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Introduction

▶ ScaDS.AI = Center for Scalable Data Analytics and Artificial
Intelligence

▶ One of the five new centres in Germany funded under the
government’s AI strategy.



Introduction

▶ My current research focus is on employing state-of-the-art
artificial intelligence and machine learning techniques for
modelling multivariate extremes.



Overview

▶ Univariate extremes

▶ Multivariate extremes

▶ Angular-radial systems

▶ The SPAR model

▶ GAM approach

▶ Deep learning approach

▶ Discussion



Univariate extremes

▶ Study of univariate extremes is very well-established.

▶ For modelling, most practitioners employ the peaks over
threshold approach.

▶ A generalised Pareto (GP) distribution is fitted to
observations exceeding some threshold.



Univariate extremes

Yu := (X − u | X > u) ∼ GP(σ, ξ)

FYu(y) = 1−
{
1 +

ξy

σ

}−1/ξ

+
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Univariate extremes
▶ Most approaches assume that the variable X is stationary

(i.e., not changing in time).
▶ However, this is unrealistic in most applications.



Univariate extremes

▶ In such cases, we must allow for non-stationarity in the
modelling framework.

▶ Given a variable Xt and some covariates Z t , with t denoting
time, one could consider the model

(Xt − u(z t) | Xt > u(z t)) ∼ GP(σ(z t), ξ(z t))

▶ The threshold and parameters are a function of the
covariates.
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Univariate extremes

▶ Literature on non-stationary peaks over threshold analysis is
also well established.

▶ Many approaches available:

1. Parametric models: Davison and Smith (1990); Eastoe and
Tawn (2009).

2. Generalised additive models (GAMs): Chavez-Demoulin and
Davison (2005); Youngman (2019).

3. Deep learning: Pasche and Engelke (2024); Richards and
Huser (2022)



Multivariate extremes

Consider the question: what is ‘extreme’ for multiple variables?

Multiple Variables

x

y

Only X extreme

Only Y extreme
Both extreme



Multivariate extremes

▶ Various definitions of multivariate extremes have been
proposed (Barnett, 1976).

▶ However, many classical approaches have focused on the
orange region.

▶ This analysis is very limited – and misses important
information in the joint tail.



Multivariate extremes

In this work, we define multivariate extremes in a more general
manner.

Multiple Variables

x

y



Multivariate extremes

▶ Many approaches use geometric representations for
modelling multivariate extremes.

▶ Geometric ⇒ multivariate data is split into angular and radial
components.



Angular-radial systems

▶ How do we define ‘angular’ and ‘radial’ components?

▶ This all depends on how we define ‘distance’.

▶ The standard approach is to use the Euclidean norm.



Angular-radial systems

Let X = (X1, . . . ,Xd) denote a continuous random vector. Then

R := ∥X∥ =

√∑
i

X 2
i

W :=
X

R

This transformation is one-to-one1.

W ∈ Sd−1 := {x ∈ Rd : ∥x∥ = 1}.

1Excluding the origin 0.
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Angular-radial systems
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Θ = atan2(Y ,X ) = atan2(W2,W1), W = (cos(Θ), sin(Θ)).



Angular-radial systems
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Angular-radial systems



Angular-radial systems

▶ Joint extremes can be characterised by the stochastic
behaviour of (R,W ).

▶ W gives the ‘direction’ of the event.

▶ R gives the ‘magnitude’.



The SPAR model

▶ SPAR model = semi-parametric angular-radial model.

▶ This model, proposed by Mackay and Jonathan (2023),
assumes the following:

(R − u(w) | W = w ,R > u(w)) ∼ GP(σ(w), ξ(w)),

for sufficiently large u(w).

▶ Conditional on a fixed angle, the corresponding radial tails
follow a GP distribution.



The SPAR model
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The SPAR model

Why should this work?

▶ We are assuming the variable R | (W = w) is in the domain
of attraction of an extreme value distribution.

▶ These conditions are very general, and hold for many
univariate variables (Balkema and de Haan, 1974; Pickands,
1975).

▶ Furthermore, Mackay and Jonathan (2023) show these
assumptions are valid for many popular copula examples (and
different marginal scales).



The SPAR model

What’s the point?

▶ We have the following relationship between the joint densities:

fR,W (r ,w) = rd−1 fX (rw),

where r denotes the Jacobian.

▶ The joint distribution of X can be obtained directly from
the joint distribution of (R,W ).



The SPAR model

What’s the point?

▶ Applying Bayes’ theorem, we can write

fR,W (r ,w) = fW (w)fR|W=w (r | w)

≈ (1− γ)fW (w)fGP(r − u(w) | σ(w), ξ(w)),

where γ = Pr(R ≤ u(w) | W = w).

