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* Inference
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Global hierarchical models

» Suppose random vector X = (X4, ..., X4) € R? has joint
density fx and marginal densities fy , ..., fx and

distribution functions Fy , ..., Fx

* Approach:
1. Write joint density as:
fx(x) = le (951)f)(2|x1 (x2[xq) - fxd|X1,...,Xd_1(xd|x1» iy Xg—1)
2. Choose parametric models for fx , fx x, -
fXg1X1 X gy

3. Estimate relations between the parameters of the
conditional densities and the conditioning variables

Limitations:
* No a priori reason for choosing one model over another
 Fitting a global model does not guarantee of good fit in the tail

* Model for the conditional dependence structure is ad hoc and does
not provide a rationale for extrapolation

* Often a poor fit fo observations
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Copula modelling &) of Exeter

Frank Gumbel

Approach 20

20

1. Use Sklar’s theorem to write:
) = fr, (1) -+ fiey (a)e (Fx, (1), o, Fr, () )

where c is the copula density of X
2. Choose parametric model for margins and copula

Limitations:

* Global model for margins and copula does not guarantee
of good fit in the tail >

* No rationale for choose marginal or copula models

 Different choices of copula can lead to large differences
in joint tail behaviour
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Copulas on Laplace margins all with correlation coefficient p = 0.6




The SPAR model B) It
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Univariate :
* Many existing methods for multivariate extremes with - s,
extremes are special cases of SPAR covariate 8

dependence :

* SPAR is more flexible than current methods

0 90 180 270 360
angle [deg]




Transformation to angular-radial
coordinates

eLetX = (X4, ..., X;) € R? have density fx

* Define radial and angular variables:
R = [[X][;
W = X/R

where |[X]||, = \/Xlz + ---+ X7 is the Euclidean (L2) norm

* Note that

* R isradial variable
* Wis a pseudo-angle corresponding to a point on the unit hypersphere

* Then (R, W) has density
frw(r, W) = rd=1fx(rw)
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SPAR model statement

* Write joint density in conditional form:
frw(r, W) = fw(W)fR|w(7”|W)
* Assume standard univariate POT model for tail of fzw(r|w)
* Define threshold function u(w) as conditional quantile of R|(W = w) at exceedance probability {

 SPAR model for the joint density is
fR,W(r: W) = ( fW(w) fGP(T o U(W); E(W), O'(W)), r > u(w)

fop(r; &, 0) is a generalised Pareto density function with shape parameter ¢ and scale parameter o
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 Model:
faw(@w) = fw(W) fep(r — u(w); E(w), o(w))

* Need to estimate:
* Angular density: fiy(w)
* Threshold function: u(w)
* GP shape and scale parameter functions: £(w), o(w)

* Problems are separable:
* Angular density can be estimated independently of GP threshold and parameter functions

* Many existing methods for these problems




Angular modelling

* Problem of estimating a density on the
hypersphere is one of directional statistics

* Many ‘off-the-shelf’ methods available:
» Kernel density estimation (KDE)
* Mixture modelling
* Spline-based models

 KDE used in this example:
* Simple to implement
* Very flexible
* Fast to simulate from model

* Bandwidth optimised using cross-validation
scheme

» Only difference from ‘standard’ KDE in R% is
that kernels are density functions on the sphere
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Conditional radial modelling

* Two problems:
* Threshold function u(w)
* GP shape and scale parameter functions: £(w), o (w)

* Threshold function:

* Defined as a conditional quantile at fixed exceedance
probability

* Process of estimating conditional quantiles is known as quantile
regression

* GP parameter functions:

* Inference is non-stationary peaks-over-threshold (POT) with
angle as covariate

* Many existing methods for this

» Key consideration is choosing suitable parametric form for
threshold and parameter functions
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Covariate representations

* Various ways of representing covariate functions: e.g.
* Generalised additive models (GAMSs), e.g. splines
» Gaussian processes
 Artificial neural networks (ANNs)

* All provide flexible function approximation

* Neural networks have computational advantages over
GAMs in higher dimensions

* Computationally-efficient training algorithms for ANN
parameter optimisation and regularisation

* Parameter estimation method for ANN and GAMs
both use maximum likelihood

GAM representation of a function as a sum of

5 basis functions

g(6)

Basis
functions

0 /2 T 37/2 27

Hidden Hidden

layer 1 layer 2
Input

Output
layer

Schematic of ANN with two hidden layers
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Coloured plots: Empirical joint densities of pairs of angular components

Red lines: Contours of the joint densities from a sample from the KD model




Local assessment

Example of Voronoi partition of
sphere into non-overlapping cells

Observed number in cell
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Radial model diagnostics

simulated threshold exceedance
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* Existing ‘engineering’ methods for modelling multivariate extremes have strong limitations
* Rely on ad-hoc choices
* Poor fit in practice

* SPAR model

* Provides mathematically-justified model for multivariate extremes

* Requires no strong assumptions about form of margins or dependence structure
* Inference built on existing practices

* Shown to provide good fit to metocean datasets

* Future work
* Detailed comparison with existing inference methods
» Effect of choice of margins
» Effect of choice of origin
* Optimisation of neural network inference
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Questions?

e.mackay@exeter.ac.uk
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