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Abstract

The modelling of multivariate extreme events is important in a wide variety of

applications, including flood risk analysis, metocean engineering and financial mod-

elling. A wide variety of statistical techniques have been proposed in the literature;

however, many such methods are limited in the forms of dependence they can cap-

ture, or make strong parametric assumptions about data structures. In this article,

we introduce a novel inference framework for multivariate extremes based on a semi-

parametric angular-radial model. This model overcomes the limitations of many ex-

isting approaches and provides a unified paradigm for assessing joint tail behaviour.
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Alongside inferential tools, we also introduce techniques for assessing uncertainty and

goodness of fit. Our proposed technique is tested on simulated data sets alongside

observed metocean time series’, with results indicating generally good performance.

Keywords: Multivariate Extremes, Extremal Dependence, Generalised Additive Models, Co-

ordinate Systems

1 Introduction

1.1 Multivariate extreme value modelling

The modelling of multivariate extremes is an active area of research, with applications span-

ning many domains, including meteorology (Chavez-Demoulin and Davison, 2005), metocean

engineering (Jonathan and Ewans, 2013; Vanem et al., 2022), financial modelling (Castro-

Camilo et al., 2018) and flood risk assessment (Diaconu et al., 2021). Typically, approaches

in this research field are comprised of two steps: first, modelling the extremes of individual

variables and transforming to common margins, followed by modelling of the dependence

between the extremes of different variables. We refer to this dependence as the extremal

dependence structure henceforth.

This article discusses inference for multivariate extremes using an angular-radial model

for the probability density function, illustrated using examples in two dimensions. To place

the proposed model in context, we first provide a brief synopsis of the existing literature

for multivariate extremes. Given a random vector (X, Y ) ∈ R2 with marginal distribution

functions FX and FY , the strength of dependence in the upper tail of (X, Y ) can be quantified

in terms of the tail dependence coefficient, χ ∈ [0, 1], defined as the limiting probability

χ = lim
u→1

Pr(FX(X) > u | FY (Y ) > u),

when this limits exists (Joe, 1997). When χ > 0, the components of (X, Y ) are said to
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be asymptotically dependent (AD) in the upper tail, and when χ = 0, they are said to be

asymptotically independent (AI). Much of the focus of recent work in multivariate extreme

value theory has been related to developing a general framework for modelling joint extremes

of (X, Y ) which is applicable to both AD and AI cases, and can be used to evaluate joint tail

behaviour in the region where at least one variable is large.

To discuss the approaches proposed to date and their associated limitations, it is helpful

to categorise them in terms of whether they assume heavy- or light-tailed margins, and

whether they consider the distribution or density function. Classical multivariate extreme

value theory assumes heavy-tailed margins, and is based on the framework of multivariate

regular variation (MRV, Resnick, 1987). It addresses the case where χ > 0, and has been

widely studied – see Beirlant et al. (2004), de Haan and Ferreira (2006) and Resnick (2007)

for reviews. Under some regularity conditions, equivalent asymptotic descriptions of joint

extremal behaviour can be obtained from either the density or distribution function (de Haan

and Resnick, 1987).

In the MRV framework, any distribution with χ = 0 has the same asymptotic representa-

tion. To address this issue, Ledford and Tawn (1996, 1997) proposed a method to characterise

joint extremes for both AI and AD distributions in the region where both variables are large.

The resulting framework also assumes heavy-tailed margins and is referred to as hidden reg-

ular variation (HRV, Resnick, 2002). However, for AI distributions, a description of extremal

behaviour in the region where both variables are large may not the most useful, since ex-

tremes of both variables are unlikely to occur simultaneously. Moreover, for AI distributions

with certain regularity conditions, the asymptotic representation in this framework is gov-

erned only by the properties of the distribution along the line y = x (Mackay and Jonathan,

2023). To provide a more useful representation for AI distributions, applicable in the region

where either variable is large, Wadsworth and Tawn (2013) introduced an asymptotic model

for the joint survivor function on standard exponential margins. In contrast to the MRV

framework, the resulting model provides a useful description of AI distributions, but all AD
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distributions have the same representation.

More recently, there has been interest in modelling the limiting shapes of scaled sample

clouds, or limit sets, first introduced by Davis et al. (1988); see, for instance, Simpson and

Tawn (2022); Wadsworth and Campbell (2023); Majumder et al. (2023) and Papastathopou-

los et al. (2023). Nolde and Wadsworth (2022) showed that the limit set is directly linked to

several representations for multivariate extremes.. For a given distribution, the limit set is ob-

tained by evaluating the asymptotic behaviour of the joint density function on lighted tailed

margins. However, the limit set itself does not provide a full description of the asymptotic

joint density or distribution, so is less useful from a practical modelling perspective.

To understand the limitations of the methods discussed above, it is instructive to pro-

vide an illustration of the joint distribution and density functions on heavy- and light-tailed

margins for AI and AD random vectors. All the methods discussed above have equivalent

representations in angular-radial coordinates, so without loss of generality, we consider the

angular-radial dependence. The first step for most methods for modelling multivariate ex-

tremes is to transform variables to common margins. Define

(XP , YP ) =
(
(1− FX(X))−1, (1− FY (Y ))−1

)
∈ [1,∞)2,

(XE, YE) = (− log(1− FX(X)),− log(1− FY (Y ))) ∈ [0,∞)2,

so that (XP , YP ) and (XE, YE) have standard Pareto and exponential margins, respectively.

Note that (XE, YE) = (log(XP ), log(YP )), and that the dependence structure or copula of

(X, Y ) remains unchanged by the marginal transformation (Sklar, 1959). Furthermore, the

joint survivor function F̄P (x, y) = Pr(XP > x, YP > y) is related to the joint survivor function

of (XE, YE) by F̄E(x, y) = F̄P (exp(x), exp(y)). Moreover, if (XP , YP ) has joint density func-

tion fP (x, y), then (XE, YE) has joint density fE(x, y) = exp(−r)fP (exp(x), exp(y)), where

r = x+ y.

Figure 1.1 shows the joint survivor and density functions for the AD Joe copula (see the
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Supplementary Material) on standard Pareto and exponential margins. Rays of constant

angle on each margin are also shown. On Pareto margins, with the axes shown on a log-

arithmic scale, lines of constant angle asymptote to lines with unit gradient. As such, the

MRV framework provides a description of joint tail behaviour in the region close to the line

log(y) = log(x), i.e., where XP and YP are of similar magnitudes. In this region, the contours

of the joint density and survivor functions asymptote to a curve of constant shape, which de-

scribes the joint extremal behaviour in this region. In contrast, the angular-radial description

appears different on exponential margins. For the joint survivor function, the contours of

constant probability appear to asymptote towards the line max(x, y) = c for some constant

c. Wadsworth and Tawn (2013) showed that is the case for all AD distributions. Informally,

this is because for a distribution to be AD, the probability mass must be concentrated close

to the line y = x, so when the density is integrated to obtain the survivor function, the

dominant contribution comes from this region. In contrast to the joint survivor function,

the angular-radial description of the joint density is not the same for all AD distributions on

exponential margins.

Figure 1.2 shows a similar set of plots for the AI Gaussian copula (see the Supplementary

Material). In this case, contours for both the joint density and joint survivor function are

curved on both sets of margins. The angular-radial model on Pareto margins describes the

section of the curves close to the line y = x, which asymptote to straight lines as x+ y → ∞.

Therefore, the HRV description of the asymptotic behaviour is effectively a straight line

approximation to a curve, and is only applicable in the region close to the line y = x; see

Mackay and Jonathan (2023) for details. In contrast, the angular-radial description of both

the density and survivor functions on exponential margins provides a more useful description

of asymptotic behaviour.

In some applications it is useful to describe the extremal behaviour of a random vector for

both large and small values of certain variables; see Section 1.2. In this case, it is more useful

to work on symmetric two-sided margins, rather than one-sided margins. Figure 1.3 shows
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Figure 1.1: Representations of a Joe copula (with parameter α = 3) on standard Pareto
(upper row) and standard exponential margins (lower row). Left plots: Contours of joint
survivor function at equal logarithmic increments. Right plots: Contours of joint density
function at equal logarithmic increments. Light grey lines show rays of constant angle on
each margin.

the joint survivor and density functions for a Gaussian copula on standard Laplace margins.

The angular-radial variation of the joint survivor function is useful in the first quadrant of

the plane, but is less useful in the other quadrants. In the second and fourth quadrants,

the contours of the joint survivor function asymptote to the corresponding marginal levels,

providing no information about the asymptotic behaviour of the distribution in this region.

In contrast, the joint density function provides useful asymptotic information in all regions

of the plane.

This motivates an intuitively-appealing angular-radial description of the joint density

function proposed e.g. by Mackay (2022), referred to as the semi-parametric angular-radial
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Figure 1.2: As previous figure, but for Gaussian copula with ρ = 0.5.

(SPAR) model, considered in the current work. A similar model was recently proposed by

Papastathopoulos et al. (2023), although the application was only considered for standard

Laplace margins. However, the SPAR framework can be applied on any type of margin.

Mackay and Jonathan (2023) showed that on heavy-tailed margins, SPAR is consistent with

the MRV/HRV frameworks, and on light-tailed margins, SPAR is consistent with limit set

theory. However, the SPAR framework is more general than limit set theory, as it provides

an explicit model for the density in extreme regions of the variable space. Moreover, there

are distributions which have degenerate limit sets in some regions, for which there is still a

useful SPAR representation.

In the SPAR framework, variables are transformed to angular-radial coordinates, and it is

assumed that the conditional radial distribution is in the domain of attraction of an extreme

value distribution. This implies the radial tail conditioned on angle can be approximated by
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Figure 1.3: Gaussian copula on standard Laplace margins. Left: Contours of joint survivor
function at equal logarithmic increments. Right: Contours of joint density function at equal
logarithmic increments. Light grey lines show rays of constant angle.

a non-stationary generalised Pareto (GP) distribution. The SPAR approach generalises the

model proposed by Wadsworth et al. (2017), in which angular and radial components are

assumed to be independent. In the Wadsworth et al. (2017) model, the margins and angular-

radial coordinate system are selected so that the assumption of independent angular and

radial components is satisfied. The SPAR framework removes this requirement, providing a

more flexible representation for multivariate extremes.

