. The difference between T-d and W-d is still apparent, however, since a 
component of d will still lie in the null space of W. Writing d = d, + d,, where d, lies in the 
space spanned by the eigenvectors of W and d2 lies in the null space of W, we have 
WW -d = d,  + kd for any constant k in general. 

X 

Group 1 in the plane 
x=-1 

Group 2 in the plane 
x=+l 

Figure 1. Simple example to illustrate that T-d  and W-d are different 
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Sundberg and Brown,24 in the context of calibration, discuss the dual approaches of, firstly, 
regression of dummy (population identifier) on spectrum, our approach via equation (ll),  and, 
secondly, spectrum on dummy, followed by generalized least squares inversion, akin to our 
approach via equation (2). In the singular case they show that the two distinct lines of 
development lead to the same solution space and in particular a = T-d provides a solution to both. 

Randomized permutation tests 
Another advantage of a = T -d over W -d is apparent from consideration of the randomized 
permutation test. To evaluate the significance of predictive performance, a large number R 
(>200) of different discriminant rules should ideally be evaluated for random permutations of 
the original groupings of observations. Application of W -d requires recalculation of W (and 
hence W-) for each of these permutations. Application of T-d, however, is much more 
efficient, since T is independent of the grouping of observations. Adoption of solution (12) 
yields a dramatic reduction in the computational complexity of any analysis. 

Selection of eigenvectors 
As mentioned in the Introduction, equation (9), it is not necessary to adopt a generalized inverse 
as the basis for the discriminant method. In CREDIT we choose to select a subset of the 
eigenvectors/principal components of T which individually provide the best discrimination (as 
explained below) in order to construct a discriminant rule. In this way we avoid the inclusion of 
principal components with respect to which the two groups are relatively similar. An evaluation 
of different approaches to eigenvector selection is given in the Applications section. 

Adjustment of eigenvalues 

Spectral decomposition of the covariance matrix yields eigenvalues which are biased estimates 
for the population variances; the smallest variances are underestimated whereas the largest 
variances are overestimated. The discriminatory importance of eigenvectors/principal 
components with small eigenvalues can be dramatically inflated because of the negative bias.I2 
In order to correct for this effect in CREDIT, we apply a small positive adjustment to all 
eigenvalues before the assessment of discriminatory importance. Of course, the adjustment also 
inflates the values of the larger eigenvalues which are already overestimates. However, the 
relative effect of the adjustment on large eigenvalues is small. 

The size of the adjustment is arbitrary and generally application-dependent. However, in our 
experience a small positive correction of about 1% of the mean eigenvalue is desirable. We 
present an assessment of the effect of eigenvalue adjustment in the Applications section. 

Deriving the CREDIT discriminant rule 

An outline of the CREDIT method is given below, highlighting the important steps in the 
approach. 

1. Estimate the eigenstructure of T. 
2. Adjust eigenvalues of T , then select eigenvectors with highest discriminatory importance. 
3. Establish the discriminant rule. 

A more complete algorithm is given in the Appendix. 
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Sample centred inner product matrix 

We start by estimating the eigendecomposition of the sample total covariance matrix T given by 
(5). Direct computation of this p x p  matrix (where p > 500) is not necessary, since the 
eigenstructure can be calculated from knowledge of the eigendecomposition of the sample 
centred inner product matrix M : 

1 

n -  1 
M = -  (H,x)(H,x)~ = E L E ~  

The second equality follows from the spectral decomposition theorem, where 
E= (el, e,, ..., eq),  L=diag(L,, A,, ..., A,) and rank(M)= q for some value of q 
(1 C q s  n- 1). The eigenvectors e i  are related to the eigenvectors f i  of T according to the 
expression: 

1 
F = (fl, f2, ..., f,) = (H,x)~EL-'/' = (H,x)~z 

(n - 1)ll2 

The matrix Z consists of the vectors zi, i = 1, 2 ,  . . . , q,  and is given by 

Note that the eigendecomposition of T could have been equally well obtained from the 
singular value decomposition of the centred data HX. 

