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Introduction

P> Completed my PhD in May 2023 at Lancaster University, UK,
under the supervision of Dr Jennifer Wadsworth and Dr
Emma Eastoe.

P Since September 2023, | have been a postdoctoral researcher
at TU Dresden, Germany.
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P ScaDS.Al = Center for Scalable Data Analytics and Artificial
Intelligence

» One of the five new centres in Germany funded under the
government's Al strategy.

B> Split between the cities of Dresden and Leipzig.



Introduction

» My current research focus is on employing state-of-the-art
artificial intelligence and machine learning techniques for
modelling multivariate extremes.
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Univariate extremes

» Study of univariate extremes is very well-established (Balkema
and de Haan, 1974; Davison and Smith, 1990; Coles, 2001).

» For modelling, most practitioners employ the peaks over
threshold approach.

» A generalised Pareto (GP) distribution is fitted to
observations exceeding some threshold.



Univariate extremes

Yy:= (X —u| X > u)~ GP(c,£)
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Univariate extremes

Peaks over threshold approach
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Univariate extremes

P Standard approaches assume that the variable X is stationary
(i.e., not changing in time).

> However, this is unrealistic in most applications.

Dresden on a ‘normal day’ vs Dresden in June 2013



Univariate extremes

P In such cases, we must allow for non-stationarity in the
modelling framework.

» Given a variable X; and some covariates Z;, with t denoting
time, one could consider the model

(X — u(z¢) | X¢ > u(z,)) ~ GP(o(2:),£(2:))

P The threshold and parameters are a function of the
covariates.

» Note that other approaches/paradigms are available.



Univariate extremes

Peaks over threshold approach
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Univariate extremes

Peaks over threshold approach
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Univariate extremes

Scale parameter
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Univariate extremes

P Literature on non-stationary peaks over threshold analysis is
also well established.

» Many approaches available: Davison and Smith (1990);
Chavez-Demoulin and Davison (2005); Eastoe and Tawn
(2009); Youngman (2019).



Multivariate extremes
Consider the question: what is ‘extreme’ for multiple variables?

Muiltiple Variables

Only X extreme




Multivariate extremes

» Various definitions of multivariate extremes have been
proposed (Barnett, 1976).

» However, most classical modelling approaches have just
focused on the orange region.

» This analysis is very limited — and misses important
information in the joint tail.



Multivariate extremes

In this work, we define multivariate extremes in a more general
manner.

Muitiple Variables




Multivariate extremes

» Many approaches have considered geometric representations
for modelling multivariate extremes.

P> Geometric = multivariate data is split into angular and radial
components.

» See, for instance, Coles and Tawn (1991), de Haan and
de Ronde (1998), Wadsworth et al. (2017) and Simpson and
Tawn (2024).



Angular-radial systems

» How do we define ‘angular’ and ‘radial’ components?
» This all depends on how we define ‘distance’.

» The standard approach is to use the Euclidean norm.



Angular-radial systems

Let (X, Y) denote a continuous random vector. Then
R:=+/X24+Y?2
© = atan2(Y, X).

This transformation is one-to-onel.

'Excluding the origin (0,0).



Angular-radial systems
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Angular-radial systems

» Joint extremes can be characterised by the stochastic
behaviour of (R, ©).

» O gives the ‘direction’ of the event.
> R gives the ‘magnitude’.



Angular-radial systems

» One can also consider alternative definitions of ‘distance’.

» For example, we could set
R* == |X|+|Y]

i.e., the L1-norm, with an angular measure defined with
respect to this norm.
» However, under our modelling assumptions, the choice of

angular-radial system is essentially arbitrary; see Mackay and
Jonathan (2023) and Murphy-Barltrop et al. (2024).



The SPAR model

» SPAR model = semi-parametric angular-radial model.

» This model, proposed in Mackay and Jonathan (2023),
assumes the following:

(R—u(0) |© =0,R > u(0)) ~ GP(a(0),£(0)),

for sufficiently large u(0).

» Conditional on a fixed angle, the corresponding radial tails
follow a GP distribution.



The SPAR model
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The SPAR model

Why should this work?

» We are simply assuming the variable R | (© = @) is in the
domain of attraction of an extreme value distribution.

P These conditions are very general, and hold for many

univariate variables (Balkema and de Haan, 1974; Pickands,
1975).

» Furthermore, through rigorous theoretical treatment, Mackay
and Jonathan (2023) show conditional radial tails follow a GP
distribution for many popular copula examples.



The SPAR model

Why should this work?

» Mackay and Jonathan (2023) also show that the SPAR model
generalises the frameworks of Coles and Tawn (1991), Ledford

and Tawn (1996) and Wadsworth et al. (2017).
> It is also linked to limit set theory (e.g., Nolde and
Wadsworth, 2022).



The SPAR model

What's the point?

