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Abstract: Efficient inspection and maintenance of complex industrial systems, subject to degradation
effects such as corrosion, are important for safety and economic reasons. With appropriate statistical
modelling, the utilization of inspection resources and the quality of inferences can be greatly improved. We
develop a suitable Bayesian spatio-temporal dynamic linear model for problems such as wall thickness
monitoring. We are concerned with problems where the inspection method used collects transformed data,
for example minimum regional remaining wall thicknesses. We describe how the model may be used to
derive efficient inspection schedules by identifying when, where and how much inspection should be made
in the future.
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1 Introduction

Many large industrial systems including tanks, pipes, vessels and furnaces corrode. It is
important to predict accurately the state of these systems for repair, replacement and
safety reasons. Inspections are often expensive and the accuracy of the forecasts must be
balanced against the cost of making additional inspections. Most inspection methods
widely applied in industry record only summary statistics for the area inspected rather
than full spatial information. Additionally, these inspections often only cover a small
proportion of a system. Common summaries are regional minima or the proportion of
the area that has passed a given threshold (for instance, a protective coating). These
functional outputs may be due to the design of the data collection device, the time taken
to record more extensive details or the requirements placed on the contractor.

Current protocol often checks the observations made against a predetermined
criterion (for example, minimum allowed wall thickness) and declares the system to
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pass or fail accordingly. These data values are then not stored and no direct
consideration is given to i) the areas not inspected and ii) the current corrosion rate.
Historically the use of statistical modelling for dealing with wall thickness measure-
ments in particular has been rather limited. The application of extreme value analysis
for localized corrosion, however, is more common. The estimation of corrosion rate is
treated very generally in industry guidelines, for example those issued by UK Health
and Safety Executive (2002) and ASTM Standard G16 (2004).

The extreme value literature is extensive especially focusing on temporal extremes
given an extensive historical data set of regular observations, for example Coles and
Tawn (1994) consider a multivariate model using a limiting Poisson process while Coles
and Tawn (1996) apply Bayesian methods using a limiting Poisson process to the
extreme value problem. Spatio-temporal extremes are considered in Barão and Tawn
(1999) in the context of a bivariate model which uses multivariate observations to make
a single prediction based on asymptotic results. An extreme value analysis is carried out
on corrosion data based on asymptotic results in Laycock et al. (1990) where
measurements are of maximum pit depths. Environmental problems which are
commonly temporally rich in data have motivated an extensive spatio-temporal
literature. A dynamic linear model (DLM) framework is a common approach used in
these circumstances to update uncertainties about general model parameters as obser-
vations are made by Shaddick and Wakefield (2002) and Stroud et al. (2001). Little
et al. (2004) discuss the benefits of efficient inspection schemes and the potential
reductions in inspection burden. Possible ways of reducing the computational load of
the DLM include, for example, reducing dimensionality or constructing the update
using summary variables. Systems that are strongly spatially correlated and hence are
relatively smooth across space are best suited to this sort of technique (Winkle and
Cressie, 1999).

In this paper, we describe the use of spatio-temporal DLMs for designing efficient
inspection schemes for industrial systems which are corroding, where inspection data is
aggregated and transformed, and design choice is analytically intractable. We proceed
as follows. In Section 2, a motivating example is described. In Section 3, a spatio-
temporal DLM which can be used to model continuous systems is considered. In
Section 4, we discuss the application of Bayes linear methods to transformed data. In
Section 5, we consider how to find optimal inspection schemes and the efficiency
savings that can be made. As optimization of design choice is analytically intractable,
we develop an efficient simulation methodology for the purpose. In Section 6, the
application of the model to inspection planning is considered and its value is assessed.
In Section 7, we discuss the potential benefits of the approach.

2 Motivating example

This paper concerns the benefits of careful modelling and analysis of spatio-temporal
phenomena such as wall thickness. The work is motivated and illustrated by two
cylindrical storage tanks. The first of these tanks stores caustic soda (sodium hydroxide
solution), while the second tank stores crude acetone (2-propanone). Both caustic soda
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and acetone have relatively low corrosion properties, hence the tanks do not need
frequent internal inspection and have a long expected life. The tanks were commis-
sioned in the 1940s and are still in use at the current time. This work is not a case study
of either of these tanks. However, we use the common physical aspects to motivate and
illustrate the approach.