While a strong theoretical foundation for the SPAR model is provided in Mackay and

Jonathan (2023), inference for this model has not yet been demonstrated. Inference via this

framework would offer advantages over many existing approaches, and a fitted SPAR model

could be used to estimate extreme quantities commonly applied in practice, such as risk

measures (Murphy-Barltrop et al., 2023) and joint tail probabilities (Keef et al., 2013).

The SPAR model reframes multivariate extreme value modelling as non-stationary peaks

over threshold (POT) modelling with angular dependence. Many approaches have been pro-

posed for non-stationary POT inference e.g. Randell et al. (2016); Youngman (2019); Zanini

et al. (2020). In this paper, we introduce an ‘off-the-shelf’ inference framework for the SPAR

model. This framework, which utilises generalised additive models (GAMs; Wood, 2017) for

capturing the relationship between radial and angular components, offers a high degree of

flexibility and can capture a wide variety of extremal dependence structures, as demonstrated
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in Sections 6 and 7. Our approach offers utility across a wide range of applications and pro-

vides a convenient, practical framework for performing inference on multivariate extremes.

Moreover, our inference framework is ready to use by practitioners; open-source software for

fitting the SPAR model is available at https://github.com/callumbarltrop/SPAR. For

ease of discussion and illustration, we restrict attention to the bivariate setting throughout,

noting that the SPAR model is not limited to this setting.

1.2 Motivating examples

To demonstrate the practical applicability of our proposed inference framework, we consider

three bivariate metocean time series made up of zero-up-crossing period, Tz, and significant

wave height, Hs, observations. We label these data sets as A, B and C, with each data set

corresponding to a location off the coast of North America. Datasets A and B were previously

considered in a benchmarking exercise for environmental contours (Haselsteiner et al., 2021).

Observations were recorded on an hourly basis over 40, 31 and 42 year time periods for data

sets A, B and C, resulting in nA = 320740, nB = 241815 and nC = 328247 observations,

respectively, once missing observations are taken into account. Exploratory analysis indicates

the joint time series are approximately stationary over the observation period. Understanding

the joint extremes of metocean variables is important in the field of ocean engineering for

assessing the reliability of offshore structures. Wave loading on structures is dependent on

both wave height and period, and the largest loads on a structure may not necessarily occur

with the largest wave heights. Resonances in a structure may result in the largest responses

occurring with either short- or long-period waves, meaning it is necessary to characterise the

joint distribution in both of these ranges. These data sets are illustrated in Figure 1.4.

Metocean data sets of this type can often exhibit complex dependence structures, for

which many multivariate models fail to account. For example, data set B exhibits clear

asymmetry in its dependence structure. Moreover, as demonstrated in Haselsteiner et al.

(2021), many existing approaches for modelling metocean data sets perform poorly in prac-
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Figure 1.4: Metocean data sets A (left), B (centre) and C (right) comprised of hourly Tz and
Hs observations.

tice, often misrepresenting the joint tail behaviour or not offering sufficient flexibility to

capture the complex data structures. These shortcomings can have drastic consequences if

fitted models are used to inform the design bases for offshore structures, as is common in

practice.

This paper is structured as follows. In Section 2, we briefly introduce the SPAR model

and outline our assumptions. In Section 3, we introduce a technique to estimate the density

of the angular component. In Section 4, we introduce a framework for estimating the density

of the radial component, conditioned on a fixed angle. In Section 5, we introduce tools

for quantifying uncertainty and assessing goodness of fit when applying the SPAR model in

practice. In Section 6 and 7, we apply the proposed framework to simulated and real data

sets, respectively, illustrating the proposed framework can accurately capture a wide range

of extremal dependence structures for both prescribed and unknown marginal distriutions.

We conclude in Section 8 with a discussion and outlook on future work.
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2 The SPAR Model

2.1 Coordinate systems

Let (X, Y ) denote a random vector in R2 with continuous joint density function fX,Y and

simply connected support containing the point (0, 0). The SPAR model for fX,Y requires

a transformation from Cartesian to polar coordinates. Polar coordinates can be defined in

various ways; see Mackay and Jonathan (2023) for discussion. In this paper, we restrict

attention to two particular angular-radial systems corresponding to the L1 and L2 norms,

defined as ∥(x, y)∥p := (|x|p + |y|p)1/p, p = 1, 2, for (x, y) ∈ R2. We define Rp := ∥(X, Y )∥p,

p = 1, 2, and consider these variables as radial components of (X, Y ). Such definitions

of radial variables are common in multivariate extreme value models (e.g., de Haan and

de Ronde, 1998; Wadsworth et al., 2017). When using the L2 norm to define the radial

variable, the corresponding angular variable is usually defined as Θ = atan2(X, Y ), where

atan2 is the four-quadrant inverse tan function. The map between (X, Y ) and (R2,Θ) is

bijective on R2 \ {(0, 0)}. When using the L1 norm to define radii, the angular variable is

typically defined as W := X/∥(X, Y )∥1 (e.g., Resnick, 1987, chapter 5). The random vector

(R1,W ) has a one-to-one correspondence with (X, Y ) in the upper half of the plane (Y ≥ 0),

but the use of the vector (R1,W ) becomes ambiguous if we are interested in the full plane,

since W contains no information about the sign of Y .

With this in mind, we follow Mackay and Jonathan (2023) and define the bijective angular

functions Ap : Up → (−2, 2], where Up := {(u, v) ∈ R2 | ∥(u, v)∥p = 1} is the unit circle for

the Lp norm. For p = 1, 2, these are defined as

A1(u, v) := ε(v)(1− u)

A2(u, v) :=
2

π
atan2(u, v),

where ε(v) = 1 for v ≥ 0 and −1 otherwise, is the generalised signum function. The functions
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Ap(u, v) give a scaled measure of the distance along the unit circle Up from the point (1, 0)

to (u, v), measured counter-clockwise.

With angular functions established, we define the angular variables of (X, Y ) to be Qp :=

Ap(X/Rp, Y/Rp), p = 1, 2. The corresponding the radial-angular mapping t : R2 \{(0, 0)} →

(0,∞)× (−2, 2] given by

t(x, y) :=

(
∥(x, y)∥p,Ap

(
x

∥(x, y)∥p
,

y

∥(x, y)∥p

))
,

is bijective for p = 1, 2. Consequently, we can recover (X, Y ) from its radial and angular

components, i.e., (X, Y ) = RpA−1
p (Qp) for p = 1, 2. We note that Q2 = 2Θ/π. However,

we use the variable Q2 here, in preference to Θ, so that the angular range is the same for

both Q1 and Q2. The joint density of (Rp, Qp) can be written in terms of the joint density

of (X, Y ),

fR1,Q1(r1, q1) = r1fX,Y (r1A−1
1 (q1)), fR2,Q2(r2, q2) =

πr2
2

fX,Y (r2A−1
2 (q2)),

where the terms r1 and (πr2)/2 are the Jacobians of the respective transformations. For

ease of notation, we henceforth drop the subscripts on the radial and angular components

and simply let (R,Q) denote one of the coordinate systems, with corresponding joint density

function fR,Q.

Mackay and Jonathan (2023) showed that the choice of coordinate system does not affect

whether the SPAR model assumptions (discussed below) are satisfied. However, the coordi-

nates may affect the inference, so in the examples presented in Sections 6 and 7, we consider

both L1 and L2 polar coordinates.

2.2 Conditional radial tail assumption

Applying Bayes theorem, the joint density fR,Q can be written in the conditional form

fR,Q(r, q) = fQ(q)fRq(r | q), where fQ(q) denotes the marginal density ofQ, Rq := R | (Q = q)
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and fRq(r | q) denotes the density of Rq, with corresponding distribution function FRq(r | q).

Viewed in this way, the modelling of joint extremes is reduced to the modelling of the angular

density, fQ, and the tail of the conditional density, fRq .

Given any γ ∈ (0, 1), define uγ : (−2, 2] → R+ as uγ(q) = inf{r | FRq(r | q) ≥ γ} for

all q ∈ (−2, 2], implying Pr(Rq ≤ uγ(q)) = γ. We refer to uγ(q) as the threshold function

henceforth. For the SPARmodel, we assume that for all q ∈ (−2, 2], there exists a normalising

function cq : R+ → R+ such that

Pr

(
Rq − uγ(q)

cq(uγ(q))
≤ r

∣∣∣ Rq > uγ(q)

)
→ 1− {1 + ξ(q)r}−1/ξ(q)

+ , r > 0, (2.1)

as γ → 1−, with ξ(q) ∈ R. The right hand side of equation (2.1) denotes the cumulative

distribution function of a generalised Pareto (GP) distribution, and we term ξ(q) the shape

parameter function. The case ξ(q) = 0 can be interpreted as the limit of equation (2.1) as

ξ(q) → 0. Assumption (2.1) is equivalent to the assumption that Rq is in the domain of

attraction of an extreme value distribution (Balkema and de Haan, 1974). Given the wide

range of univariate distributions satisfying this assumption, it is reasonable to expect the

convergence of (2.1) to hold in many cases for Rq also. Mackay and Jonathan (2023) showed

that this assumption holds for a wide variety of theoretical examples.

This convergence motivates a model for the upper tail of Rq. Assuming that equation

(2.1) approximately holds for some γ < 1 close to 1, we have

Pr
(
Rq − uγ(q) ≤ r

∣∣∣ Rq > uγ(q)
)
≈ FGP (r | τ(q), ξ(q)) := 1−

{
1 +

ξ(q)r

τ(q)

}−1/ξ(q)

+

, r > 0,

(2.2)

for some τ(q) ∈ R+ which we refer to as the scale parameter function. The inclusion of

the scale parameter removes the need to estimate the normalising function cq, and this is

equivalent to the standard peaks over threshold approximation used in univariate extreme

value theory (Davison and Smith, 1990).
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Given q ∈ (−2, 2] and r ≥ uγ(q), assumption (2.2) implies that

F̄Rq(r | q) = Pr(Rq > uγ(q))
[
Pr
(
Rq > r

∣∣∣ Rq > uγ(q)
)]

,

≈ (1− γ)F̄GP (r − uγ(q) | τ(q), ξ(q)),

where F̄−(·) := 1 − F−(·) denotes the survivor function. The joint density of (R,Q) in the

region Uγ := {(r, q) ∈ (0,∞)× (−2, 2] | r ≥ uγ(q)} is then given by

fR,Q(r, q) = fQ(q)fRq(r | q) ≈ (1− γ)fQ(q)fGP (r − uγ(q) | τ(q), ξ(q)), (2.3)

where fGP is the GP density function. Equation (2.3) implies that the SPAR model is defined

within the region Uγ.