Adjusted eigenvalues 

The eigenvalues Ai, i = 1, 2, . . . , q, of the sample centred inner product matrix M provide biased 
estimates of the population variances as discussed above. In an effort to accommodate this bias, 
an (arbitrary small) adjustment is made to all the eigenvalues to give a new set of adjusted 
eigenvalues A,! such that 

l; * = li 4- - 2 2 ;  
i - l  

Selection of eigenvectors according to discriminatory importance 

Only those eigenvectors/principal components of T having highest discriminatory importance 
are retained for incorporation in the discriminant vector. The discriminatory importance 6, of 
the principal component corresponding to eigenvector f is defined as the squared difference in 
principal component score for the two groups divided by the adjusted variance of the scores 
derived from the total covariance matrix: 

Only those k eigenvectors having the highest discriminatory importance 6 are retained to form 
the allocation rule (analogous to equation (10)). After reordering the eigenvectors and 
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eigenvalues so that 6, b 6,> . . . a  6,, the value of k is selected so that 

5 
2 A: 

5: 0.95 i =  1 

i =  1 

ensuring that the retained principal components explain approximately 95% of the adjusted 
variation in T. Note that (20) is a rather arbitrary method for selecting the number of 
eigenvectors to retain; other strategies are discussed in the Applications section. The 
corresponding retained eigenvalue and scaled eigenvector matrices are referred to as L: and E, 
respectively. qK is used to refer to the group mean displacement vector evaluated in terms of the 
retained principal components only. 

The allocation rule 

After some algebra the allocation rule can be expressed in the following form: 

allocate to group 1 u @;L;--'z;H,[xx, - iXXT(n;'l;, 1 n ; ' 1 : ~ ~ 1  > O  (21) 

In (21), L: represents the variance of principal component scores and consequently is adjusted 
as in (18) to ameliorate the bias in such variances. @, and Z, are calculated using the unadjusted 
L, as in (17). 

APPLICATIONS 

The CREDIT algorithm derived above has been implemented as an SAS/IML computer 
program employing the routine EIGEN to calculate spectral decompositions. This program has 
been used to perform two-group linear discriminant analysis of high-dimensional data for a 
large number of data sets at Shell Research, Sittingbourne. Here we report the results of 
analyses of nine different data sets. 

The first eight sets correspond to discretized IR, NIR or EVA spectra for potential 
commercial compounds. Each chemical has been tested in a physical/chemical screen; screening 
results permit the chemical to be classified as active or inactive. The objective of the 
discriminant analysis is thus to generate a rule for accurate classification of future chemical 
spectra as active or inactive. The last data set CoMFAl consists of CoMFA descriptors. 
Industrial confidentiality prevents further description, of either the data sets or the problems that 
generated them. 

It is apparent from Table 1 that the data are high-dimensional and that the number of 
variables greatly exceeds the number of observations. It should be noted that the data sets IR1, 
NIRl and NIR2 are identical with those analysed by Krzanowski et al.," who use the same 
naming convention. Figures 2(a)-2(d) give typical IR, NIR, EVA and CoMFA 'spectra' 
respectively for illustration. 

In particular, Figure 2 indicates that the IR and EVA spectra are qualitatively similar, 
taking only positive values. The NIR data, in the form of a derivative of absorbance with 
respect to frequency, take positive and negative values. The CoMFA spectra typically 
consist of intervals of consecutive non-zero values separated by intervals where intensity is 
zero. 
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I 
'IR-spectrum' - 

Frequency 

199 

Frequency 

Figure 2. Typical observations: (a) measured infrared (IR) spectrum; (b) moving average second- 
derivative measured near infrared (NIR) spectrum; (c) calculated EVA descriptor; (d) calculated CoMFA 

descriptor. The dotted line in each plot indicates zero intensity 
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Figure 2. (continued) 
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Table 1.  Data sets examined 

Reference name Number of Number of Number of Number of 
for data set Type of data variables observations active chemicals inactive chemicals 

EVA1 
EVA2 
EVA3 
EVA4 
EVA5 
IR1 
NIRl 
NIR2 
CoMFAl 

EVA 
EVA 
EVA 
EVA 
EVA 
Infrared 
Near-infrared 
Near-infrared 
CoMFA (steric) 

640 
1464 
61 1 
5 14 
5 14 

1738 
700 
700 

1555 

86 
36 

148 
37 
57 
47 
35 
45 

145 

46 
23 
74 
19 
19 
25 
17 
23 
73 

40 
13 
74 
18 
38 
22 
18 
22 
72 

Data pretreatment 

It is common practice to attempt some form of data standardization prior to statistical analysis. 
For example, each explanatory variable might be scaled to have unit variance, on the basis that 
each variable should be considered as equally informative prior to statistical analysis. In the 
analyses reported here, no data pretreatment was performed; the data were analysed in the form 
generated by the relevant molecular modelling or spectroscopic analysis data acquisition 
systems. 