It is known that the lower part of these tanks will be more prone to internal corrosion
than other parts of the tanks. In the example, only the lower part of the tank is modelled
assuming all other parts of the tank will be less seriously corroded. There have been
four inspections of each tank. Each inspection measures the wall thickness at a range of
locations to assess vessel integrity at the time of the inspection. Each inspection is made
using a different device and recorded in a different manner. The lack of detail in these
historical data sets means making detailed use of them is very difficult.

Corrosion can be either internal or external. External corrosion is mainly due to rain
and can be seen as small patches of external rust. This is found by regular external
visual inspections and is then patched externally as necessary and painted over. The
resulting wall may be thicker than might otherwise be expected. We do not have spatial
details of the external repairs carried out. However all the repairs are small (less than
2 in. high) and located just above the floor. Internal corrosion will generally be more
serious and require more substantial repairs – no repairs have been carried out following
internal corrosion on either tank. The mean wall thickness for tank 3006 in the years
1969, 1980, 1992 and 2002, respectively, were 6.87, 5.94, 6.17 and 5.69mm.

Particular problems with this data include: no record of the tank’s design specifica-
tion probably due to the long time scale involved; a lack of detailed information about
the inspection methods used especially for the early inspections; considerable evolution
of the inspection techniques used; lack of accurate spatial information for spatial data;
irregularly spaced observations; and high observational noise.

The model we present can cope with all the problems associated with this set of data
but, as would be expected, would give rise to a very wide credibility bound.
Furthermore, using this data given the very limited background information and the
extensive changes in inspection technology would be uninformative. Current expert
beliefs are therefore used to motivate and construct a general form for the model. These
problems emphasize the importance of having a flexible model which separates out the
fine-scale description of the spatio-temporal development of the system from the details
of how the system’s integrity is checked. In this paper we optimize future inspection
schemes based on current expert opinion about these and other similar tanks and
current inspection technologies. The two tanks discussed in this section provide
motivation for the illustrative example which considers the life cycle of a uniform tank.

3 Spatio-temporal DLMs

To predict the remnant life of a system, the remnant life of every part of the system as
well as their covariance structure must be estimated using careful modelling and
inspection. The inspection burden can be reduced by exploiting the spatial correlation
of the system. If there is corrosion with no spatial correlation, 100% inspection may be
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the only option. Without a spatial model for the system it is necessary to make 100%
inspection or accept that we have no knowledge about the locations where no
inspection has been made. Similarly a temporal model is required if inferences are to
be made about the future.

A Bayesian spatio-temporal model is a natural way to model many industrial systems
with a continuous spatial element that develops through time, where there is extensive
experience on the part of the operators but a relatively sparse amount of data. We
follow the notation of the multivariate DLM developed by West and Harrison (1997).

Experts believe, if conditions remain constant, that current corrosion rate is an
unbiased estimator of future corrosion rate, and that it is reasonable to assume that the
system will deteriorate continuously while the tank is in use, so the corrosion is
modelled with a locally linear trend. The system is modelled with two coupled
equations: a system equation and a system slope equation.

yts ¼ y(t�1)s þ bts þ oyts oyts � h0,Wysi

bts ¼ b(t�1)s þ obts obts � h0,Wbsi
(3:1)

where yts is the actual wall thickness and bts is the corrosion rate at time t and location s.
oyts � h0,Wysi is used to denote a random vector with mean 0 and a variance matrix
Wys. In this example Wys and Wbs are constant in time but dependence on t can be
introduced if it is considered appropriate. It is further assumed that, given Wys, oyts is
correlated over s for a given t but is independently and identically distributed (IID) for
different values of t and similarly, given Wbs, obts is correlated over s, but IID over t.
Given Wys and Wbs, oyts and obts are mutually independent. oyts represents shocks in
wall thickness, for example, due to mishaps in operation and obts represents changes in
corrosion rate, for example, due to long term changes in operating conditions. Note
that var(yts � yts0) increases with time, meaning the surface becomes rougher.