To simplify the inference, we also assume that the functions fQ(q), uγ(q), τ(q) and ξ(q) are

finite and continuous over q ∈ (−2, 2] and satisfy the periodicity property limq→−2+ f(q) =

f(2). Such conditions are not guaranteed in general, and whether they are satisfied depends

on the choice of margins (among other things). Mackay and Jonathan (2023) showed that the

assumptions are valid for a wide range of copulas on Laplace margins, but using one-sided

margins (e.g., exponential) or heavy-tailed margins can result in the assumptions not being

satisfied for the same copulas.

3 Angular density estimation

In this section, we consider the angular density fQ of equation (2.3), which we estimate using

kernel density (KD) smoothing techniques. Such techniques offer many practical advantages:

they are nonparametric, meaning no distributional assumptions for the underlying data are

required, and they give smooth, continuous estimates of density functions. These features

make KD techniques desirable for the estimation of fQ. Note that other nonparametric

smooth density estimation techniques are also available (e.g., Gu, 1993; Randell et al., 2016),
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but we do not consider these here.

Unlike standard KD estimators (Chen, 2017), we require functional estimates that are

periodic on the angular domain (−2, 2], motivating the use of circular density techniques

(Chaubey, 2022). Given a sample {q1, q2, . . . , qn} from Q, the KD estimate of the density

function is given by

f̂Q(q;h) =
1

n

n∑
i=1

Kh(q, qi),

where Kh denotes some circular kernel with bandwidth parameter h. The bandwidth controls

the smoothness of the resulting density estimate, with the smoothness increasing as h → ∞.

The goal is typically to select h as small as possible without overfitting. Within the literature,

a wide range of circular kernels have been proposed; see Chaubey (2022) for an overview. We

restrict attention to one particular kernel since it is perhaps the most widely used in practice

(Garćıa–Portugués, 2013). Specifically, we consider the von Mises kernel,

Kh(q, qi) =
1

4I0(1/h)
exp

{
1

h
cos
(
(q − qi)

π

2

)}
, (3.4)

where I0 is the modified Bessel function of order zero (Taylor, 2008). Here we have modified

the kernel to have support on (−2, 2], rather than the usual support of (−π, π].

With a kernel selected, a critical issue when applying equation (3.4) in practice is the

choice of h. A variety of approaches have been proposed for automatically selecting the

bandwidth parameter, including plug-in values (Taylor, 2008), cross-validation techniques

(Hall et al., 1987) and bootstrapping procedures (Marzio et al., 2011).

For our modelling approach, we opt not to use automatic selection techniques for the

bandwidth parameter; instead, we select h on a case-by-case basis, using the diagnostics

proposed in Section 5.2 to inform selection. In unreported results, we found many of the

automatic selection methods to perform poorly in practice, and it has been shown that such

techniques can fail for multi-modal densities (Oliveira et al., 2012). Multi-modality is often

observed within the angular density (Mackay and Jonathan, 2023), suggesting it is better

15



not to select h using automatic techniques.

4 Conditional density estimation

We now consider the conditional density of equation (2.3). For simplicity, we assume that

γ ∈ (0, 1) is fixed at some high level for each q ∈ (−2, 2]. In practice, the choice of non-

exceedance probability is non-trivial, and sensitivity analyses must be performed to ensure

an appropriate value is selected; see Sections 5 and 7 for further details. Note that this

is directly analogous to the threshold selection problem in univariate analyses; see Murphy

et al. (2023) for a recent overview.

To apply equation (2.2), we require estimates of the threshold and GP parameter func-

tions, denoted uγ(q), τ(q) and ξ(q) respectively. As noted in Section 1.1, this is equivalent to

performing a non-stationary peaks over threshold analysis on the conditional radial variable

Rq, with q viewed as a covariate.

Throughout this article, we let (r,q) := {(ri, qi) | i = 1, 2, . . . , n} denote a sample of

size n ∈ N from (R,Q). In this section we introduce two methods for inference. The first

approach assumes the conditional radial distribution is locally stationary over a small angu-

lar range. In the second approach, spline-based modelling techniques are used to estimate

the threshold and parameter functions as smoothly-varying functions of angle. The local

stationary inference is used as a precursor to the spline-based inference, providing a useful

comparison and ‘sense check’ on results.

4.1 Local stationary inference

We compute local stationary estimates at a fixed grid of values Qgrid := {−2 + 4i/M |

i = 1, 2, . . . ,M} ⊂ (−2, 2], where M denotes some large positive integer, selected to ensure

Qgrid has sufficient coverage on (−2, 2]. For each q ∈ Qgrid, we assume there exists a local

neighbourhood Qq = [q − δ, q + δ], δ > 0, such that the distribution of Rq∗ is stationary for
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q∗ ∈ Qq. This is true in the limit as δ → 0, and a reasonable approximation for small δ.

In practice, rather than fixing the size of the interval, we select the N nearest observations

in terms of the angular distance from q, defined as d(q)i := min{|qi−q|, 4−|qi−q|}, i = 1, ..., n,

for some value N ≪ n. Define Iq ⊂ {1, 2, . . . , n} to be the index set of the N smallest order

statistics of d(q)i. Local estimates of the threshold and parameter functions can be obtained

from the corresponding radial set Rq := {ri | i ∈ Iq}. Specifically, we define ûl
γ(q) to be the γ

empirical quantile of Rq, and σ̂l(q) and ξ̂l(q) to be maximum likelihood estimates of the GP

distribution parameters obtained from the set {ri− ûl
γ(qi) | i ∈ Iq, ri > ûl

γ(qi)}. Choosing an

appropriate value for N involves a bias-variance trade-off; selecting too large (small) a value

too will increase the bias (variability) of the resulting pointwise threshold and parameter

estimates. For our modelling procedure, this selection is not crucial, since local estimates are

merely used as a means to inform the smooth estimation procedure presented in Section 4.2.

4.2 Smooth inference for the SPAR model

We now consider smooth estimation of the threshold and parameter functions. For this, we

employ the approach of Youngman (2019), in which GAMs are used to capture covariate

relationships; software for this approach is given in Youngman (2020). Our procedure is two-

fold; we first estimate the threshold function uγ(q) for a given γ, then estimate the parameter

functions τ(q) and ξ(q) using the resulting threshold exceedances.

This section is structured as follows. First, we provide a high-level overview of GAM-

based modelling techniques. We then introduce procedures for estimating the threshold and

parameter functions via the GAM framework. Finally, we discuss the selection of the basis

dimensions required for the GAM formulations.

4.2.1 GAM-based procedures

GAMs are a flexible class of regression models that allow for complex, non-linear relationships

between response and predictor variables. They extend the traditional linear regression
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model by allowing the response to be modelled as a sum of smooth basis functions of the

predictor variables. They are particularly useful when the relationship between the response

and predictor variables is complex in nature and cannot be easily captured using standard

parametric regression techniques.

Employing the GAM framework, the threshold and parameter functions can be rep-

resented through a sum of smooth basis functions, or splines. For an arbitrary function

g : (−2, 2] → R, we write

g(q) = β0 +
k∑

j=1

Bj(q)βj, (4.5)

where Bj, j ∈ {1, 2, . . . , k} denote smooth basis functions, βj, j ∈ {0, 1, . . . , k} denote

coefficients and k ∈ N denotes the basis dimension. To apply equation (4.5) in practice, one

must first select a family of basis functions Bj, j ∈ {1, 2, . . . , k}. A wide variety of bases have

been proposed in the literature; see Perperoglou et al. (2019) for an overview. We restrict

attention to one particular type of basis function known as a cubic spline. Cubic splines

are widely used in practice to capture non-linear relationships, and exhibit many desirable

properties, such as optimality in various respects, continuity and smoothness (Wood, 2017).

Moreover, cubic splines can be modified to ensure periodicity by imposing conditions on

the coefficients, resulting in a cyclic cubic spline. In the context of the SPAR framework,

these properties are desirable to ensure the estimated threshold and parameters functions are

smooth and continuous, and that they satisfy periodicity on the interval (−2, 2].

With basis functions selected, an important consideration is the basis dimension size k;

this corresponds to the number of knots of the spline function. This selection represents

a trade-off, since selecting too many knots will result in higher computational burden and

parameter variance, while selecting too few will not offer sufficient flexibility for capturing

non-linear relationships. We consider this trade-off in detail in Section 4.2.3.

Given k, the next step is to determine the knot locations; these are points where spline

sections join. The knots should be more closely spaced in regions where more observations

are available. In our case, we define knots at empirical quantiles of the angular variable Q
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corresponding to a set of equally spaced probability levels; this is typical for spline based

modelling procedures.

With a GAM formulated, the final step is to estimate the spline coefficients βj, j ∈

{0, 1, . . . , k}. Various methods have been proposed for this estimation (Wood, 2017). We

have opted to use the restricted maximum likelihood (REML) approach of Wood et al.

(2016). For this technique, the log-likelihood function is penalised in a manner that avoids

over-fitting, and cross-validation is used to automatically select the corresponding penalty

parameters. Estimation via REML avoids the use of MCMC, which can be computationally

expensive in practice; see Wood (2017) for further details.

4.2.2 Estimation of the threshold and GP parameter functions

Estimation of the threshold function uγ(q) is equivalent to estimating quantiles of Rq over

q ∈ (−2, 2], motivating the use of quantile regression techniques. Employing the GAM

framework with guγ defined as in equation 4.5, we set guγ (q) := log(uγ(q)), so that uγ(q) =

exp(guγ (q)) > 0. We then employ the approach of Youngman (2019), whereby a misspecified

asymmetric Laplace model is assumed for Rq, and REML is used to estimate the coefficients

associated with guγ . By altering the pinball loss function typically used in quantile regression

procedures (Koenker et al., 2017), this approach avoids computational issues that can often

arise within such procedures; see the Supplementary Material for further details.