Comparison with other methods 

In order to gain a useful appreciation for the predictive performance of CREDIT, we need to 
compare its predictive performance with that of other methods for two-group discriminant 
analysis. To achieve this comparison, we have also analysed each data set in Table 1 using two 
other discriminant procedures. These methods, reported in Reference 17, are a form of linear 
discriminant analysis motivated by the work of Campbell and Atchley16 (which we refer to as 
MCA), and a form of generalized ridge discrimination (called GRD). 

The MCA approach is fundamentally very similar to CREDIT, except that it employs the 
sample within- group covariance matrix rather that the sample total covariance matrix to 
perform the principal component analysis and to generate the discriminant rule. The relative 
predictive performance of MCA compared with CREDIT will therefore depend on the amount 
of discriminatory information in the null space of W. However, randomized permutation tests 
using MCA are computationally very intensive. The computational efficiency of MCA is 
therefore expected to be much poorer than that of CREDIT. 

The GRD method uses an estimate 2 for the true within-group covariance matrix based on an 
augmented form of the sample within-group covariance matrix W: 

where 
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is the spectral decomposition of W (see also (3)) and y is a normalizing constant which is 
expressed in terms of a, B and the eigenvalues given in the diagonal matrix A. The values of a 
and are chosen to optimize predictive performance. For convenience this was performed via a 
41 x 41 log-scaled grid-searching procedure for lO-*Od  a d lo2’ and 1 0 - 2 0 ~  /? s lo2’. The GRD 
method is known to give biased predictions” owing to the grid-searching procedure not being 
cross-validated. We expect to be able to detect this bias using randomized permutation tests. 

Predictive performance - first eight data sets 

The predictive performance of CREDIT, MCA and GRD, estimated using full leave-one-out 
cross-validation, for each of the first eight data sets in Table 1 is reported in Table 2. Results for 
the analysis of the final data set are given later. Table 2 gives classification success rates for 
each group of observations as well as the overall success rate. The figures in parentheses are p-  
value estimates for the probability that this value of success rate is obtained by chance; p-values 
are estimated using 1000 randomized permutations of the response labels. 

From the table it can be seen that the predictive performance of CREDIT and MCA is equal 
for two data sets (EVA5 and NIRl). In three cases (EVA3, EVA4 and IRl) CREDIT performs 
better than MCA. In the remaining three cases MCA performs better than CREDIT. Overall, 
therefore, we conclude that there is little to choose between CREDIT and MCA in terms of 
predictive performance. 

The p-values associated with the success rates are generally small. However, there is cause 
for concern in some instances. For example, the inactive success rate of 0.692 for data set 
EVA2 is identical for each of the three discriminant methods. However, the p-value associated 
with GRD is much larger than those associated with CREDIT and MCA. For GRD, 104 of the 
1000 randomized permutations yielded success rates greater than or equal to those observed for 

Table 2. Results of analyses of first eight data sets 

CREDIT MCA GRD 

Active Inactive Overall Active Inactive Overall Active Inactive Overall 
success success success success success success success success success 

Data set rate rate rate rate rate rate rate rate rate 

EVA1 0.717 0.725 0.721 0.826 0.650 0.744 0.870 0.850 0.860 
(0-015) (0-002) (0401) (O-OO)a (0.03)” (0.00)” (Oa-OO)b (Oo-OO)b (0~00)~ 

EVA2 0.826 0.692 0.778 0.913 0.692 0.833 0.913 0.692 0.833 
(0.056) (0.012) (0.010) (0.001) (0,025) (0.000) (0.015) (0.104) (0.007) 

EVA3 0.757 0.635 0.696 0.635 0.581 0.608 0.784 0.784 0.784 

EVA4 0.737 0.667 0.703 0.684 0.667 0.676 0.842 0.778 0.811 

EVA5 0-737 0.737 0.737 0-737 0.737 0.737 0-737 0.789 0.772 

IR1 0.880 0.864 0.872 0.880 0.818 0.851 0.960 0.864 0.915 

NIRl 0.824 1.000 0.914 0.824 1.000 0.914 0.882 1.000 0.943 

NIR2 0.739 0.773 0.756 0.913 0.773 0.844 0.826 0.864 0.844 

(0.000) (0.012) (0.000) (0.Ol)C (o*09)c (0.01)‘ (0-0)d (o-o)d (O.Oy 

(0.024) (0.081) (0.018) (0.083) (0,089) (0.050) (0.016) (0.065) (0.01 1) 