It is also assumed that the prior beliefs about the initial system level and slope are in a
similar form y0s � h0, Cy0si and b0s � h0, Cb0si. It is assumed that there is no correla-
tion between oyts, obts, y0s and b0s given Wys, Wbs, Cy0s and Cb0s, respectively.

Point observations of the system are modelled with an observation equation:

yts ¼ yts þ nts nts � h0,Vtsi (3:2)

where yts is the observed wall thickness value at time t and location s. Vts may be time
dependent (as would be required for the data described in Section 2) or fixed. It is
further assumed, given Vts, that nts is correlated over s for a given t but is IID for
different values of t. nts represents observation and calibration errors which will not
have any effect on the underlying wall thickness. For simplicity in this paper it is
supposed that nts is independent and identically distributed noise but correlations over s
for a given t can be introduced if required. It is also assumed, given Vts, that nts is
uncorrelated with all other quantities in the model. Vts, Wys and Wbs can be considered
known, and then nts, oyts and obts can be modelled using the Gaussian distribution,
or the Bayes linear approach may be taken, considering nts, oys and obs as quantities for
which prior beliefs are held which are specified by zero expectations and variance
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matrices Vts, Wys and Wbs. For more information about the Bayes linear approach, see
Goldstein (1999). Where observations are of the form of yts as mentioned earlier,
updates of beliefs may be made in equivalent closed form by either approach.

There are many possible correlation structures for the system update variance matrix.
In this example

cov(okts,okts0) ¼Wkss0 ¼ tk exp (�ckd(s,s0)) k ¼ y, b (3:3)

is used, where tk is a measure of temporal strength, ck > 0 is a relative scaling
parameter controlling spatial correlation and d(s, s0) is a measure of distance between s
and s0. Prior beliefs for y and b may be based on any valid correlation structure. For
simplicity the same correlation structure [Equation (3.3)] is used between the system
levels (Wys), the system slopes (Wbs), the prior levels (Cy0s) and the prior slopes (Cb0s)
with parameters tCy and tCb. Each of these four structures then has its own variance
(defined by ty, tb, tCy and tCb, respectively). Possible ratios between these level and
slope variances are discussed in Section 6.1. Were more detailed belief structures elicited
for any of the four parts, they would be used instead. Using the model, means, variances
and covariances can be calculated for any locations at the current time and in the future.
The higher the correlation across the system the more information an observation will
provide about the whole system.

3.1 Model parameters

The parameters used in the model are briefly described in this section. In subsequent
sections the sensitivity of the model to changes in these parameters is analysed and
discussed.

Within the example, only variance measures are considered. These are not affected by
the mean wall thicknesses or the corrosion rate. In an application the initial wall
thicknesses and corrosion rate can be combined with a minimum allowed wall thickness
to give the expected life of the system.

The covariance between any two points (hi, vi) and (hj, vj) where hi is the horizontal

clockwise circumference distance from north and vi is the vertical height and P is the
total circumference in the tank may be described using

cov(okt(hi, vi)
,okt(hj, vj)

)

¼ tk exp �ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( min (jhi � hjj, khi � hjj � Pj)2
þ a2(vi � vj)

2)
q

� �

(3:4)

Different beliefs about horizontal and vertical correlation strengths may be reflected
by rescaling the distance metric [parameter a in Equation (3.4)]. Following consultation
with experts, for this example a ¼ 2

ffiffiffi

2
p

. The two key aspects of the problem, the spatial
correlation and the temporal correlation, can be controlled by two parameters
in Equation (3.4): spatial strength (controlled by ck) and update variance (controlled
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by tk). For the purposes of this example, the prior level variance tCy can be fixed at 10
and the other parameters scaled accordingly using different values of tk and tCb.

3.2 Observation of minima

Simple DLM updating can be used where an observation is a true value with random
noise. For more complex transforms of the underlying values, a more sophisticated
analysis is required. In this section, we consider observations in the form of regional
minima.

The distribution of the minimum of n independent N(0,1) draws is skew. The severity
of the skewness depends on the level of correlation between the data points. Analytical
distributions and partial asymptotic results can be obtained for minima of uncorrelated
systems but results are less tractable for correlated distributions. In the example, a
sample that covers only a small fraction of the system is used as a basis for establishing
the entire system’s integrity using the spatial correlation.