Similar to uγ, we define gτ (q) = log(τ(q)) and gξ(q) = ξ(q), with gτ , gξ defined as in

equation (4.5). Again applying the approach of Youngman (2019), we estimate the coefficients

associated with gτ and gξ using REML. Further details about this estimation procedure can

be found in the Supplementary Material.

4.2.3 Selecting basis dimensions

An important consideration when specifying the GAM forms for both the threshold and

parameter functions is the basis dimension. Selecting an appropriate dimension is essential
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for ensuring accuracy and flexibility in spline modelling procedures (Wand, 2000; Perperoglou

et al., 2019). Generally speaking, selecting too few knots may result in functional estimates

that do not capture the underlying covariate relationships, while parameter variance increases

for larger dimensions.

While some approaches have been proposed for automatic dimension selection (e.g.,

Kauermann and Opsomer, 2011), most available spline based modelling procedures select

the dimension on a case-by-case basis using practical considerations. Moreover, as long as

the basis dimension is sufficiently large enough, the resulting modelling procedure should be

insensitive to the exact value, or the knot locations (Wood, 2017). This is due to the REML

estimation framework, which penalises over-fitting, thus dampening the effect of adding ad-

ditional knots to the spline formulation. As such, it is preferable in practice to select more

knots than one believes is truly necessary to capture the covariate relationships. Therefore,

we select reasonably large basis dimensions for the data sets considered in Sections 6 and 7.

5 Practical tools for SPAR model inference

In this section, we introduce practical tools to aid with implementation of the inference

frameworks presented in Sections 3 and 4. Specifically, we introduce a tool for quantifying

uncertainty in the SPAR framework, alongside diagnostic tools for assessing goodness of fit.

The latter tools can also be used to inform the selection of tuning parameters, such as the

non-exceedance probability γ, the bandwidth parameter h, and the basis dimension.

5.1 Evaluating uncertainty

When applying the SPAR modelling framework in practice, uncertainty will arise for each of

the estimated components; namely, the angular density, threshold and parameter functions.

In practice, this uncertainty is a result of sampling variability combined with model misspec-

ification. The former arises due to finite sample sizes only partially representing the entire
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population, while the latter arises from modelling frameworks not fully capturing the com-

plex features of the data. Quantifying this uncertainty is crucial for interpreting statistical

results and making informed decisions based on the inherent modelling limitations.

To quantify uncertainty in SPAR model fits, we must consider each model component in

turn. For this, we take a similar approach to Haselsteiner et al. (2021) and Murphy-Barltrop

et al. (2023), and consider a fixed angle q ∈ Qgrid, with Qgrid defined as in Section 4.1. We

then quantify the estimation uncertainty for each model component while keeping the angle

fixed. Specifically, we propose the following bootstrap procedure: for b = 1, . . . , B, where

B ∈ N denotes some large positive integer, do the following

1. Resample the original data set (with replacement) to produce a new sample of size n.

2. Compute the point estimate of the angular density at q, denoted f̂Q,b(q), using the

methodology described in Section 3.

3. Compute the point estimates of the threshold, scale and shape parameters at q, denoted

ûγ,b(q), τ̂b(q) and ξ̂b(q) respectively, using the methodology described in Section 4.2.

We remark that the choice of resampling procedure can be adapted to incorporate data

sets exhibiting temporal dependence. In this case, rather than using a standard bootstrap,

one can apply a block bootstrap (Kunsch, 1989). This sampling scheme retains temporal

dependence in the resampled data set, ensuring the additional uncertainty that arises due

to lower effective sample sizes is accounted for (Politis and Romano, 1994). See Keef et al.

(2013) and Murphy-Barltrop et al. (2023) for applications of block bootstrapping within the

extremes literature.

Given a significance level α ∈ (0, 1), we use the outputs from the bootstrapping procedure

to construct estimates of the median and 100(1 − α)% confidence interval for each model

component at q. Considering the angular density, for example, these quantities are computed

using the set {f̂Q,b(q) | b ≤ k ≤ B}. Assuming the estimation procedure is unbiased, one
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would expect Pr(f̂
α/2
Q,b (q) ≤ fQ(q) ≤ f̂

1−α/2
Q,b (q)) ≈ (1−α), where f̂

α/2
Q,b (q) and f̂

1−α/2
Q,b (q) denote

the empirical α/2 and 1− α/2 quantile estimates from {f̂Q,b(q) | 1 ≤ b ≤ B}, respectively.

Repeating this procedure for all q ∈ Qgrid allows one to evaluate uncertainty over the

angular domain for each model component, thus quantifying the SPAR model uncertainty.

This in turn allows us to evaluate uncertainty in quantities computed from the SPAR model,

such as isodensity contours or return level sets; see Sections 6 and 7.

5.2 Evaluating goodness of fit

To assess goodness of fit for our inference framework, we present a range of diagnostic tools.

These proposed diagnostics allow one to assess the reliability and sensitivity of fitted SPAR

models. In practice, these diagnostics aid with the selection of tuning parameters, including

the threshold probability γ ∈ (0, 1), which are essential for accurately modelling joint tail

behaviour. Example applications of these tools can be found in Section 7.

For the first diagnostic tool, consider a fixed γ ∈ (0, 1) and let ûγ(q), τ̂γ(q) and ξ̂γ(q),

q ∈ (−2, 2], denote estimates of the threshold, scale and shape functions, respectively. Fur-

thermore, let Uo
γ := {(ri, qi) | i ∈ {1, . . . , n}, ri > ûγ(qi)} be the set of observed threshold

exceedances. Applying the probability integral transform, the sample

Rexp
γ :=

{
− log

{
1− FGP (r − ûγ(q) | τ̂γ(q), ξ̂γ(q))

} ∣∣∣(r, q) ∈ Uo
γ

}

should be approximately standard exponentially distributed. However, this result will only

hold for an appropriate choices of tuning parameters; in particular, γ ∈ (0, 1) needs to

have been selected high enough such that equation (2.1) holds approximately. Letting r
(j)
γ ,

j = 1, . . . ,m, denote the j/(m+1) empirical quantiles of Rexp
γ , with m := |Rexp

γ |, we consider

the following pairs on the exponential scale:

{[
r(j)γ ,− log

(
1− j

m+ 1

)] ∣∣∣ j = 1, . . . ,m

}
. (5.6)
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Comparing these values via a quantile-quantile (QQ) plot gives us a visual means to assess

the goodness of fit for the overall model. For an appropriate choice of tuning parameters, one

would expect good agreement between model and theoretical quantiles, i.e., points lying near

to the y = x line in the QQ plot. Moreover, uncertainty in the QQ plot can be quantified via

nonparametric bootstrapping. This tool is similar to the diagnostic proposed in Youngman

(2019), and comparing QQ plots over different values of γ and k gives us a means to compare

SPAR model fits, and thus select tuning parameters in practice.

While comparing the quantiles from equation (5.6) provides an overall summary of the

SPAR model fit, this diagnostic provides no information about the relative quality in different

angular regions. Specifically, we do not know for which angles q ∈ (−2, 2] the SPAR model

approximation holds well. Therefore, we also present a localised diagnostic to assess the

relative performance of the SPAR model fits in different regions. For this diagnostic, consider

q ∈ {−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}, corresponding to a variety of regions in R2. For each

q, take the local radial window Rq as defined in Section 4.1. Treating Rq as a sample from

Rq, we compare the observed quantiles with the fitted SPAR model quantiles, resulting in

a localised QQ plot. Similar to before, uncertainty can be quantified via nonparametric

bootstrapping. Comparing the resulting QQ plots over different angles, and different values

of γ and k, provides another means to assess model performance.

Finally, we propose comparing the estimated angular density, obtained using the method-

ology of Section 3, with the corresponding density function computed from the histogram.

This comparison allows one to assess whether the choice of bandwidth parameter, h, is ap-

propriate for a given data structure.
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6 Simulation study

6.1 Study set up

In this section, we evaluate the performance of the smooth inference framework introduced

in Section 4.2 via simulation. We do not consider the local estimation approach of Section

4.1 here, since our proposed local estimates are only meant as a means of assessing smooth

SPAR estimates when the true values are unknown.

We consider four copulas on standard Laplace margins; Gaussian, Frank, t and Joe, as

defined in the Supplementary Material. These distributions represent a range of dependence

structures. Note that analogous dependence coefficients to χ can be defined to quantify the

strength of extremal dependence in other regions of the plane (see Mackay and Jonathan,

2023). In the following, we denote the four quadrants of R2 as Q1, ...,Q4. For ρ > 0,

the Gaussian copula has intermediate dependence in Q1 and Q3 (Hua and Joe, 2011), and

negative dependence in Q2 and Q4. The Frank copula is AI in all quadrants, whereas the t

copula is AD in all quadrants. Finally, the Joe copula is AD in Q1, negatively dependent in

Q2 and Q4, and AI in Q3. Samples from each copula are shown in Figure 6.1, together with

the corresponding values of the copula parameters used in the simulation studies. In each

case, the sample size is n = 10, 000. One can observe the variety in dependence structures, as

evidenced by the shape of data clouds. For the distributions considered here, the asymptotic

shape parameter function is ξ(q) = 0, q ∈ (−2, 2], and the asymptotic scale parameter

functions can be derived analytically (see Mackay and Jonathan, 2023). The true values of

the threshold functions uγ(q) and angular density functions fQ(q) can be calculated using

numerical integration. Hence, in all cases, the target values for the SPAR model parameters

are known.