(0.005) (0.092) (0.008) (0.004) (0.077) (0.006) (0.045) (0.075) (0.019) 

(0.000) (0-000) (0.000) (0.000) (0.001) (O*OOO) (0~000) (0.001) (0~000) 

(0.002) (0.000) (0.000) (0.008) (0.000) (0.000) (0.008) (0.000) (0.000) 

(0-025) (0-015) (0-005) (0.001) (0.01 I) (0.001) (0.022) (0.009) (0-000) 

a-d Estimated p-values using “500, b250, ‘100 and d50 randomized permutations. 
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the true response data. This could be viewed as further evidence of bias in the GRD success 
rates. For all three methods the p-values for the EVA4 and EVA5 inactive success rates are 
high. 

Bias assessment 
For each application the overall predictive performance of GRD is at least as good as the better 
of CREDIT and MCA. However, this is not surprising in view of the fact that the predictive 
performance of GRD estimated using cross-validation is known to yield biased results owing to 
the tuning performed. Evidence for this bias for data set IR1 is given in Figure 3. As the figure 
shows, the mean active, inactive and overall success rates for randomized responses is 
approximately 0.60 compared with approximately 0.50 for CREDIT and MCA; the bias is 
therefore about 0- 10 for randomized responses. For set EVAl the corresponding distributions 
are given in Figure 4. The bias of GRD success rates is again apparent. Note also that the EVAl 
distributions are noticeably narrower than the corresponding distributions for IR1. 

We have estimated the bias incurred in cross-validatory assessment of predictive performance 
using each of CREDIT, MCA and GRD for a number of data sets. Results are given here in 
Table 3, in terms of mean values from randomized permutation tests, for each of the active, 
inactive and overall success rates. 

If a randomly selected training set from a population is used, then CREDIT and MCA 
provide unbiased predictive success rates for allocating other observations to groups. GRD 
provides biased predictive success rates owing to the tuning performed. Krzanowslu ef al.I7 
have expressed this bias in terms of the difference between internal (‘leave-one-out’) success 
rates and external success rates (obtained by applying the discriminant rule to other 
observations). They suggest that for data sets having approximately 40 observations, GRD 
success rates should be reduced by between 0.05 and 0.10 to account for bias. This bias could 
be removed by using a two-deep cross-validation approach to select a and B in GRD, but this 
would be computationally very demanding. After allowing for this bias, there is little to choose 
between CREDIT, MCA and GRD. 

Table 3 shows, when group sizes are similar, that CREDIT and MCA have mean permutation 
active and inactive success rates of approximately 0.5. However, when group sizes are 
markedly different (for example, EVA2 and EVA5 - see Table l), then the mean success rate 
for the larger group is substantially greater than that for the smaller group. This result is initially 
surprising, perhaps, but is due to the fact that the sample larger group mean provides a better 
estimate for the true population mean than the sample smaller group mean. 

In order to quantify the expected difference in success rates for individual groups, we have 
performed a simulation study using multivariate normal data with mean zero and identity 
covariance matrix. We randomly select two groups of observations of sizes n,  and n, and then 
estimate the expected success rate for the larger group for prediction of a further test 
observation from the same distribution. Results are given in Figure 5 ,  for the case n ,  = 2n,, as a 
function of the total number of observations and the dimensionality of the data. The results in 
Figure 5 are thus approximately comparable with the results in Table 3 for data sets EVA2 and 
EVA5 For these data sets the effective dimensionality of the data is around 30-60, so that the 
simulation suggests an expected active success rate of about 0.62 to be compared with the 
values of 0.637 and 0-592 (for CREDIT and MCA analyses respectively of EVA2) and 0.612 
and 0.605 (for CREDIT and MCA analyses respectively of EVA5) from Table 3. The values of 
Overall success rates from randomized permutation testing for EVA2 and EVA5 using CREDIT 
and MCA are higher than 0.5 as a result of this difference in group sizes; the value of 
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Table 3. Mean success rates from randomized permutation tests 

CREDIT MCA GRD 

Active Inactive Overall Active Inactive Overall Active Inactive Overall 
success success success success success success success success success 