▶ Combined with a model for fW (w), we can model the joint
tail of X .

▶ Note: this does not require a pre-specified set of margins.



The SPAR model

Additional assumptions:

▶ fw , u, σ and ξ are finite and continuous.

▶ The data cloud is star-shaped at 0.



The SPAR model
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The SPAR model
For any small value ϵ > 0

{x : fX (x) = ϵ}
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The SPAR model
SPAR model simulated data
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The SPAR model
Given a probability p ∈ [0, 1] close to 1, a return level set
(environmental contour) is defined as a set Ap such that

Pr[X ∈ Ap] = p
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The SPAR model

But did you spot the sleight of hand?



The SPAR model
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The SPAR model
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The SPAR model



The SPAR model

Regular variation:

lim
r→∞

Pr(W ∈ B,R > sr | R > r) = H(B)s−1, s ≥ 1.

W and R independent in limit.
W | R > r ∼ H.

SPAR method:
(R,W ) | R > u(w)

Not independent - we assume angular dependence.

W | R > u(w)
d
=W .
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The SPAR model

▶ Mackay and Jonathan (2023) provide no means for inference
with the SPAR model.

▶ Our contribution: turn the model into a working inference
framework.

▶ Note we aren’t really doing anything novel:

Xt | (Z t = z t)

R | (W = w)
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GAM approach

▶ For our first collaboration, we restricted attention to the
bivariate setting and used GAMs to model u(w), σ(w) and
ξ(w).

▶ GAMs provide smooth approximations for functions with high
flexibility.

g(θ) = β0 +
k∑

j=1

Bj(θ)βj , (1)



GAM approach

▶ All functions approximated using cyclic cubic splines with
significant numbers of knots.

▶ u(w) fitted via quantile regression techniques (Koenker et al.,
2017).

▶ σ(w), ξ(w) fitted using restricted maximum likelihood
(Wood, 2011).

▶ EVGAM framework used for estimation (Youngman, 2020).



GAM approach

▶ Finally, we model fW (w) non-parametrically using kernel
density estimation techniques (von-Mises kernel).

▶ See Murphy-Barltrop et al. (2024) for further details.



GAM approach
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GAM approach

▶ To demonstrate the utility of the SPAR framework, we
consider three bivariate metocean time series made up of
zero-up-crossing period, Tz , and significant wave height, Hs ,
observations.



GAM approach

▶ Understanding the joint extremes of metocean variables is
important for assessing the reliability of offshore structures,
e.g., wind turbines.

▶ Extreme responses can occur with either short- or long-period
waves – so it is necessary to characterise the joint
distribution in both of these ranges.



GAM approach

▶ We fit the SPAR model without marginal transformation, i.e.,
on the observed scale.

▶ Uncertainty quantified using block bootstrapping techniques.

▶ Diagnostics indicate reasonable model fits.



GAM approach

Figure: Isodensity contours at ϵ = 10−3 (orange lines) and ϵ = 10−6

(cyan lines).



GAM approach

Figure: Estimated 10 year return level sets.



Shameless self-promotion

Murphy-Barltrop, C. J. R.,
Mackay, E., and Jonathan, P.
(2024). Inference for bivariate
extremes via a semi-parametric
angular-radial model. Extremes:

1-30.

Mackay, E., Murphy-Barltrop, C.
J. R., and Jonathan, P. (2024).

The SPAR model: a new paradigm
for multivariate extremes.

Application to joint distributions of
metocean variables.
OMAE2024/130932.

R package: https://github.com/callumbarltrop/SPAR

https://github.com/callumbarltrop/SPAR


Deep learning approach

▶ The GAM framework does not easily extend to higher
dimensions (splines on hyperspheres?).

▶ How can we fit SPAR in d > 2 in a highly flexible manner?

▶ Answer: deep learning
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Deep learning approach

▶ We multilayer perceptrons to model u(w), σ(w) and ξ(w).

▶ Fully-connected, feed forward neural network.

▶ Step 1: pinball loss used to estimate u(w).

▶ Step 2: negative log-likelihood used to estimate σ(w), ξ(w).



Deep learning approach
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Deep learning approach

▶ Again, this is nothing new: we are adapting the approaches
of Pasche and Engelke (2024), Richards and Huser (2022),
Richards and Huser (2024) (among others).

▶ Loss surface for GPD highly irregular. Training procedure
adapted to account for convergence issues – see Mackay et al.
(2024) for further details.

▶ Keras/Tensorflow used for model fitting.



Deep learning approach

▶ Angular distribution fw modelled again using KDE techniques.