To evaluate performance, we simulate 500 samples from each distribution and for every

sample, apply the methods outlined in Section 3 and 4.2 to estimate all SPAR model com-

ponents. Using these estimates, we compute isodensity contours, defined as {(x, y) ∈ R2 |
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Figure 6.1: Example data sets of size n = 10, 000 and isodensity contours from each copula
on standard Laplace margins. The red to blue lines in each plot represent the joint density
levels p ∈ {10−3, 10−4, 10−5, 10−6}.

fX,Y (x, y) = p} for some p. In particular, we consider p ∈ {10−3, 10−4, 10−5, 10−6}; the cor-

responding true contours for each distribution are given in Figure 6.1. These density values

represent regions of low probability mass, corresponding to joint extremal behaviour. More-

over, estimates of the joint density are appropriate for evaluating the overall performance of

the SPAR model, since in practice, capturing the joint density is crucial for ensuring one can

accurately extrapolate into the joint tail.

Alongside isodensity contours, we also compare the estimated GP scale parameter func-

tions and angular density functions to their corresponding target values. For the former, we

remark that for each copula, the conditional radial distribution fRq(r|q) only converges to

a GP distribution in limit as r → ∞, implying we are unlikely to accurately estimate the

asymptotic GP parameter functions for finite samples; see Mackay and Jonathan (2023). We

remark that even with this caveat, we still obtain high quality estimates for the isodensity

contours at extreme levels.

Uncertainty in the estimation procedure is quantified by adapting the procedure of Section

5.1 across the 500 simulated samples. This allows us to compute median estimates and

confidence intervals for isodensity contours, scale functions and angular density functions.

Although the choice of coordinate system does not affect whether the SPAR model as-

sumptions are satisfied, the asymptotic SPAR parameter functions do depend on the co-

ordinate system. Since smooth, continuous splines are used to represent the GP parameter
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functions, the choice of coordinate system may affect the quality of model fits. The simulation

study is therefore conducted using both L1 and L2 polar coordinates.

6.2 Tuning parameters

We first consider the tuning parameters required for the smooth inference procedure, as

outlined in Section 4.2.3. For each copula, the threshold and scale parameter functions

appeared to vary in a similar manner over angle. Furthermore, we fix a constant value of the

shape parameter with angle, i.e., ξ(q) = ξ ∈ R for all q ∈ (−2, 2], since for each copula, the

tail behaviour remains constant over angles (Mackay and Jonathan, 2023). As discussed in

Section 7, this is not true in the general case, so fixing ξ(q) to be constant is an additional

constraint imposed on the model.

As noted previously, it is better to select a basis dimension k that is larger than one

would expect to be necessary. We considered a range of dimensions in the interval [5, 50],

and compared the resulting model fits across each of the four copulas. From this analysis,

we found that setting k = 25 was sufficiently flexible for capturing the angular dependence

for both the threshold and scale functions.

We are also required to select a non-exceedance probability γ ∈ (0, 1). As observed in

Mackay and Jonathan (2023), each of the four copulas exhibits a different rate of convergence

to the asymptotic form. Therefore, different values of γ may be appropriate for these different

dependence structures. However, we instead opt to keep γ fixed across all copulas. This is

for consistency in the estimation framework, as well as to show that even in the case when

the model is misspecified, the corresponding inference framework is still robust enough to

approximate the true model. We considered a range of γ values, restricting our attention to

the interval [0.5, 0.95], and compared the resulting model fits. As expected, the performance

for each copula varied non-homogeneously across γ values. Ultimately, we found that setting

γ = 0.8 appeared sufficient for approximating the conditional radial tails for each dependence

structure. In particular, this value appeared high enough to give approximate convergence
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to a GP distribution model, without giving a large degree of variability in model estimates.

Finally, for estimation of the angular density, we fix the bandwidth parameter at h =

1/50 for each copula. Our results show that for these copula examples, this bandwidth is

sufficiently flexible to approximate the true angular density functions across the majority of

angles.

6.3 Results

Figure 6.2 compares the median estimates of isodensity contours, obtained using the L1

coordinate system, to the true contours at a range of low density levels; the corresponding

plots for the L2 coordinate system are given in the Supplementary Material. For both

coordinate systems, one can observe generally good agreement between the sets of contours,

suggesting the modelling framework is, on average, capturing the dependence structure of

each copula. Furthermore, plots comparing the median estimates from both coordinate

systems can also be found in the Supplementary Material. These plots show a similar overall

performance for both systems, with perhaps a slight preference for the L1 estimates.

Plots comparing the estimated GP scale parameter functions, and associated confidence

intervals, to the known asymptotic functions are given in the Supplementary Material. In

some angular regions, the estimated isodensity contours and scale functions from the SPAR

model do not agree with the known values; for example, in the region around q = 0.5 for

the Joe copula. In this case, there is a sharp cusp in the asymptotic GP scale parameter

function. Similarly, there is a sharp cusp in the true GP scale parameter for the t copula at

q = ±0.5,±1.5. As the inference framework assumes that the scale is a smooth function of

angle, this behaviour is not properly captured. Despite the GAM representation not being

able to capture these cusps, the overall performance of the estimated SPAR model is still

reasonable in these regions. Furthermore, there is poor agreement between the estimated

and asymptotic scale functions for the Frank copula. This is likely due to the relatively slow

convergence of this distribution to its asymptotic form, and hence the poorer approximation
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by the GP distribution.
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Figure 6.2: Comparison of true (thick lines) and median estimated (dashed lines) isodensity
contours under the L1 coordinate system. In each plot, the red to blue lines represent the
joint density levels p ∈ {10−3, 10−4, 10−5, 10−6}.

Next, we consider the uncertainty of the isodensity contours for p ∈ {10−3, 10−6} in the

radial-angular space. Figure 6.3 shows the median contour estimates, along with estimated

95% confidence intervals, obtained under the L1 coordinate system; the corresponding plots

for L2 coordinates are given in the Supplementary Material. One can observe that the true

contours are generally well captured within the estimated uncertainty regions. The exception

in the 10−6 density contour for the Frank copula in Q2 and Q4, owing to the aforementioned

slow rate of convergence to the asymptotic form for this copula.

Finally, we compare median estimates of the angular density functions, alongside esti-

mated confidence regions, to the corresponding true density functions for each copula. These

results are given in the Supplementary Material. Overall, we observe close agreement be-

tween the estimated and true functions at the majority of angles. However, we note that the

KD estimation framework appeared unable to fully capture the modal regions for the Frank,

t and Joe copulas; see Section 8 for further discussion.

Overall, when compared to the truth, the SPAR model estimates perform well for each

copula. This observation suggests that our proposed inference framework, with appropriate

tuning parameters, can capture the extremal dependence structure across a range of copulas

with differing dependence classes. This illustrates both the flexibility and robustness of the

SPAR approach, and its advantages over many alternative multivariate models.
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Figure 6.3: Comparison of median estimated isodensity contours (dashed lines), with 95%
confidence intervals (shaded region), to true contours (solid lines) for joint density level
p = 10−3 (top row) and p = 10−6 (bottom row), with estimates obtained using L1 polar
coordinates.

7 Case Study

In this section, we apply the techniques introduced in Sections 3 and 4 to the data sets A,

B and C introduced in Section 1.2. We show that the resulting model fits are physically

plausible and capture the complex dependence features of each data set. We also apply the

tools introduced in Section 5 to quantify uncertainty and assess goodness of fit; the resulting

diagnostics indicate generally good performance.

7.1 Pre-processing

The simulation study in Section 6 considered data on standard Laplace margins. This is

because the SPAR model assumptions are satisfied for a wide range of copulas on Laplace

margins, and the resulting asymptotic representations are relatively simple (Mackay and

Jonathan, 2023). However, the SPAR framework does not pre-suppose any particular choice

of margins, and Mackay and Jonathan (2023) also showed that SPAR representations arise

for random vectors with bounded and heavy tailed margins.
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For the case of the metocean datasets, the margins are unknown. In practice, estimation

the marginal distributions, as is common in many extreme value analyses, introduces a high

degree of additional modelling uncertainty, and poor marginal estimates affect the quality of

the resulting multivariate inference (Towe et al., 2023). Therefore, we opt not to transform

the margins of the metocean time series, and to instead fit the SPAR model on the original

scale of the data. With suitable selections of tuning parameters, we demonstrate below that

our inference framework is flexible enough to capture the observed extremal dependence

structures for the metocean data sets without the need for marginal transformation.

An important consideration for the SPAR model is where to place the origin of the

polar coordinate system. When using Laplace margins, a natural choice is to locate the

origin at (x, y) = (0, 0). When working on the original scale of the data, the choice is

less clear. One option would be to place the polar origin at (x, y) = (0, 0). However, this

would restrict the range of angles for which the SPAR model offers a useful representation,

since both variables we are considering here take only positive values. To account for this,

we normalise the data to have zero mean and unit variance, and select the polar origin

at (x, y) = (0, 0) in the normalised variable space. Define normalised variables (T̃z, H̃s) :=

((Tz−µTz)/σTz , (Hs−µHs)/σHs), where (µTz , µHs) and (σTz , σHs) denote the estimated means

and standard deviations of (Tz, Hs), respectively.

We henceforth assume that for each data set, the normalised joint density function, fT̃z ,H̃s
,

satisfies the assumptions of the SPAR model, and apply the statistical techniques introduced

in Sections 3, 4 and 5; these results are presented in Section 7.3. Throughout this section, we

present all results for the L1 coordinate system; the corresponding results for L2 coordinates

are given in the Supplementary Material, with both systems resulting in similar model fits.

We remark that each metocean time series exhibits non-negligible temporal dependence.

Following Section 5.1, we apply block bootstrapping throughout this section whenever quan-

tifying uncertainty, with the block size set to 4 days. This block size appeared appropriate

to account for the observed dependence in each time series. Note that temporal dependence
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could alternatively be accounted for by ‘declustering’ the data and only modelling peak val-

ues. However, in multivariate applications, what constitutes a ‘peak value’ is ambiguous

since the extremes of each variable do not necessarily occur simultaneously; see Mackay et al.

(2021) and Mackay and de Hauteclocque (2023) for further discussion.

7.2 Tuning parameters

Prior to inference, we must first select each of the relevant tuning parameters for the method-

ologies discussed in Sections 3 and 4. Since the true dependence features are unknown, we use

local estimates of the SPAR model, obtained using the framework of Section 4.1, to inform

the choice of basis dimensions for the smooth inference procedure of Section 4.2.