The true wall thickness is continuous and this continuum is modelled with a finite set
of correlated points. Fewer points result in a lower model accuracy but faster computat-
ions. Similarly, higher correlations also reduce the number of points required to gain
a given credibility level in the summary observations. The accuracy of the approxi-
mation made when modelling a continuous system with a discrete grid will increase as a
higher density of points is modelled. High correlation and low observation noise will
also help increase model accuracy. For any set of parameter values the sensitivity to
changes in the density of points should be investigated.

The lower part of the tank is modelled with nh equally spaced points horizontally
around the tank, nv equally spaced vertically orientated points in the lower part of the
tank and nt equally spaced time points. For this example, nh ¼ 640, nv ¼ 5 and nt ¼ 8.
An observed regional minimum is defined as the minimum of a 5 (horizontal) by 5
(vertical) subsection of the grid at a particular time which includes point by point IID
observational noise, giving a maximum of 640 possible different regional minima for
any inspection. The observed regional minimum at time t and centred at location
s ¼ (h, 3) may be written as myts ¼ mini, v yt(i, v) where i ¼ h� 2, h� 1, . . . , hþ 2 and
v ¼ 1, 2, . . . , 5 where yts is defined in Equation (3.2). Similarly, the underlying regional
minimum at time t and centred at location s may be written as myts ¼ mini,v yt(i,v). The
effect on the estimated regional minimum value of increasing the density of points in
each region should be carefully considered. An acceptable approximation of the
continuous surface should not be sensitive to small changes in this density.

4 Bayes linear forecasts

This paper develops efficient inspection schemes for reducing uncertainty about system
corrosion with minimum inspection cost. To identify efficient inspection schemes many
candidate schemes must be compared, where both the number of times at which to
inspect, and also the number of locations to inspect at each time point may be varied.
A full Bayes preposterior evaluation of the reduction in uncertainty associated with any
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one inspection scheme based on data in the form of regional minima would be
enormously computationally intensive. Where a range of design choices are to be
considered, it is important to use an approach which can be evaluated reasonably
quickly for each possible design, and the Bayes linear approach is well suited to such
problems.

Analysing design choice problems based on transformed data is challenging because
transformed observations are often associated with distributions which are analytically
intractable. The correlations between observed (transformed) values and transforms of
the system values in which interest is focused can be calculated using simulation. Beliefs
about these system-based transformations are then updated using a Bayes linear
framework. Critical issues, such as identifying when and where future inspections
should be made, and questions about the confidence in the system’s integrity in the
future can be addressed within this framework.

4.1 Forecasting

In this section, the forecasting of transformed outputs (e.g., regional minima) at time
t þ k when transformed observation values are observed at time t is discussed. Forecasts
are made directly, from the data to the quantities over which inferences are required
(for example, the global minima of the system values, at certain future time points).
A suitable update can then be used to adjust the forecast mean and variance at time
t þ k given the observations up to time t. Using a fully Bayesian update for minima data
would be very computationally demanding. The Bayes linear approach uses simple
updating equations to calculate the adjusted expectation

EDt
(f) ¼ E(f)þ cov(f, Dt)var(Dt)

y(Dt � E(Dt)) (4:1)

and the adjusted variance

varDt
(f) ¼ var(f)� cov(f, Dt)var(Dt)

ycov(Dt,f) (4:2)

where y is a generalized inverse and f is a vector whose values it is intended to learn
about via Dt the vector of all observed data up to time t. In this application Dt is a
vector of terms mytisi

while f is a vector of terms mytjsj
. In particular varDt

(f) depends
only on the observation locations and not on the observed values themselves and so can
be used as the basis of a tractable design methodology. Using the Bayes linear approach,
the forecast values for future observations and any underlying system parameters (for
example true regional minima) are adjusted directly following an observation. The
covariance between all the observed data values and all other system quantities of
interest at all times must be calculated (Section 4.2). There is no requirement to have the
same method of data collection or the same measurement variance at each time point.
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4.2 Simulation

Simulation may be used to construct realizations of the system consistent with given
prior beliefs. Simulated data can be used to estimate expectations, variances and
covariances where it would be difficult or impossible to calculate these by analytical
means. For example, if the k step ahead covariance between two regional minima is
required full data sets for both regions can be simulated repeatedly and hence the
covariance between the minima of the two regions estimated. Forecasts require
correlations of the underlying minima at the time and location of the forecast with
the observed minima for each observation that has been made. Hence, to do general
design based calculations, covariances are required between all observed minima and
underlying minima across all times and regions of interest.