Dataset rate rate rate rate rate rate rate rate rate 

EVA1 0.521 0.471 0.498 0.517 0-477 0.499 0.585 0.554 0.571 
EVA2 0.637 0.339 0.529 0.592 0.399 0.522 0.694 0.496 0.623 
EVA3 0.498 0-498 0-498 0.495 0-497 0.496 0.564 0-563 0.564 
EVA4 0.500 0.478 0.489 0.500 0.480 0.490 0.593 0.595 0.594 
EVA5 0.379 0-612 0.534 0.379 0.605 0.530 0.520 0.670 0.620 
IRl 0.511 0.460 0.487 0.513 0.468 0.492 0.591 0.569 0.581 
NIRl 0-484 0-505 0.495 0.486 0-497 0.492 0-613 0.609 0.611 
NIR2 0.501 0-487 0.494 0.505 0.491 0.498 0.591 0.603 0.597 

x 
e u 
U 

Lr 
E 

0.18 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

Randomised oermutation tests. Data set 1R1. Active success rate 

Figure 3. Randomized permutation distributions for data set IRl for each of CREDIT, MCA and GRD 
methods: (a) active success rate; (b) inactive success rate; (c) overall success rate. Distributions are 
discrete and symbols indicate the values of each distribution. Lines are drawn between points as an aid to 

the eye 
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Figure 3. (continued) 
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Figure 4. Randomized permutation distributions for data set EVAl for each of CREDIT, MCA and GRD 
methods: (a) active success rate; (b) inactive success rate; (c) overall success rate 
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Figure 4. (continued) 
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Figure 5.  Expected success rates for larger group from randomized permutation testing of multivariate 

normal N ( 0 ,  I)  data, assuming one sample group to contain twice as many observations as the other 
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208 P. JONATHAN, W. V. McCARTHY AND A. M. I. ROBERTS 

approximately 0.53 obtained is entirely consistent with our simulation study. However, the 
overall success rate of approximately 0.62 for GRD analysis of EVA2 and EVA5 is biased 
owing to tuning. 

The effect of eigenvalue adjustment 

We have explored the effect of changing the size of the eigenvalue adjustment (18) on the 
predictive performance of CREDIT discriminant rules, as assessed using cross-validation. 
Expressing the value of the adjustment as a percentage of the mean eigenvalue, overall success 
rates were calculated for data sets IR1 and NIRl using various values of the adjustment. The 
default method for selection of eigenvectors/principal components to retain based on 
discriminatory importance (19), (20) was used. Results of our analysis are reported in Table 4. 
A value of zero for the adjustment is equivalent to adopting no adjustment at all, whereas a very 
large value has the effect of giving each eigenvector equal adjusted variance (18). 

For data set IR1, eigenvalue adjustment has very little effect. For set NIR1, however, 
predictive performance is rather more sensitive to the precise choice of eigenvalue adjustment. 
The default value of 1 % employed gives reasonable performance in both cases, but the optimal 
choice of adjustment is clearly application dependent, and cannot be specified a priori. 

The effect of eigenvalue selection 

An essential step in CREDIT is the selection of eigenvectors/principal components of T to use 
in forming the discriminant rule. The default method proposed is based on discriminatory 
importance (19); this approach is somewhat arbitrary and certainly not optimal, but it does yield 
useful discriminant models. Nevertheless, more refined methods might produce even better 
results. Here we explore the effect of various eigenvector selection methods. 

One interesting option is to retain all the principal components of T. It is clear that a 
substantial improvement in computational efficiency can now be achieved since cross-validation 
can be performed using matrix up- and downdating operations. We have developed such a 
discriminant algorithm. The computational efficiency of the resulting SAS/IML code is 
impressive (for example, for the analysis of set NIRl using 1000 randomizations, a 60-fold 
decrease in run time was achieved compared with the corresponding CREDIT analysis); 

Table 4. Effect of eigenvalue adjustments 

IR 1 NIRl 

Active Inactive Overall Active Inactive Overall 
Adjustment success success success success success success 
(%) rate rate rate rate rate rate 