To obtain local estimates, we are required to specify the number of reference angles M ,

the number of order statistics N , and the non-exceedance probability γ. For the first two

values, we set M = 200 and N = 500; we found these values to be adequate to ensure a

high degree of coverage over the angular interval (−2, 2], and to give angular windows that

appeared approximately stationary. For selecting γ, we tested a range of probabilities in

the interval [0.5, 0.95]. Through this testing, we set γ = 0.7, since this value appeared to

give approximate convergence to a GP tail across the majority of local windows. The same

non-exceedance probability is also used for the smooth SPAR model estimates.

With local estimates obtained, we then consider smooth estimation of the SPAR compo-

nents. Notably, for each of the time series, we observe clear trends in the locally estimated

shape parameter function; it would therefore not be appropriate to specify this parameter as

constant. This makes sense when one considers the shapes of the data clouds illustrated in

Figure 1.4; the radial behaviour varies significantly over angles. Furthermore, both metocean

variables are bounded below by 0; therefore, we would expect shorter tails in angular direc-

tions that intersect the axes. A range of basis dimensions were tested, and from this analysis,

we fixed k = 35 for the threshold and scale functions, and k = 12 for the shape function.

These values appeared to offer adequate flexibility for capturing the trends observed over the
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angular variable.

Finally, for angular density estimation, we follow Section 6.2 and set the bandwidth h =

1/50. This value offered sufficient flexibility to capture the observed angular distributions.

7.3 Results

Figure 7.1 compares the threshold and parameter function estimates for data set B from

the local and smooth inference procedures; the corresponding plots for data sets A and C

are given in the Supplementary Material. The shaded regions in this figure denote the 95%

bootstrapped confidence intervals for the smooth model fits. One can observe generally good

agreement for each component of the SPAR model. We remark that the local estimates

appear unstable, and hence unreliable, for certain angles; this is not surprising, given the

small sample size of the angular window. However, the general overall agreement suggests

the smooth SPAR estimates are accurately capturing the observed dependence features for

each data set, providing evidence that the chosen tuning parameters are appropriate.
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Figure 7.1: Comparison of estimated local (rough lines) and smooth threshold (red, left),
scale (green, middle) and shape (blue, right) functions for data set B with the L1 coordinate
system, with shaded regions denoting 95% confidence intervals.

Following Section 5.2, we compare the median angular density functions from the KD

estimation technique with empirical histograms. These comparisons are given in Figure 7.2

for each data set, and one can observe good agreement between the estimated quantities.
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Figure 7.2: Comparison of estimated median (blue lines) angular density functions to his-
tograms for data sets A (left), B (centre), and C (right) with the L1 coordinate system. The
shaded regions in each plot denote the estimated 95% confidence intervals.

Estimates of isodensity contours are shown in Figure 7.3. These joint density contours

are given on the original scale of the data, rather than on the normalised scale, and we

consider the joint density levels p ∈ {10−3, 10−6}, corresponding to regions of low probability

mass. The estimated isodensity contours appear to capture the shape and structure of each

data cloud well. Furthermore, we note that the SPAR model appears able to capture the

observed asymmetric dependence structures, illustrating the flexibility and robustness of this

modelling framework.

Figure 7.3: Estimated median isodensity contours at p = 10−3 (orange lines) and p = 10−6

(cyan lines) for data sets A (left), B (centre), and C (right) with the L1 coordinate system.
The shaded region for each contour denote the 95% bootstrapped confidence intervals.

To further demonstrate the utility of the SPAR framework, we also use the fitted model

to obtain return level sets for each of the data sets. Return level sets are commonly used in
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ocean engineering for the design of offshore structures. They can be defined in various ways,

but are generally defined in terms of marginal probabilities under various rotations of the

coordinate axes, or in terms of the probability of an observation falling anywhere outside the

set (the so-called ‘total exceedance probability’ of a contour); see Mackay and Haselsteiner

(2021). Papastathopoulos et al. (2023) noted that SPAR-type models offer a natural way for

total exceedance probability contours to be constructed. For contour exceedance probability

1− γ > a ∈ [0, 1], the radius of the contour at angle q is the (1− a− γ)/(1− γ) quantile of

the GP distribution with parameter vector (uγ(q), ξ(q), τ(q)). For any angle q ∈ (−2, 2], the

probability of an observation exceeding this radius is equal to a; consequently, the probability

of observing data outside of the resulting contour set is equal to a. When observations are

independent and the distribution is stationary, we can define such sets in terms of return

periods; given a number of years K ∈ N, the K-year return level set is the set corresponding

to the probability a := 1/nyK, where ny denotes the number of observations per year. One

would expect to observe data points outside of the return level set once, on average, every

K years. Given the temporal dependence observed within the metocean data sets, we note

that such an interpretation is not possible due to clustering of extreme events, and as such

these estimates are conservative (Mackay et al., 2021). However, the resulting return level

sets can still provide a useful summary of joint extreme behaviour.

Plots of estimated median 10 year return level sets for each data set are given in Figure

7.4, along with 95% bootstrapped confidence intervals. These sets, obtained by computing

GP distribution quantiles from the fitted model, appear sensible in shape and structure when

compared to the data cloud. Moreover, given the lengths of observation windows of each data

set, we would not expect to observe many datapoints outside of the return level set; this is

clearly true in every case. Furthermore, a comparison of return level sets from the two

coordinate systems is given in the Supplementary Material, where one can observe generally

good agreement between the estimated sets

We note that simulation from the SPAR model is straightforward; a simulation scheme is
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Figure 7.4: Estimated median 10 year return level sets (purple lines) for data sets A (left),
B (centre), and C (right) with the L1 coordinate system. The shaded region for each return
level set denotes the 95% bootstrapped confidence region.

given in the Supplementary Material, alongside examples for each of the metocean data sets.

Finally, to assess goodness of fit, we apply the remaining diagnostic tools presented in

Section 5.2. The resulting QQ plots are given in the Supplementary Material. Note that the

‘overall’ QQ plots (i.e., for all threshold exceedances) indicate generally good performance,

albeit with some overestimation for the most extreme exceedances. Considering the local

window QQ plots, it is clear that the performance of the fitted SPAR model varies across

different angular regions. Although we observe generally good agreement between quantiles,

there is clearly better agreement for certain angles, suggesting rates of convergence to the

GP tail model may vary over angle for these data sets.

8 Discussion

In this paper, we have introduced a novel inference framework for the SPAR model of Mackay

and Jonathan (2023). We have explored the properties of this framework, and introduced

practical tools for quantifying uncertainty and assessing goodness of fit. Furthermore, we

have applied this framework to simulated and real data sets in Sections 6 and 7, with results

indicating that the proposed framework captures joint tail behaviour across a wide range of

data structures. Moreover, this framework has been recently applied in Mackay et al. (2024),

where the authors show the SPAR model can accurately capture joint extremes of wind speeds
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and wave heights, and extreme response distributions for a variety of metocean data sets.

Our proposed modelling framework is one of the first multivariate extreme value modelling

techniques that can be applied without marginal transformation, offering an advantage over

competing approaches and removing a significant degree of model variability.

Noting that the SPAR model has only been developed recently, this work is the first

attempt to apply this modelling framework in practice, and it is likely that other inference

approaches will follow. While our proposed framework performs well in general, we acknowl-

edge there exist some shortcomings that could provide the motivation for future work.

The results from Section 6 indicate that the proposed angular density estimation frame-

work from Section 3 performs poorly for some copulas in regions around the angular mode(s).

However, we note that even with this caveat, the KD estimation framework appeared ade-

quate for capturing the angular distribution for the observed data sets in Section 7. Future

work could explore whether using alternative angular density estimation approaches (e.g.,

Gu, 1993; Randell et al., 2016) could further improve performance.

Observe that for the AD copulas considered in Section 6, the true isodensity functions

exhibit clear cusps, where the underlying GP scale function is non-differentiable. Such sec-

tions cannot be captured under the current framework, since the use of cyclic cubic splines

for smooth estimation imposes differentiability at all angles. Future work could explore how

such behaviour could be captured in the inference framework. For example, one could use

a spline representation that allows for superimposed knots. Combined with a more general

spline inference procedure, this alternative representation could allow for optimal estimation

of both the number and locations of knots, while simultaneously giving cusps in the estimated

SPAR functions (Hastie et al., 2009).

From Section 7, one can observe that for the estimated isodensity contours and return

levels obtained using the L1 coordinate system, there exist distinct cusps at certain angles;

these arise due to the square shape of U1. We acknowledge that such cusps are not realistic

for practical applications, and consequently, estimates from the L2 coordinate system may
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be preferable in such settings.

When estimating the shape parameter functions in Section 7, we did not impose any

functional constraints, even though the variables considered must have finite lower and up-

per bounds, and hence cannot be in the domain of attraction of a GP distribution with a

non-negative shape parameter. However, even without bounding the shape parameter, we

note that across all of our model fits, the estimated shape functions were almost always

homogeneously negative, indicating the proposed framework is flexible enough to detect the

form of tail behaviour directly from the data. Future work could explore whether imposing

physical constraints on the shape function improves the quality of model fits.

Following on from Section 7.3, it appears that having one non-exceedance probability for

all angles may not be optimal for fitting the SPAR model in practice due to different rates of

convergence at different angles. Exploring techniques for selecting and estimating threshold

functions with varying rates of exceedance (e.g., Northrop and Jonathan, 2011) remains an

open area for future work.

We have restricted attention to the bivariate setting throughout this work. This decision

was motivated by parsimony, as well as the fact many of the examples given Mackay and

Jonathan (2023) are for bivariate vectors. A natural avenue for future work would therefore

be expanding the proposed inference framework to the general d-dimensional setting.

Finally, we note that in Mackay and Jonathan (2023), the authors also derive a link

between the SPAR model and the limit set representation for multivariate extremes. Specif-

ically, the radius of the limit set at a fixed angle is given by the asymptotic shape parameter

of the SPAR representation. We believe the inference approach we have proposed could

be adapted for the estimation of limit sets, though additional care will be required given

estimates obtained from finite sample sizes seldom equal limiting asymptotic quantities in

practice.
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C. G., Ásta Hannesdóttir, Dimitrov, N., Sander, A., Ohlendorf, J. H., Thoben, K. D.,

de Hauteclocque, G., Mackay, E., Jonathan, P., Qiao, C., Myers, A., Rode, A., Hildebrandt,

40



A., Schmidt, B., Vanem, E., and Huseby, A. B. (2021). A benchmarking exercise for

environmental contours. Ocean Engineering, 236:1–29.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of

statistical learning: data mining, inference, and prediction, volume 2. Springer.