If the problem is too large for direct calculation of the covariance matrix from
simulated data the symmetry of the problem may be exploited. The covariance between
any pair of minima which are the same spatial distance apart at fixed times will be
the same. That is, f (d, t, t0) ¼ cov(myts,myt0s0) where d is the distance between s and s0,
and similarly for cov(myts, myt0s0) and cov(myts,myt0s0). A single calculation of this cova-
riance can then be used for all observed regional minima or underlying regional minima
between two regions at time t and t0 that are d spatial units apart. This can then be
repeated for all d, t and t0 � t and hence the full covariance structure found. While this is
fast and efficient, for large problems (e.g., if all 640 possible minima must be
considered) due to simulation error the resulting covariance matrix may not be positive
definite, and it would be necessary to reconstruct the variance matrix for example with
negative eigenvalues removed.

For the level of detail described in this problem, a full simulation of data across the
entire observed and underlying systems is practically possible but slow. For this
example only 64 regional minima are considered evenly spaced horizontally around
the tank. This means only half of the horizontal points on the grid are considered in sets
of five, with five points observed and five points unobserved. These 64 regional minima
are assumed to have horizontal midpoints at 1, 11, . . . , 631 and are, respectively,
indexed by c1,c2, . . . ,c64 which form a set C. Henceforth only the observed regional
minima mytci

and underlying regional minima mytcj
where ci,cj 2 C are considered.

This smaller number of minima also reduces the computational load of subsequent
searches to find the optimal set of inspection locations (Section 5). These searches are
very demanding when there is a large number of possible combinations to consider.
Once design choices have been made, these intermediate regions should be modelled to
check for unacceptably high posterior variance.

For this example a set of initial wall thicknesses are simulated in accordance
with prior beliefs y0s. Level and slope updates (oyts and obts) are then simulated for
times 1–8. The prior and update simulations are then combined to get true wall
thicknesses yts at the 1600 locations modelled over the 8 times. The 64 underlying
regional minimum wall thicknesses (mytci

) and the 64 observed regional minimum
wall thicknesses (mytcj

) are calculated for each time (the latter by adding the IID
observation noise nts to the 1600 underlying wall thicknesses). Finally the correlation
structure between the underlying regional minima and observed regional minima wall
thicknesses across times 1–8 are calculated over 40 000 simulations of this data. Having
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calculated the covariance between all observed regional minima and underlying
regional minima of interest across all times, the effect of making any particular set of
inspections on the uncertainties across the entire system may be assessed.

5 Finding the optimal scheme

The inspection design D is defined by i) the vector mt of times at which inspections
are made and ii) the locations at which inspections are made at time t, ct1

, . . . , ctmnt
,

where t1, . . . , tmnt
are mnt choices from the index set [1, . . . , 64]. In this example, mnt

is restricted to be the same value mn for each time at which inspections are made. If two
inspections are made over four different times, with 64 possible locations for each
inspection, the total number of different inspection schemes is approximately (642)4.
Extending this to 8 time points gives approximately 7:9� 1028 distinct inspection schemes
to be considered. Efficient ways of reducing the number of possible alternatives must
be considered. The simplifying restriction is made that, if mn regional minima inspections
are made at time t, then the mn inspections are equally spaced around the tank. This
gives rotational symmetry. In addition to being an intuitively natural simplification,
the symmetry drastically reduces the number of possible locations that need to be
considered for future inspections. A more complex inspection scheme might try
and learn about corrosion correlation across different locations but this is a different
modelling problem.