0.0 
0.1 
0.5 
1 .o 
5.0 

10 
50 

100 

0.920 
0.920 
0.920 
0.880 
0.920 
0.920 
0.960 
0.920 

0.864 
0.864 
0.864 
0.864 
0.864 
0.864 
0-864 
0.864 

0.894 
0.894 
0.894 
0.872 
0.894 
0.894 
0.915 
0.894 

0.588 
0.382 
0.824 
0.824 
0.824 
0.824 
0.706 
0.647 

0.722 
0.944 
1.000 
1.000 
0-944 
0.889 
0.889 
0.889 

0.657 
0.914 
0.914 
0.914 
0.886 
0.857 
0.800 
0.771 
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DISCRIMINANT ANALYSIS WITH SINGULAR COVARIANT MATRICES 209 

however, its predictive performance is poorer (overall success rate 0.657 compared with 0.914 
for CREDIT). In some applications, however (for example, the analysis of set IRl), the afl-  
component method performed as well as CREDIT. Results for analyses of another two data sets 
are given in Table 5.  Since the expected predictive performance of the method is poorer than 
that of CREDIT, it cannot be recommended for future application. 

We have also explored the effect of selecting eigenvectors based solely on variance 
explained. That is, assuming that eigenvectors are ordered in terms of decreasing variance, we 
retain a sufficient number to explain 95% of the variation present in the data. Results of the 
analysis are also given in Table 5.  

The table indicates that the selection of a subset of eigenvectors is generally beneficial 
compared with retaining all components. However, the better method to select eigenvectors is 
application-dependent. In our experience, selection of eigenvectors based on discriminatory 
importance gives predictive performance over a range of data sets which is at least as good as 
selection based on variance explained. 

Computational efficiency 

The computational efficiency of CREDIT, MCA and GRD is compared in Table 6 for 
applications in which both CREDIT and MCA analyses were performed using 1000 
randomizations. It is clear from the table that CREDIT is more efficient than MCA - by design! 
GRD is computationally more intensive than both CREDIT and MCA. 

Analysis of CoMFA data 

Analysis of data set CoMFAl is particularly illustrative since it provides an opportunity to use 
CREDIT for a relatively large data set (in terms of both observations and variables). Results of 
the analysis are given in Table 7. 

Again comparisons with MCA and GRD are provided. The predictive performance of 
CREDIT once more compares well with both MCA and GRD. Note that p-values are only 
quoted for CREDIT; the reason for this is evident from Table 8, which gives the computational 
efficiency of the CREDIT and MCA methods. 

It is obvious from the table that the computational effort required to perform randomized 
permutations using MCA (let alone GRD!) is prohibitive. 

The CPU timings given in Tables 6 and 8 are of course machine-dependent. In particular, 
results in Table 8 appear to suggest that MCA is two orders of magnitude less efficient than 
CREDIT (compared with about one order of magnitude from the results in Table 6). However, 
a different computer hardware configuration causing considerable processing power to be 
expended for memory management (paging/swapping) was used for the analyses in Table 8. 
For this reason the relative timings in Table 8 are not directly comparable with those in Table 6. 

Table 5. Overall success rates for various eigenvector selection procedures 
~ ~~ 

Data set Discriminatory importance Variance explained All components 

IR1 
NIRl 
NIR2 
EVA4 

0.872 
0,914 
0.756 
0.703 

0.787 0.894 
0.629 0.657 
0.800 0.577 
0.838 0.703 
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210 P. JONATHAN, W. V. McCARTHY AND A. M. I. ROBERTS 

Table 6. Computational efficiency of analyses 

CREDIT MCA GRD 

Number of Run time Number of Run time Number of Run time 
Data set randomizations (CPU Minutes) randomizations (CPU Minutes) randomizations (CPU Minutes) 

EVA2 1000 39 1000 295 100 216 
EVA4 1000 40 1000 256 100 223 
EVA5 1000 135 lo00 1187 25 123 
IR1 1000 80 loo0 7 19 50 170 
NIRl 1000 28 lo00 216 100 206 
NIR2 lo00 73 lo00 524 50 155 

Table 7. Analysis of data set CoMFAl 

CREDIT MCA GRD 

Active Inactive Overall Active Inactive Overall Active Inactive Overall 
success success success success success success success success success 

rate rate rate rate rate rate rate rate rate 

0.808 0.833 0.821 0.767 0.778 0-772 0.822 0.889 0.855 
(0.Ooo) (0.000) (0.000) 

Table 8. Computational efficiency for analysis of CoMFAl 

CREDIT MCA 

Number of randomizations Run time (CPU minutes) Number of randomizations Run time (CPU minutes) 

lo00 1888 10 5817 

The combination of IBM mainframe running VMfCMS operating system and SAS/IML is not 
ideal for analysis of large multivariate data. For better processing performance a combination 
such as an RISC workstation running UNIX with FORTRAN or C could be used. Here we are 
primarily concerned with the development of the approach. If  analysis of large data sets such 
as CoMFAl was intended on a regular basis, other computational techniques such as generalized 
cro~s-validation~~ should be considered. 

