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Global hierarchical models
• Suppose random vector 𝐗 = 𝑋1, … , 𝑋𝑑 ∈ ℝ𝑑 has joint 

density 𝑓𝐗 and marginal densities 𝑓𝑋1 , … , 𝑓𝑋𝑑and 
distribution functions 𝐹𝑋1 , … , 𝐹𝑋𝑑

• Approach:
1. Write joint density as:

𝑓𝐗 𝐱 = 𝑓𝑋1 𝑥1 𝑓𝑋2|𝑋1 𝑥2 𝑥1 ⋯𝑓𝑋𝑑|𝑋1,…,𝑋𝑑−1 𝑥𝑑 𝑥1, … , 𝑥𝑑−1

2. Choose parametric models for 𝑓𝑋1, 𝑓𝑋2|𝑋1,…, 
𝑓𝑋𝑑|𝑋1,…,𝑋𝑑−1

3. Estimate relations between the parameters of the 
conditional densities and the conditioning variables

Limitations:
• No a priori reason for choosing one model over another
• Fitting a global model does not guarantee of good fit in the tail
• Model for the conditional dependence structure is ad hoc and does 

not provide a rationale for extrapolation
• Often a poor fit to observations



Copula modelling
Approach

1. Use Sklar’s theorem to write:
𝑓𝐗 𝐱 = 𝑓𝑋1 𝑥1 ⋯𝑓𝑋𝑑 𝑥𝑑 𝑐 𝐹𝑋1 𝑥1 , … , 𝐹𝑋𝑑 𝑥𝑑

where 𝑐 is the copula density of 𝐗
2. Choose parametric model for margins and copula

Copulas on Laplace margins all with correlation coefficient 𝜌 = 0.6

Limitations:
• Global model for margins and copula does not guarantee 

of good fit in the tail
• No rationale for choose marginal or copula models
• Different choices of copula can lead to large differences 

in joint tail behaviour



The SPAR model
• Semi-Parametric Angular-Radial (SPAR) model

• Introduced at OMAE 2024

• Reframes multivariate extremes as an intuitive 
extension of univariate theory, with angular 
dependence

• Inference is standard univariate peaks-over-
threshold (POT) problem with covariate 
dependence

• Many existing methods for multivariate 
extremes are special cases of SPAR

• SPAR is more flexible than current methods

Univariate 
extremes with 

covariate 
dependence



Transformation to angular-radial 
coordinates

• Let 𝐗 = 𝑋1, … , 𝑋𝑑 ∈ ℝ𝑑 have density 𝑓𝐗

• Define radial and angular variables:  
𝑅 = 𝐗 2
𝐖 = Τ𝐗 𝑅

where 𝐗 2 = 𝑋1
2 +⋯+ 𝑋𝑑

2 is the Euclidean (L2) norm

• Note that 
• 𝑅 is radial variable
• 𝐖 is a pseudo-angle corresponding to a point on the unit hypersphere

• Then 𝑅,𝐖 has density 
𝑓𝑅,𝐖 𝑟,𝐰 = 𝑟𝑑−1𝑓𝐗 𝑟𝐰



SPAR model statement
• Write joint density in conditional form:

𝑓𝑅,𝐖 𝑟,𝐰 = 𝑓𝐖 𝐰 𝑓𝑅|𝐖 𝑟|𝐰

• Assume standard univariate POT model for tail of 𝑓𝑅|𝐖 𝑟|𝐰

• Define threshold function 𝑢 𝐰 as conditional quantile of 𝑅| 𝐖 = 𝐰 at exceedance probability 𝜁

• SPAR model for the joint density is

𝑓𝑅,𝐖 𝑟,𝐰 = 𝜁 𝑓𝐖 𝐰 𝑓GP 𝑟 − 𝑢 𝐰 ; 𝜉 𝐰 , 𝜎 𝐰 , 𝑟 > 𝑢 𝐰

𝑓GP 𝑟; 𝜉, 𝜎 is a generalised Pareto density function with shape parameter 𝜉 and scale parameter 𝜎



Inference
• Model:

𝑓𝑅,𝐖 𝑟,𝐰 = 𝜁 𝑓𝐖 𝐰 𝑓GP 𝑟 − 𝑢 𝐰 ; 𝜉 𝐰 , 𝜎 𝐰

• Need to estimate:
• Angular density: 𝑓𝐖 𝐰

• Threshold function: 𝑢 𝐰

• GP shape and scale parameter functions: 𝜉 𝐰 , 𝜎 𝐰

• Problems are separable:
• Angular density can be estimated independently of GP threshold and parameter functions

• Many existing methods for these problems



Angular modelling
• Problem of estimating a density on the 

hypersphere is one of directional statistics

• Many ‘off-the-shelf’ methods available:
• Kernel density estimation (KDE)
• Mixture modelling
• Spline-based models

• KDE used in this example:
• Simple to implement
• Very flexible
• Fast to simulate from model

• Bandwidth optimised using cross-validation 
scheme

• Only difference from ‘standard’ KDE in ℝ𝑑 is 
that kernels are density functions on the sphere



Conditional radial modelling
• Two problems:

• Threshold function 𝑢 𝐰
• GP shape and scale parameter functions: 𝜉 𝐰 , 𝜎 𝐰

• Threshold function :
• Defined as a conditional quantile at fixed exceedance 

probability
• Process of estimating conditional quantiles is known as quantile 

regression

• GP parameter functions:
• Inference is non-stationary peaks-over-threshold (POT) with 

angle as covariate
• Many existing methods for this

• Key consideration is choosing suitable parametric form for 
threshold and parameter functions



Covariate representations
• Various ways of representing covariate functions: e.g.

• Generalised additive models (GAMs), e.g. splines
• Gaussian processes
• Artificial neural networks (ANNs)

• All provide flexible function approximation

• Neural networks have computational advantages over 
GAMs in higher dimensions
• Computationally-efficient training algorithms for ANN 

parameter optimisation and regularisation

• Parameter estimation method for ANN and GAMs 
both use maximum likelihood

Basis 
functions

𝑔 𝜃

GAM representation of a function as a sum of 
basis functions

Schematic of ANN with two hidden layers



Five-dimensional 
application
• 31-year hindcast of hourly values 

for a site in Celtic Sea

• Variables
• Wind speed & direction
• Wave height, period & direction

• Transformed to:
• East-North components of winds 

and waves
• Logarithm of wave period
• All normalised to have unit variance



Assessment of angular model

Coloured plots: Empirical joint densities of pairs of angular components 
Red lines: Contours of the joint densities from a sample from the KD model



Local assessment

Example of Voronoi partition of 
sphere into non-overlapping cells

Comparison of observed to expected number of 
observations in each cell. 

Red lines are 95% CI for sampling effects





Radial model diagnostics

Marginal lower & upper tail exceedance plots Local tail QQ plots



Summary
• Existing ‘engineering’ methods for modelling multivariate extremes have strong limitations

• Rely on ad-hoc choices
• Poor fit in practice

• SPAR model
• Provides mathematically-justified model for multivariate extremes
• Requires no strong assumptions about form of margins or dependence structure
• Inference built on existing practices
• Shown to provide good fit to metocean datasets

• Future work
• Detailed comparison with existing inference methods
• Effect of choice of margins
• Effect of choice of origin
• Optimisation of neural network inference



Questions?

e.mackay@exeter.ac.uk
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