



#### Deep Learning Joint Extremes of Metocean Variables using the SPAR Model

<u>**E. Mackay</u>**, C.J.R. Murphy-Barltrop, J. Richards, P. Jonathan OMAE2025-155197, Vancouver 25 June 2025</u>



### Overview

- Brief review of existing approaches and limitations
- The SPAR model
  - Definition
  - Inference
- Five-dimensional example
- Conclusions





### Global hierarchical models

- Suppose random vector  $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$  has joint density  $f_{\mathbf{X}}$  and marginal densities  $f_{X_1}, \dots, f_{X_d}$  and distribution functions  $F_{X_1}, \dots, F_{X_d}$
- Approach:
  - 1. Write joint density as:  $f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) f_{X_2|X_1}(x_2|x_1) \cdots f_{X_d|X_1,\dots,X_{d-1}}(x_d|x_1,\dots,x_{d-1})$
  - 2. Choose parametric models for  $f_{X_1}$ ,  $f_{X_2|X_1}$ ,...,  $f_{X_d|X_1,...,X_{d-1}}$
  - 3. Estimate relations between the parameters of the conditional densities and the conditioning variables

#### Limitations:

- No a priori reason for choosing one model over another
- Fitting a global model does not guarantee of good fit in the tail
- Model for the conditional dependence structure is ad hoc and does not provide a rationale for extrapolation
- Often a poor fit to observations





# Copula modelling

#### Approach

1. Use Sklar's theorem to write:

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) \cdots f_{X_d}(x_d) c\left(F_{X_1}(x_1), \dots, F_{X_d}(x_d)\right)$$

where c is the copula density of  $\mathbf{X}$ 

2. Choose parametric model for margins and copula

#### Limitations:

- Global model for margins and copula does not guarantee of good fit in the tail
- No rationale for choose marginal or copula models
- Different choices of copula can lead to large differences in joint tail behaviour





Copulas on Laplace margins all with correlation coefficient  $\rho = 0.6$ 

### The SPAR model

- Semi-Parametric Angular-Radial (SPAR) model
- Introduced at OMAE 2024
- Reframes multivariate extremes as an intuitive extension of univariate theory, with angular dependence
- Inference is standard univariate peaks-overthreshold (POT) problem with covariate dependence
- Many existing methods for multivariate extremes are special cases of SPAR
- SPAR is more flexible than current methods









Univariate extremes with covariate dependence



#### **Transformation to angular-radial** coordinates

- Let  $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$  have density  $f_{\mathbf{X}}$
- Define radial and angular variables:

 $R = \|\mathbf{X}\|_2$  $\mathbf{W} = \mathbf{X}/R$ 

where 
$$\|\mathbf{X}\|_2 = \sqrt{X_1^2 + \dots + X_d^2}$$
 is the Euclidean (L2) norm

- Note that
  - *R* is radial variable
  - W is a pseudo-angle corresponding to a point on the unit hypersphere
- Then  $(R, \mathbf{W})$  has density

$$f_{R,\mathbf{W}}(r,\mathbf{w}) = r^{d-1} f_{\mathbf{X}}(r,\mathbf{w})$$







### SPAR model statement

• Write joint density in conditional form:

 $f_{R,\mathbf{W}}(r,\mathbf{w}) = f_{\mathbf{W}}(\mathbf{w})f_{R|\mathbf{W}}(r|\mathbf{w})$ 

- Assume standard univariate POT model for tail of  $f_{R|W}(r|w)$
- Define threshold function  $u(\mathbf{w})$  as conditional quantile of  $R|(\mathbf{W} = \mathbf{w})$  at exceedance probability  $\zeta$
- SPAR model for the joint density is

 $f_{R,\mathbf{W}}(r,\mathbf{w}) = \zeta f_{\mathbf{W}}(\mathbf{w}) f_{\mathrm{GP}}(r - u(\mathbf{w}); \xi(\mathbf{w}), \sigma(\mathbf{w})),$ 

 $f_{\rm GP}(r;\xi,\sigma)$  is a generalised Pareto density function with shape parameter  $\xi$  and scale parameter  $\sigma$ 