DISCUSSION 

Analysis of multivariate data, for which the number of variables greatly exceeds the number 
of observations, is a precarious task. Great care must be taken while analysing such data. 
Realistic assessment of the predictive performance of such a model is difficult to achieve. In 
this paper we use cross-validation in an attempt to compare the predictive performance of 
various discriminant methods. 
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The CREDIT results reported above demonstrate that CREDIT provides useful 
discriminant models. In combination with good predictive performance, the ease with which 
randomized permutation distributions can be generated provides worthwhile supporting 
information at little computational cost. For the current analyses the randomized 
permutation test helps us to demonstrate that the linear relationship between the explanatory 
variables and the true responses is usually much stronger than that between the explanatory 
variables and a random permutation of the responses. We find that randomized permutation 
testing aids our understanding of applications of singular discriminant analysis; the 
approach has much to offer and its statistical properties deserve more thorough investigation 
in future. 

Once the discriminant model has been established for a training set of observations, the 
model may then be used to make predictions of response for observations/chemicals of a 
similar type to those in the training data. A guiding principle in this prediction step is to avoid 
making predictions for a new observation that lies 'outside' the boundaries of the training set. 
Classification using the discriminant model should be restricted to chemicals which are 
concordant with the training set. In practice, since the number of observations is much smaller 
than the number of variables, it is especially difficult to define concordance. The observations 
occupy a subspace of low dimensionality relative to the number of variables. However, it is 
essential that some effort be made to test the concordance of future observations for 
classification. 

A crucial step in this process is the specification of the subspace occupied by the data. We 
typically define the subspace as that spanned by the first r eigenvectors of the sample total 
covariance matrix. Of course, the choice of r is difficult also; we usually ensure that the 
subspace explains at least 95% of the total variation present. Once the subspace is specified, we 
typically use an approach related to Hotelling's T 2  (see Reference 21) and SIMCA'' in which 
we estimate 

(a) the Mahalanobis distance of the test observation from the centre of the training data in 

(b) the Euclidean distance to the test observation, measured perpendicularly to the subspace 

Cross-validation is used to generate distributions of distances (a) and (b) for the training set. A 
test observation which yields values of (a) and (b) lying outside the relevant distributions is 
considered to be discordant with the training set. It is also advisable at this stage to investigate 
the effect of varying the 'data subspace' dimensionality r.  Concordance can also be measured 
using a non-parametric approach such as nearest-neighbour analysis. In our experience we find 
that the methods described here to estimate concordance are generally satisfactory but require 
further development. 

the subspace defined by the training data 

defined by the training data. 
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212 P. JONATHAN, W. V. McCARTHY AND A. M. I. ROBERTS 

APPENDIX: THE CREDIT ALGORITHM 

An outline of the algorithm is given below, based on the derivation given in the text above. 

1. Take the training data X and the class allocation vector a, where a = ( u l ,  a,, . . . , an)T, 
a;= 1 if observation i belongs to population n, and a;= 2 if observation i belongs to 
population n2. 

2. Generate R - 1 random permutations of a. Call these a2,  a3, ..., uR. Call a,  = a. Form the 
matrix A = (al a2, ..., u ~ ) .  

3. Start cross-validation loop over a ,  a = 1, ..., n. 
4. Reorder X and A so that row a becomes the first row. 
5. Form 

6. Omit first row from X and A. 
7. Form M = (n - 2)-1H,,-lVHn-l. 
8. Perform spectral decomposition of M, retaining only l..e first q components, 

9. Form the scaled eigenvectors Z = ( n  -- 2) -"*EL - ' I2 .  
corresponding to non-null eigenva1ue:s. 

10. Adjust the eigenvalues A;, i = 1, 2 ,  . . . , q, using 

= E L E ~  

q 

A* = A; + (11 Ooq)-' c A; 
;= 1 

to give L". 
11. Extract u from XX''. 
12. Start randomized permutation loop over B, B = 1, . . . , R. 