It is necessary to maintain a certain level of confidence in the system’s integrity at all
times. At any given time before observations are made, the regional minimum wall
thicknesses will have a constant expected value across space. A sensible example
criterion for selecting inspection points is now considered although many other criteria
are possible and would be evaluated in a similar fashion. The criterion considered is
the average of the maximum adjusted variances of the underlying regional mini-
mum wall thicknesses from all the locations modelled, C, over all times up to forecast
time T for a given inspection design D which is denoted F(D), where F(D) ¼

(1=T)
PT

t¼1 maxci2C
varDt�1

(mytci
), where mytci

is the underlying regional minima at

time t and location ci, and Dt is all observed data up to time t. varDt�1
(mytci

) is found
using Equation (4.2).

The inspection design D will be restricted by the times when inspections are allowed
(mt) and the number of locations inspected (mn) when an inspection is made. For any
choice of mn and mt, the optimal inspection scheme D�(mn, mt) will then minimize the
criterion F(D) over all designs D with the given values mn, mt and rotational symmetry
at each time point.

5.1 Possible search strategies

Having restricted attention to equally spaced inspections, for small problems a full
search can be made. In larger problems, further load reducing strategies are required.
The symmetry of the prior beliefs may be exploited to reduce the number of inspections
that must be considered. A ‘tentacle’ search from likely solutions may also be used.
Given an initial solution, small changes to the locations inspected at each time are
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considered, repeating the search with the improved solution until convergence occurs.
An alternative is initially only to assess some of the possible inspection location
combinations before focusing in more detail on the locations with the best preliminary
results. A ‘tentacle search’ can then be made around any possible minima. A further
alternative is instead of simultaneously choosing inspection sites across all time points
simultaneously, the temporal horizon of the model may be reduced. All possible
inspections between times 2 and kþ 1 may be considered. The best of these candidate
schemes is then used to fix the inspection location at time 2. All inspection locations
between times 3 and kþ 2 are then considered and the best of these candidate schemes
used to fix the inspection location at time 3. This may then be repeated until all times
have been optimized over. The larger the k the better this scheme will be, but also the
greater the computational load. An increase in time points will only increase computa-
tional load linearly. These methods can be combined to produce an efficient search for
a good inspection scheme. In the following section a full search is used where reasonably
possible, and otherwise a 2 step ahead search is applied to a 50% grid followed by a
tentacle search until a local minimum is found.

6 Application to inspection planning

In this section the effect of the covariance and the prior belief specification on the output
of the model are considered. A system is developed to provide decision support when
assessing how often and at how many locations inspections should be made. Informa-
tion is presented in a graphical format allowing easy comparison between possible
schemes and an assessment of model sensitivity.

6.1 Correlation between minima

Maximum temporal correlation is achieved when there is little update uncertainty.
Under these circumstances the prior slope variance (Cb0) will dominate forecast
variance for sufficiently large t. Within the framework considered, prior slope variance
(Cb0) is a fixed proportion of prior level variance (Cy0). The prior level variance is fixed
at 10 (Section 3.1) and hence this ratio is critical if high temporal correlations are to be
considered.

For any Wys, fixing the ratio of Wys to Wbs at 10 : 1, the temporal correlation between
an observed regional minimum at time 1 (my1ci

) and the true regional minimum over the
same area at time 8 (my8ci

) has a maximum correlation strength of about 0.4. Increasing
the ratio to 100 : 1 the maximum correlation reaches about 0.8 while at ratio of 1000 : 1
the correlation can reach almost 1. Small temporal correlations will still occur when
update uncertainty is large. Henceforth a ratio of 1000 : 1 is assumed to allow a full
range of correlations.

With a temporal strength (ty) of 1 and a spatial strength (ck) of 0.001 these beliefs
result in a spatial correlation at time 1 between a regional minimum observation of one
region (ci) and the true regional minimum of the region on the opposite side of the tank
(c(iþ32)) of about 0.7 and a temporal correlation between an observed regional
minimum at time 1 (ci) and the true regional minima at time 8 (ci) also of about
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0.7. Different pairs of spatial and temporal parameters are now taken around these
values to explore the sensitivity of the inspection plan to different strengths of spatial
and temporal correlation. As shown in Table 1, temporal parameter values of 5 and 0.3
and spatial parameter values of 0.0025 and 0.0003 give temporal and spatial correla-
tions (as defined earlier) of approximately 0.5 and 0.9. These correlations (r) were
chosen to approximate a three by three grid of r2 values based on approximately 0.25,
0.5 and 0.75 which are now considered for both temporal and spatial components. The
first value of each pair in Table 1 is the temporal correlation while the second value in
each pair is the spatial correlation both described earlier. IID observation noise has a
standard deviation of 1.0.