- $r > u(\mathbf{w})$

### Inference

• Model:

 $f_{R,\mathbf{W}}(r,\mathbf{w}) = \zeta f_{\mathbf{W}}(\mathbf{w}) f_{\mathrm{GP}}(r - u(\mathbf{w}); \xi(\mathbf{w}), \sigma(\mathbf{w}))$ 

- Need to estimate:
  - Angular density:  $f_{W}(\mathbf{w})$
  - Threshold function:  $u(\mathbf{w})$
  - GP shape and scale parameter functions:  $\xi(\mathbf{w}), \sigma(\mathbf{w})$
- Problems are separable:
  - Angular density can be estimated independently of GP threshold and parameter functions
- Many existing methods for these problems



# Angular modelling

- Problem of estimating a density on the hypersphere is one of **directional statistics**
- Many 'off-the-shelf' methods available:
  - Kernel density estimation (KDE)
  - Mixture modelling
  - Spline-based models
- KDE used in this example:
  - Simple to implement
  - Very flexible
  - Fast to simulate from model
- Bandwidth optimised using cross-validation scheme
- Only difference from 'standard' KDE in  $\mathbb{R}^d$  is that kernels are density functions on the sphere





#### Chapman & Hall/CRC Interdisciplinary Statistics Series

#### Modern Directional Statistics



Christophe Ley • Thomas Verdebout



#### KANTI V. MARDIA and PETER E. JUPP

#### Directional Statistics

WILEY SERIES IN PROBABILITY AND STATISTICS

# **Conditional radial modelling**

- Two problems:
  - Threshold function  $u(\mathbf{w})$
  - GP shape and scale parameter functions:  $\xi(\mathbf{w}), \sigma(\mathbf{w})$
- Threshold function :
  - Defined as a conditional quantile at fixed exceedance probability
  - Process of estimating conditional quantiles is known as **quantile** regression
- GP parameter functions:
  - Inference is non-stationary peaks-over-threshold (POT) with angle as covariate
  - Many existing methods for this
- Key consideration is choosing suitable parametric form for threshold and parameter functions



Chapman & Hall/CRC Handbooks of Modern **Statistical Methods** 

#### Handbook of **Quantile Regression**

Edited by **Roger Koenker** Victor Chernozhukov Xuming He Limin Peng





### **Covariate representations**

- Various ways of representing covariate functions: e.g.
  - Generalised additive models (GAMs), e.g. splines
  - Gaussian processes
  - Artificial neural networks (ANNs)
- All provide flexible function approximation
- Neural networks have computational advantages over GAMs in higher dimensions
  - Computationally-efficient training algorithms for ANN parameter optimisation and regularisation
- Parameter estimation method for ANN and GAMs both use maximum likelihood





Schematic of ANN with two hidden layers

# Five-dimensional application

• 31-year hindcast of hourly values for a site in Celtic Sea

#### Variables

- Wind speed & direction
- Wave height, period & direction
- Transformed to:
  - East-North components of winds and waves
  - Logarithm of wave period
  - All normalised to have unit variance











 $x_5$ 

### Assessment of angular model



Coloured plots: Empirical joint densities of pairs of angular components Red lines: Contours of the joint densities from a sample from the KD model





#### Local assessment



Example of Voronoi partition of sphere into non-overlapping cells Comparison of observed to expected number of observations in each cell. Red lines are 95% CI for sampling effects







### Radial model diagnostics



Marginal lower & upper tail exceedance plots



#### Local tail QQ plots

### Summary

- Existing 'engineering' methods for modelling multivariate extremes have strong limitations
  - Rely on ad-hoc choices
  - Poor fit in practice
- SPAR model
  - Provides mathematically-justified model for multivariate extremes
  - Requires no strong assumptions about form of margins or dependence structure
  - Inference built on existing practices
  - Shown to provide good fit to metocean datasets
- Future work
  - Detailed comparison with existing inference methods
  - Effect of choice of margins
  - Effect of choice of origin
  - Optimisation of neural network inference







### Questions?

#### <u>e.mackay@exeter.ac.uk</u>



Updated version: https://arxiv.org/abs/2412.15808