13. Calculate q9; = h;VH,-,Z, whe.re h ,  is an ( n  - 1) x 1 column vector with elements 
h,;, h,;= n;i-al if a,;= 1 and A,;= -nit-.] if a,;=2. The subscript [ - a ]  indicates 
that the values of n,  and n2 should be adjusted (when necessary) for the omitted 
observation a. 

14. Calculate the discriminatory importance d,,= A,*-'I);,, i =  1, 2, ..., q. 
15. Reorder the principal components (for this loop) such that d,, 2 dLj2b ... 2 dpq. 
16. Retain A: and z,! , i = 1, 2, ..., k, such that 

Alternative criteria might also be used at this stage. 
17. Extract qK, Z, and L t  from qS, Z and L" corresponding to the retained components. 
18. Allocate the omitted observation a to class 1 if 

Y TKL: - ' Z T K H , , - ~  [U - 2 - W ( n  - a  I n ;:- a > o 
Otherwise allocate it to class 2. 

otherwise s ( a ,  8) = 0. 
19. Store the success count s ( a ,  B);  s(a, B )  = 1 if correct allocation with respect to up, 

20. End of randomized permutation loop over B. 
21. Replace first row of X and A. 
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DISCRIMINANT ANALYSIS WITH SINGULAR COVARIANT MATRICES 213 

22. End of cross-validation loop over a. 
23. Produce summary statistics. 

The algorithm presented here can easily be extended to incorporate prediction of a test 
observation which is not a member of the training set. 

REFERENCES 

1. M. Stone and P. Jonathan, J .  Cheinornetrics, 7,455 (1993). 
2. M. Stone and P. Jonathan, J .  Chetnotnetrics, 8, 1 (1994). 
3. R. D. Cramer, D. E. Patterson and J .  D.Bunce, J .  Am. Chem. Soc. 110,5959 (1988). 
4. G. Klebe and U. Abraham, J .  Med. Chetn. 36,37 (1993). 
5. L. B. Bruce and R. B. Nachbar, J .  Cornput.-AidedMoZ. Design, 7,587 (1993). 
6. I. E. Frank and J. H. Friedman, Technornetrics, 35, 109 (1993). 
7. J. H. Friedman, Ann. Stat. 19, 1 (1991). 
8. P. A. Lachenbruch, Discrirninant AnaZysis, Hafner, New York (1975). 
9. P. A. Lachenbruch and M. Goldstein, Bioinetrics, 35,69 (1979). 

10. S. Wold, Pattern Recogn. 8, 127 (1976). 
11. N. A. Campbell, Appl. Stat. 29, 5 (1980). 
12. J. H. Friedman, J .  Am. Stat. Assoc. 84, 165 (1989). 
13. I. E. Frank, ChernometricsIntelZ. Lab. Syst. 4, 215 (1988). 
14. I. E. Frank and J. H. Friedman, J .  Cheinornetrics, 3, 463 (1989). 
15. T. Hastie, R. Tibshirani and A. Buja, J .  Am. Stat. Assoc. 89, 1255 (1994). 
16. N. A. Campbell and W. R. Atchley, Syst. Zool. 30,268 (1981). 
17. W. J. Krzanowski, P. Jonathan, W. V. McCarthy and M. R. Thomas, Appl. Stat. 44, 101 (1995). 
18. M. Stone, Math. Oper. Stat. Ser. Stat. 9, 127 (1978). 
19. T. T. Dunne and M. Stone, J .  R. Stat. SOC. B ,  55,369 (1993). 
20. A. Albert, Regression and the Moore-Penrose Generalized Inverse, Academic, New York (1972). 
21. K. V. Mardia, J. T. Kent and J. M. Bibby, Multivariate Analysis, Academic, New York (1988). 
22. G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 

23. R. A. Fisher, Ann. Eugen. 7, 179 (1936). 
24. R. Sundberg and P. J. Brown, Technometrics, 31, 365 (1989). 
25. R. A. Thisted, Elements of Statistical Computing, Chapman and Hall, New York (1988). 

MD (1989). 

 1099128x, 1996, 3, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-128X
(199605)10:3<

189::A
ID

-C
E

M
410>

3.0.C
O

;2-I by <
Shibboleth>

-m
em

ber@
lancaster.ac.uk, W

iley O
nline L

ibrary on [16/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