Hosking, J. R. and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized

Pareto distribution. Technometrics, 29:339–349.

Hua, L. and Joe, H. (2011). Tail order and intermediate tail dependence of multivariate

copulas. Journal of Multivariate Analysis, 102(10):1454–1471.

Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman and

Hall/CRC.

Jonathan, P. and Ewans, K. (2013). Statistical modelling of extreme ocean environments for

marine design: A review. Ocean Engineering, 62:91–109.

Kauermann, G. and Opsomer, J. D. (2011). Data-driven selection of the spline dimension in

penalized spline regression. Biometrika, 98:225–230.

Keef, C., Tawn, J. A., and Lamb, R. (2013). Estimating the probability of widespread flood

events. Environmetrics, 24:13–21.

Koenker, R., Chernozhukov, V., He, X., and Peng, L. (2017). Handbook of Quantile Regres-

sion. Chapman and Hall/CRC.

Kunsch, H. R. (1989). The Jackknife and the Bootstrap for General Stationary Observations.

The Annals of Statistics, 17:1217–1241.

Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate

extreme values. Biometrika, 83:169–187.

41



Ledford, A. W. and Tawn, J. A. (1997). Modelling dependence within joint tail regions.

Journal of the Royal Statistical Society. Series B: Statistical Methodology, 59:475–499.

Mackay, E. (2022). Improved Models for Multivariate Metocean Extremes. Technical report,

Supergen ORE Hub.

Mackay, E. and de Hauteclocque, G. (2023). Model-free environmental contours in higher

dimensions. Ocean Engineering, 273:113959.

Mackay, E., de Hauteclocque, G., Vanem, E., and Jonathan, P. (2021). The effect of serial

correlation in environmental conditions on estimates of extreme events. Ocean Engineering,

242:110092.

Mackay, E. and Haselsteiner, A. F. (2021). Marginal and total exceedance probabilities of

environmental contours. Marine Structures, 75:1–24.

Mackay, E. and Jonathan, P. (2023). Modelling multivariate extremes through angular-radial

decomposition of the density function. arXiv, 2310.12711.

Mackay, E., Murphy-Barltrop, C., and Jonathan, P. (2024). The SPAR model: a new

paradigm for multivariate extremes. Application to joint distributions of metocean vari-

ables. In 43rd International Conference on Ocean, Offshore & Arctic Engineering, page

OMAE2024/130932, Singapore.

Majumder, R., Shaby, B. A., Reich, B. J., and Cooley, D. (2023). Semiparametric Estimation

of the Shape of the Limiting Multivariate Point Cloud. arXiv, 2306.13257.

Marzio, M. D., Panzera, A., and Taylor, C. C. (2011). Kernel density estimation on the

torus. Journal of Statistical Planning and Inference, 141:2156–2173.

Murphy, C., Tawn, J. A., and Varty, Z. (2023). Automated threshold selection and associated

inference uncertainty for univariate extremes. arXiv, 2310.17999.

42



Murphy-Barltrop, C. J. R., Wadsworth, J. L., and Eastoe, E. F. (2023). New estimation

methods for extremal bivariate return curves. Environmetrics, e2797:1–22.

Nolde, N. and Wadsworth, J. L. (2022). Linking representations for multivariate extremes

via a limit set. Advances in Applied Probability, 54:688–717.

Northrop, P. J. and Jonathan, P. (2011). Threshold modelling of spatially dependent non-

stationary extremes with application to hurricane-induced wave heights. Environmetrics,

22:799–809.

Oh, H.-S., Lee, T. C. M., and Nychka, D. W. (2011). Fast Nonparametric Quantile Regression

With Arbitrary Smoothing Methods. Journal of Computational and Graphical Statistics,

20:510–526.
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Supplementary Material to ‘Inference for multivariate extremes

via a semi-parametric angular-radial model’

S1 Additional information for Section 4.4.2

In this section, we provide further details about the REML schemes used to estimate the

GAM parameters associated with the threshold and parameter functions. We first consider

the GAM formulation of the threshold function log(uγ(q)) = guγ (q), which we estimate via

quantile regression techniques. For finite sample sizes, conditional quantile regression requires

us to compute

β̂ββuγ
:= argmin

βββuγ∈Rk+1

n∑
i=1

(
ργ
(
ri − exp(guγ (qi))

))
, (S1)

where βββuγ denotes the spline coefficients associated with guγ (q), and ργ(x) = (γ − 1)x for

x < 0 and γx for x ≥ 0 (Koenker et al., 2017). However, optimisation of (S1) is non-trivial

and computational issues often result due to the non-differentiability of ργ at zero.

To overcome these computational issues, Youngman (2019) proposed the following mis-

specified model

(R | exp(guγ (q)), σ(q), γ, c, Q = q) ∼ ALD(exp(guγ (q)), σ(q), γ, c),

with corresponding density function

fALD(r) =
γ(1− γ)

σ(q)
exp

{
−ργ,c

(
r − exp(guγ (q))

σ(q)

)}
, r ∈ R,

where σ(q) > 0 and ργ,c denotes the modified check function of Oh et al. (2011). This check
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function is defined as

ργ,c(x) =



(γ − 1)(2x+ c) for x < c

(1− γ)x2/c for − c ≤ x < 0

γx2/c for 0 ≤ x < c

γ(2x− c) for c ≤ x

for c > 0, where c is chosen close to zero. Unlike the standard loss function ργ, ργ,c is

differentiable at zero, offering significant advantages for inference in terms of speed and

computational efficiency; see Oh et al. (2011) for further details. For our framework, we set

c = 0.5; this is the default value suggested in Youngman (2020).

Setting log(σ(q)) = gσ(q), where gσ(q) denotes a GAM formulation from equation (4.5)

of the main article, and letting βββσ denote the associated coefficient vector, the log-likelihood

associated with the mis-specified model given of equation (S1) is given by

ℓ(βββuγ ,βββσ; r,q, γ, c) ∝ −
n∑

i=1

gσ(qi)−
n∑

i=1

ργ,c

(
ri − exp(guγ (qi))

exp(gσ(qi))

)
. (S2)

Treating σ(q) as a nuisance parameter function, maximisation of equation (S2) with respect

to βββuγ is equivalent to minimisation of equation (S1). Consequently, the resulting estimate

for uγ(q) gives an estimate of the conditional quantile function for Rq. For further details,

along with detailed examples, see Yu and Moyeed (2001) and Geraci and Bottai (2007). Note

that the same spline basis dimensions are used for both uγ and σ.

Given an estimate of uγ(q), let Io
γ := {i ∈ {1, 2, . . . , n} | ri ≥ uγ(qi)} denote the observed

indices of threshold exceedances. Recalling the GAM formulations for the GP scale and

shape, log(τ(q)) = gτ (q) and ξ(q) = gξ(q), the log-likelihood function of the GP tail model is
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given by

ℓ(βββτ ,βββξ; rIo
γ
,qIo

γ
) = −

∑
i∈Io

γ

gτ (qi) +
∑
i∈Io

γ

(
− 1

gξ(qi)
− 1

)
log

(
1 +

gξ(qi)(ri − uγ(qi))

exp(gτ (qi))

)
, (S3)

where rIo
γ
:= {ri | i ∈ Io

γ}, qIo
γ
:= {qi | i ∈ Io

γ}, and βββτ ,βββξ denote the coefficient vectors

associated with gτ and gξ, respectively. Minimising equation (S3) with respect to βββτ and βββξ

results in estimates of the parameter functions.

Minimisation of equations (S2) and (S3) is achieved via REML, with the corresponding

penalty parameters estimated via cross validation. We refer to Wood et al. (2016) and Wood

(2017) for further details.

S2 Additional information and plots for Section 6

In Section 6 of the main article, we consider four copula examples. The first is the Gaussian

copula; given ρ ∈ [−1, 1], termed the Pearson correlation coefficient, this is given by

C(u1, u2; ρ) = Φ
(
Φ−1(u1),Φ

−1(u2); Σ
)
, Σ :=

1 ρ

ρ 1


where Φ is the bivariate Gaussian cumulative distribution function with correlation matrix Σ

and Φ−1 is the inverse of the standard univariate Gaussian cumulative distribution function.

The parameter ρ controls the form and strength of dependence.

Secondly, for any α ̸= 0, the Frank copula is defined as

C(u1, u2;α) = − 1

α
log

(
1 +

∏2
i=1(e

−αui − 1)

e−α − 1

)
,

with the parameter α controlling the strength and form of dependence.
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Next, for any ρ ∈ [−1, 1] and ν > 0, the t copula is given by

C(u1, u2; ρ, ν) = T
(
t−1
ν (u1), t

−1
ν (u2); Σ, ν

)
where T is the bivariate t cumulative distribution function with correlation matrix Σ and ν

degrees of freedom, and t−1
ν is the inverse of the univariate t cumulative distribution function

with ν degrees of freedom. The strength of dependence in the tails is controlled by both ν

and ρ (Chan and Li, 2008).

Finally, given any α > 0, the Joe copula is given by

C(u1, u2;α) = 1−

(
1−

2∑
i=1

uα
i

) 1
α

where α > 0 controlling the strength of dependence.

For each copula, we simulate data on standard Laplace margins, for which the marginal

distribution is given by

FL(x) :=
1

2

(
1 + sgn(x) ·

(
1− e−|x|)) , x ∈ R. (S4)

To achieve this, we first simulate data from each copula on standard uniform margins using

the copula package in the R computing language. We then transform this data to standard

Laplace using the inverse of equation (S4).

Figure S1 compares the median estimates of isodensity contours, obtained using the L2

coordinate system, to the true contours at a range of low density levels.