We have found low levels of correlation in the observation noise have little effect on
the model. Since observational noise has little effect on the correlations, any forecasts
made will also be reasonably robust to changes in the observational noise. Observation
noise with a standard deviation of 1.0 is relatively large compared with the standard
deviation of the general temporal component (0.3, 1 or 5) but less so compared with the
prior level uncertainty (10).

6.2 Comparison between inspection schemes

Suppose that for a given inspection scheme there are mn equally spaced observed regional
minima (myticj

) during each inspection. Different numbers of inspections are considered;
mn ¼ 1, 2, 4, 8 and 16. Having chosen the first inspection, a range of possible locations
for subsequent inspections may then be considered. For each inspection regime, the
adjusted variance of each underlying regional minima may be assessed at each time point.
If at any time point, sufficient corrosion is discovered to raise doubts about the future
integrity of the vessel then it will be necessary to repair the vessel, or, at least increase the
frequency of inspection around the region causing concern. Five different inspection
schemes are considered (Table 2) with mn observations made at each time.

The proportion of the initial uncertainty remaining (given prior knowledge D0) follow-
ing observation of the data may be calculated. Taking this proportion away from 1 gives the
proportion of variance removed by the inspection scheme. This may be written as

P(mn, mt) ¼ 1�
F(D�(mn, mt))

maxci2C
varD0

(myTci
)

where T � 1 is the time of the last inspection.

Table 1 Temporal and spatial correlation of minima

Temporal (ty)
Spatial (ck) 5 1 0.3

0.0025 0.44, 0.45 0.72, 0.44 0.87, 0.44
0.001 0.43, 0.71 0.73, 0.71 0.88, 0.72
0.0003 0.44, 0.89 0.73, 0.89 0.87, 0.89
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Figure 1 shows for each mn, set of inspection times (mt) and set of values of ty and ck
the value of P(mn, mt) for design D�(mn, mt). Near white indicates an informative
inspection procedure while near black indicates an uninformative inspection procedure.
The middle subgrid corresponds to spatial and temporal parameters of 1 and 0.001,
respectively. Each square in this grid then corresponds to a given number of inspections
at each time point (on the horizontal axis) and inspections made at times indicated by
the vertical axis. Locations are chosen as in Section 5 to optimize F(D�(mn,mt)).

The top right subgrid has the maximum spatial and temporal correlation which is
reflected by the high proportion of the available information that is gained by any
inspection. The increase in information following increased temporal or spatial inspec-
tions is shown by the larger values in the top right of each subgraph for all parameter
values. Using these results it is possible to compare the benefit of extra spatial
inspections to the benefit of extra temporal inspections. An inspection cost function
may be used to make a comparison between costs and gain in accuracy for different
inspection schemes. In its simplest form this function will include a cost for each
regional minimum observed and a fixed cost for making one or more inspections at

Table 2 Different inspection schemes

Scheme (number of
times inspected) Times inspected (mt)

a(1) 1
b(2) 1, 7
c(3) 1, 4, 7
d(4) 1, 3, 5, 7
e(7) 1, 2, 3, 4, 5, 6, 7

Figure 1 Matrix of local simulations
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a given time. The scheme that gains maximum information for a fixed cost or a given
amount of information at minimum cost can then be found, and the sensitivity of the
design choice to the correlations in the model explored.

6.3 How much improvement

Inspection locations have been selected based upon reducing system variances. These
spatial schemes may be compared to the simpler nonspatial schemes with the same
number of inspections and fixed inspection locations through time (required for
nonspatial models) to see how much additional information is gained. The benefits
for the nine pairs of parameters (introduced in Table 1) when an inspection is made at
every time interval with a fixed number of points (1, 2, 4, 8 or 16) relative to the same
number of points but with fixed locations can be seen in Figure 2. The large values to
the left of the plot indicate significant information gains potentially reducing variance
up to 3.5-fold when a suitable inspection scheme is used. The trend down to the right
shows that as more points are inspected having variable inspection locations become
less important. Lower temporal effects generally make the inspection locations more
important while, conversely, greater spatial strength generally reduces the importance
of the inspection locations. Also note that, in this example, making repeat inspections at
2n locations is typically as effective at reducing variance as making n inspections at
selected locations (not shown in Figure 2).