> We have the following relationship between the joint densities:

fre(r,0) = r fx y(rcos(0), rsin(@)),

where r denotes the Jacobian.

» The joint distribution of (X, Y) can be obtained directly
from the joint distribution of (R, ©).



The SPAR model

But what's the point?

» Applying Bayes' theorem, we can write
fro(r,0) = fo(0)frieo—o(r | 0)
~ (1 =)fe(0)fcp(r — u(0) | o(0),£(0)),

where v = Pr(R < u(0) | © = 0).

» Combined with a model for fg(#), we can model the joint
tail.



The SPAR model

» Mackay and Jonathan (2023) provide no means for inference
with the SPAR model — hence this work.

P We assume semi-parametric generalised additive model
forms for u(0),o(0) and &(0).

P This allows us to approximate each function with minimal
modelling assumptions.

» u(0) fitted via quantile regression techniques (Koenker et al.,
2017).

> o(0),&(0) fitted using the EVGAM framework (Youngman,
2019, 2020).



The SPAR model

» Finally, we model fg(0) non-parametrically using circular
density estimation techniques.

» See Murphy-Barltrop et al. (2024) for further details and
discussion.



The SPAR model
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The SPAR model

For any small value € > 0, isodensity contours are given by

{(6y) B y(xy) = €}

0 |
¥ -3
w— 10 P R Y
e
— 10* ‘v e~
2_ —— = h; Yoo T~ SN
10 7 I ~ %
L 4 o g Vo
10 U7 - v ~ \
_10—7 ’/1,' £ v A \
n ' 7 2 = A\ \
po— 8 Yr ' 1 v |
10 st ol TN i
—— . P lf,
>0 s s Sk, 2 77
LE g g e v . ’,/”*r
TR I,:;’fa
Ty "yus TR
i R RO e - LA
%N % \\\""’}’”
o \:\\\ \..1”
‘I__ w s N P
T
-
’
Lo \-..d
o=
! T T T T T

]
-15 -10 -5 0 5 10 15



The SPAR model

SPAR model simulations
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The SPAR model

Given a probability p € [0,1] close to 1, a return level set
(environmental contour) is defined as a set A, such that

Pri(X,Y) e Al =p = Pr[(X,Y) € A]]=1—p.




The SPAR model

But did you spot the sleight of hand?
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The SPAR model
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The SPAR model




Simulation study

> To evaluate the performance of the SPAR model, we tested
our framework over a range of popular copula examples.

» We were able to accurately approximate the joint tail
distributions.



Simulation study

Gaussian copula Frank copula
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Case Study

» To demonstrate the utility of the SPAR framework, we
consider three bivariate metocean time series made up of
zero-up-crossing period, T, and significant wave height, H;,
observations.

Dataset & Dataset B Dataset C




Case Study

» Understanding the joint extremes of metocean variables is
important for assessing the reliability of offshore structures,
e.g., wind turbines.

» Extreme responses can occur with either short- or long-period
waves — so it is necessary to characterise the joint
distribution in both of these ranges.



Case Study

» We fit the SPAR model without marginal transformation, i.e.,
on the observed scale.

» Uncertainty quantified using block bootstrapping techniques.

P Diagnostics indicate reasonable model fits.



Case Study

Dataset A jzodensity contours

Dataset B isodensity contours

Dataset C isodensity contours

Figure: Isodensity contours at € = 10~3 (orange lines) and € = 10~°
(cyan lines).
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Case Study

Dataset A return level set

Dataset B return level set

Dataset C return level set

Estimated 10 year return level sets.
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Discussion

» In this work we have introduced a novel semi-parametric
modelling framework for bivariate extremes.

P> Can capture the joint extremes of both asymptotically and
non-asymptotically dependent data structures.

> Requires very few assumptions and offers a high degree of
flexibility.

> We have also proposed a range of diagnostic and uncertainty
quantification tools to aid with inference.



Discussion

Future work

» Further investigating sensitivity to tuning parameter choices
(i.e., GAMs, circular density).

» Expanding to the general multivariate setting (ongoing work).

» Comparison to other multivariate modelling techniques.



Shameless self-promotion

Murphy-Barltrop, C. J. R,, Mackay, E., Murphy-Baritrop, C.
Mackay, E., and Jonathan, P. J. R., and Jonathan, P. (2024).
(2024). Inference for bivariate The SPAR model: a new paradigm
extremes via a semi-parametric for multivariate extremes.
angular-radial model. arXiv Application to joint distributions of
preprint, arXiv:2401.07259. metocean variables.
OMAE2024/130932.
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Thanks for listening

Any questions?

Develop a
complicated
modelling
framework for
multivariate extremes

Just use
existing
univariate
modelling techniques
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Appendix

Dataset B threshold function Dataset B scale function Dataset B shape function
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Appendix

Angular density

Density
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