Figure S2 compares the median isodensity contours estimates from the two coordinate

systems for two density levels p ∈ {10−3, 10−6}. One can observe that the differences between

the sets of median estimates are negligible.
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Figure S1: Comparison of true (thick lines) and median estimated (dot-dashed lines) isoden-
sity contours under the L2 coordinate system. In each plot, the red to blue lines represent
the joint density levels p ∈ {10−3, 10−4, 10−5, 10−6}.
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Figure S2: Comparison of estimated median isodensity contours to truth (solid lines) for the
L1 (dashed lines) and L2 (dot-dashed lines) coordinate systems. The top and bottom rows
give the comparisons for p = 10−3 and p = 10−6, respectively.

Figures S3 and S4 illustrate the median scale parameter estimates, with confidence inter-

vals, for the L1 and L2 coordinate systems, respectively. Considering the fact estimates were

computed using finite sample sizes, these plots illustrate reasonable agreement between the

estimated and asymptotic scale parameter functions in most cases. One notable exception is

the Frank copula, for which the estimated scale functions perform poorly. This is likely due

to the relatively slow convergence of this distribution to its asymptotic form, as discussed in

Mackay and Jonathan (2023). Furthermore, the majority of the ξ estimates obtained over

the simulated data sets are slightly negative. This discrepancy from the asymptotic value

5



(ξ = 0) partly explains why the estimated scale functions estimates are biased high in most

cases, since the scale and shape parameters are negatively correlated under the maximum

likelihood framework (Hosking and Wallis, 1987).
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Figure S3: Comparison of true (solid red lines) and median estimated (dashed blue lines)
scale parameter functions under the L1 coordinate system. In each plot, the shaded regions
give the estimated 95% confidence intervals.
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Figure S4: Comparison of true (solid red lines) and median estimated (dot-dashed blue lines)
scale parameter functions under the L2 coordinate system. In each plot, the shaded regions
give the estimated 95% confidence intervals.

Figure S5 illustrates the median contour estimates for p ∈ {10−3, 10−6} on the radial-

angular scale for the L2 coordinate system, along with estimated 95% confidence intervals.

As with the L1 coordinates, the estimated confidence intervals capture the true contours in

most cases.
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Figure S5: Comparison of median estimated isodensity contours (dashed lines), with 95%
confidence intervals (shaded region), to true contours (solid lines) for joint density level
p = 10−3 (top row) and p = 10−6 (bottom row), with estimates obtained using L2 polar
coordinates.

Figures S6 and S7 compare the true and estimated angular density functions for the

L1 and L2 coordinate systems, respectively. One can observe generally good agreement for

both coordinate systems. We note that the KD estimation framework appears unable to

fully capture the modal regions for the Frank, t and Joe copulas. We observed a marginal

improvement in performance for these regions when the bandwidth parameter, h, was de-

creased; however, this significantly increased the variability in the resulting angular density

estimates, and consequently, we opted to keep h fixed at 1/50. Moreover, we note that even

for extremely small bandwidth parameters, the proposed KD framework was unable to ap-

proximate the modal behaviour of the Joe copula, suggesting the sample size (n = 10, 000)

is not large enough to fully capture the true density function for this particular example.
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Figure S6: Comparison of true (red) and estimated median (blue) angular density functions,
alongside 95% confidence intervals, for the L1 coordinate system. In each plot, the shaded
regions illustrate the estimated confidence intervals.
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Figure S7: Comparison of true (red) and estimated median (blue) angular density functions,
alongside 95% confidence intervals, for the L2 coordinate system. In each plot, the shaded
regions illustrate the estimated confidence intervals.

S3 Additional plots for Section 7

Figures S1 and S2 compare the smoothly and locally estimated threshold and parameters

functions for data sets A and C, respectively, under the L1 coordinate system. One can

observe generally good agreement for each component of the SPAR model.
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Figure S1: Comparison of estimated local (rough lines) and smooth threshold (red, left),
scale (green, middle) and shape (blue, right) functions for data set A with the L1 coordinate
system, with shaded regions denoting 95% confidence intervals.
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Figure S2: Comparison of estimated local (rough lines) and smooth threshold (red, left),
scale (green, middle) and shape (blue, right) functions for data set C with the L1 coordinate
system, with shaded regions denoting 95% confidence intervals.

Figures S3, S4 and S5 compare the smoothly and locally estimated threshold and param-

eters functions for data sets A, B and C, respectively, under the L2 coordinate system. As

with the L1 coordinates, we obtain good agreement for each model component.
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Figure S3: Comparison of estimated local (rough lines) and smooth threshold (red, left),
scale (green, middle) and shape (blue, right) functions for data set A with the L2 coordinate
system, with shaded regions denoting 95% confidence intervals.
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Figure S4: Comparison of estimated local (rough lines) and smooth threshold (red, left),
scale (green, middle) and shape (blue, right) functions for data set B with the L2 coordinate
system, with shaded regions denoting 95% confidence intervals.
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Figure S5: Comparison of estimated local (rough lines) and smooth threshold (red, left),
scale (green, middle) and shape (blue, right) functions for data set C with the L2 coordinate
system, with shaded regions denoting 95% confidence intervals.

Figure S6 compares the estimated median angular density functions, and corresponding

confidence intervals, with the histograms for each data set under the L2 coordinate sys-

tem. The two sets of estimates are in good agreement, providing evidence that the chosen

bandwidth parameter is appropriate.
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Figure S6: Comparison of estimated median (blue lines) angular density functions to his-
tograms for data sets A (left), B (centre), and C (right) with the L2 coordinate system. The
shaded regions in each plot denote the estimated 95% confidence intervals.

Figure S7 illustrates the estimated median isodensity contours, and corresponding un-

certainty regions, for the density levels p ∈ {10−3, 10−6} under the L2 coordinate system.

As with the L1 coordinates, the estimated contours capture the shape and structure of each

data set.
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Figure S7: Estimated median isodensity contours at p = 10−3 (orange lines) and p = 10−6

(cyan lines) for data sets A (left), B (centre), and C (right) with the L2 coordinate system.
The shaded region for each contour denote the 95% bootstrapped confidence intervals.

Figure S8 illustrates the estimated median 10 year return level sets for each data set,

along with 95% bootstrapped confidence intervals, obtained using the L2 coordinate system.

The estimated sets appear to capture the features of the observed data, and we observe only

a handful of observations outside of the return level set for each data set.

Figure S8: Estimated median 10 year return level sets (purple lines) for data sets A (left),
B (centre), and C (right) with the L2 coordinate system. The shaded region for each return
level set denotes the 95% bootstrapped confidence region.

Figure S9 compares the estimated 10 year return level sets from the two coordinate

systems for each of the data sets. One can observe generally good agreement between the

two systems, although we note some small differences in the estimates for data set A at

certain angles. The overall agreement, however, provides evidence of consistency between

the two modelling approaches.
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Figure S9: Comparison of L1 (purple) and L2 (orange) coordinate system return level sets
for data sets A (left), B (centre), and C (right). The shaded region for each return level set
denotes the 95% bootstrapped confidence intervals.

As noted in the main article, fitted SPAR models can be used to simulate new obser-

vations. This simulation is straightforward. We start by generating a random number u∗,

uniformly distributed in [0, 1]. A random angle q ∈ (−2, 2] can then be calculated by applying

the probability integral transform so that q = F−1
Q (u∗), where FQ denotes the estimated dis-

tribution function of Q. A corresponding radial value r, is then simulated as a random value

from the GP distribution with parameter vector (uγ(q), ξ(q), τ(q)). The resulting pair (r, q)

is then a random sample from the SPAR model. Figure S10 and S11 illustrate simulated data

points for each metocean data set, overlayed on top of the observed time series, for the L1

and L2 coordinate systems, respectively. For each data set, we simulated the same number

of new observations as the original sample size. One can observe that the simulated data

sets closely resemble the threshold exceeding observations. Moreover, these plots illustrate

the regions Uγ for which the SPAR model is valid.
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Figure S10: Model simulations (green) against observed time series (grey) for data sets A
(left), B (centre), and C (right) with the L1 coordinate system.

Figure S11: Model simulations (green) against observed time series (grey) for data sets A
(left), B (centre), and C (right) with the L2 coordinate system.

Figures S12 and S13 illustrate QQ plots on the standard exponential scale obtained from

the SPAR model fits on each data set using the L1 and L2 coordinate systems, respectively.

There is good overall agreement, albeit with some slight overestimation from the model at

the most extreme radial values.
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Figure S12: QQ plot on the standard exponential scale obtained from the fitted SPAR models
for data sets A (left), B (centre), and C (right) with the L1 coordinate system. The shaded
region for each plot denotes the empirical 95% confidence region.

Figure S13: QQ plot on the standard exponential scale obtained from the fitted SPAR models
for data sets A (left), B (centre), and C (right) with the L2 coordinate system. The shaded
region for each plot denotes the empirical 95% confidence region.

Figures S14, S15 and S16 give the local window QQ plots for the SPAR model fits on

data sets A, B, and C, respectively, under the L1 coordinate system. The corresponding plots

for the L2 coordinate system are given in Figures S17, S18 and S19. We observe generally

good agreement between the estimated model and observed quantiles. Note that the step-like

behaviour observed in some of the plotted quantiles occurs due to repeated observations in

the time series’; these are likely a result of rounding errors in measurement equipment.
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Figure S14: Local QQ plots for the fitted SPAR model on data set A with the L1 coordinate
system. The shaded region for each plot denotes the empirical 95% confidence region.
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Figure S15: Local QQ plots for the fitted SPAR model on data set B with the L1 coordinate
system. The shaded region for each plot denotes the empirical 95% confidence region.
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Figure S16: Local QQ plots for the fitted SPAR model on data set C with the L1 coordinate
system. The shaded region for each plot denotes the empirical 95% confidence region.
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Figure S17: Local QQ plots for the fitted SPAR model on data set A with the L2 coordinate
system. The shaded region for each plot denotes the empirical 95% confidence region.
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Figure S18: Local QQ plots for the fitted SPAR model on data set B with the L2 coordinate
system. The shaded region for each plot denotes the empirical 95% confidence region.
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Figure S19: Local QQ plots for the fitted SPAR model on data set C with the L2 coordinate
system. The shaded region for each plot denotes the empirical 95% confidence region.
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