6.4 Prediction of global minimum

The life of the system is essentially defined by the global minimum. The variance of the
global minimum may be adjusted for a particular sampling scheme based upon ranked

Figure 2 Gain from spatially informative sampling
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regional observations as discussed in what follows. The expected global minimum can
be adjusted likewise.

For a particular inspection scheme, the prior covariances between ‘the observed
regional minima after they have been ranked’ and the ‘true global minimum at each
time point’ are calculated. These covariances are calculated directly from the data
previously simulated to find the covariance structure between the regional minima. The
covariance structure is then adjusted using Equation (4.2) to evaluate the effect of a set
of regional minima observations on beliefs about the global minimum.

A particular scheme is considered with temporal covariance parameter ty ¼ 1, spatial
covariance parameter ck ¼ 0:001 and mn ¼ 4 equally spaced inspections made at times
1, 4 and 7. Four equally spaced regional minima are thus observed at three different
times. There are 16 candidate inspection locations on each quadrant of the tank and
within each quadrant inspections are made at candidate locations 1, 7 and 14 (at times
1, 4 and 7, respectively). These candidate locations were found to reduce the one step
ahead global system variance following adjustment by the ranked observations the most
over all possible schemes based on a small subset of the data (1000 cases). Note that for
this example, using the methods previously described, 89% of the initial uncertainty
over the regional minima can be resolved. The covariance is now found after ranking by
observation size rather than by finding the covariance directly between these 12
inspections and the global system minimum at each time. In this example on average
over the eight times approximately 6% of the prior variance about the one step ahead
global system minimum remains following adjustment by the ranked observations.
Using the same data but not ranking leaves approximately 50% more of the initial
uncertainty about the global system minimum.

7 Discussion

We have discussed efficient inspection for maintenance of complex industrial systems
subject to degradation effects, such as corrosion. With appropriate statistical modelling,
the potential for better use of inspection resources to improve the quality of inferences
has been demonstrated. A Bayesian spatio-temporal DLM has been developed suitable
for a wide range of problems, such as wall thickness monitoring, where the inspection
method used collects transformed data. Historically the results of existing inspections
have often been found to be badly recorded. It has been shown that detailed recording
of inspection locations coupled with a suitable spatio-temporal model may substantially
reduce uncertainty following an inspection.

The developments made in this paper can be used in a decision support role during
the inspection of complex industrial systems. Our approach allows efficient inclusion of
transformed observations which are difficult to use directly to update beliefs in design
calculations for the standard DLM setup. This allows us to construct efficient designs
under a variety of different sampling schemes.

Having identified a good inspection design for a given uncertainty specification, the
effect of changes in prior uncertainty on the preferred inspection scheme should be
assessed. If feasible changes in the prior beliefs governing the model do not significantly
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change the preferred inspection locations for a given inspection budget, then the design
is robust to changes in parameters. A sensitive model will require consideration of the
additional risk associated with plausible changes in parameter values and may suggest
that a more extensive inspection is required.

In order to devise an optimal sampling scheme, the probabilistic information that we
display must be combined with a careful specification of the utilities involved in
comparing sampling cost with the consequences of system failure. This paper provides
the relevant probabilistic information to allow the manager to make an informed choice
between competing inspection schemes. More sophisticated design choices could be
made aiming at learning both about the correlation parameters and also the likely
future behaviour of the system, but, analysis of such designs is beyond the scope of the
paper.

Having identified a suitable design, the density of points used to evaluate regional
and global minima should, if computationally possible, be increased to check for
sensitivity. If using a higher density of points has a significant effect on the expected
outcomes then the density of points used for the calculations may have been too low.
This will be particularly important when spatial correlations are low. Finally careful
model checking, after each inspection, is essential. An efficient collection of one step
ahead forecast diagnostics for such purposes is described in Little et al. (2004).
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