▶ Power spherical distribution kernel used, with bandwidth
selected using cross validation.

▶ Easy to simulate from.



Deep learning approach

▶ We apply the framework to 31-years of hindcast dataset from
the South West of the UK.

▶ This area has high potential for floating wind farms.



Deep learning approach

▶ We consider the x- and y-components of wave height and
wind speed, alongside mean wave period (i.e., 5D case).

▶ These variables all influence the motion and loading of
floating wind turbines.

▶ Robust risk analysis of compound extremes crucial for design
engineering.



Deep learning approach



Deep learning approach

▶ We compare a range of architectures and tuning
parameters.

▶ Optimise using diagnostics.

▶ Simulate new data from the model – both in the joint body
and tail.



Deep learning approach

Figure: Angular histograms



Deep learning approach

Figure: Pairwise contour plots



Deep learning approach

Figure: Marginal tails assessment.



Deep learning approach

▶ We have proposed a novel, deep learning approach for
modelling complex metocean variables.

▶ The fitted model respects physical constraints, without us
having to specify these constraints.

▶ Appears flexible and accurate.



Shameless self-promotion

Mackay, E., Murphy-Barltrop, C. J. R., Richards, J., and
Jonathan, P. (2025). Deep learning joint extremes of metocean

variables using the SPAR model. OMAE-25-1104.

Journal paper + R packages to appear soon!



Discussion

▶ In this work, we have introduced a semi-parametric modelling
framework for multivariate extremes.

▶ This framework adapts existing univariate approaches.

▶ Can capture the joint extremes of many dependent
structures, requires few assumptions and offers a high
degree of flexibility.



Discussion

Future work

▶ Further investigating sensitivity to tuning parameter choices
(i.e., GAMs, circular density, architectures).

▶ Comparison to other multivariate modelling techniques (e.g.,
regular variation, conditional extremes, geometric extremes).

▶ Optimal placement of origin.

▶ More applications (German river data, Dutch flood modelling)



Thanks for listening!
Any questions? :)

callum.murphy-barltrop@tu-dresden.de

callum.murphy-barltrop@tu-dresden.de


References I

Balkema, A. A. and de Haan, L. (1974). Residual Life Time at Great Age. The
Annals of Probability, 2:792–804.

Barnett, V. (1976). The Ordering of Multivariate Data. Journal of the Royal
Statistical Society. Series A (General), 139:318–344.

Chavez-Demoulin, V. and Davison, A. C. (2005). Generalized additive
modelling of sample extremes. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 54:207–222.

Davison, A. C. and Smith, R. L. (1990). Models for Exceedances Over High
Thresholds. Journal of the Royal Statistical Society. Series B: Statistical
Methodology, 52:393–425.

Eastoe, E. F. and Tawn, J. A. (2009). Modelling non-stationary extremes with
application to surface level ozone. Journal of the Royal Statistical Society.
Series C: Applied Statistics, 58:25–45.

Koenker, R., Chernozhukov, V., He, X., and Peng, L. (2017). Handbook of
Quantile Regression. Chapman and Hall/CRC.

Mackay, E. and Jonathan, P. (2023). Modelling multivariate extremes through
angular-radial decomposition of the density function. arXiv, 2310.12711.



References II

Mackay, E., Murphy-Barltrop, C., Richards, J., and Jonathan, P. (2024). Deep
learning joint extremes of metocean variables using the SPAR model. arXiv,
2412.15808.

Murphy-Barltrop, C. J. R., Mackay, E., and Jonathan, P. (2024). Inference for
bivariate extremes via a semi-parametric angular-radial model. Extremes.

Pasche, O. C. and Engelke, S. (2024). Neural networks for extreme quantile
regression with an application to forecasting of flood risk. The Annals of
Applied Statistics, 18:1–27.

Pickands, J. (1975). Statistical Inference Using Extreme Order Statistics. The
Annals of Statistics, 3:119–131.

Richards, J. and Huser, R. (2022). A unifying partially-interpretable framework
for neural network-based extreme quantile regression. arXiv, pages 1–50.

Richards, J. and Huser, R. (2024). Extreme quantile regression with deep
learning. arXiv, 2404.09154.

Wood, S. N. (2011). Fast Stable Restricted Maximum Likelihood and Marginal
Likelihood Estimation of Semiparametric Generalized Linear Models. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 73:3–36.

Youngman, B. (2020). evgam: Generalised Additive Extreme Value Models. R
Package.



References III

Youngman, B. D. (2019). Generalized Additive Models for Exceedances of High
Thresholds With an Application to Return Level Estimation for U.S. Wind
Gusts. Journal of the American Statistical Association, 114:1865–1879.


	References

	anm0: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


