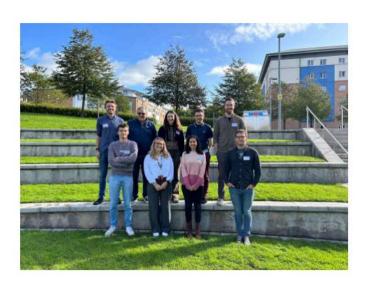
Inference for bivariate extremes via a semi-parametric angular-radial model

Callum Murphy-Barltrop

Joint work with Dr Ed Mackay (University of Exeter) and Prof Philip Jonathan (Lancaster University/Shell)

EVAN Conference 16-19 July 2024

- Completed my PhD in May 2023 at Lancaster University, UK, under the supervision of Dr Jennifer Wadsworth and Dr Emma Eastoe.
- Since September 2023, I have been a postdoctoral researcher at TU Dresden, Germany.



- ScaDS.AI = Center for Scalable Data Analytics and Artificial Intelligence
- ▶ One of the five new centres in Germany funded under the government's AI strategy.
- ► Split between the cities of Dresden and Leipzig.

My current research focus is on employing state-of-the-art artificial intelligence and machine learning techniques for modelling multivariate extremes.

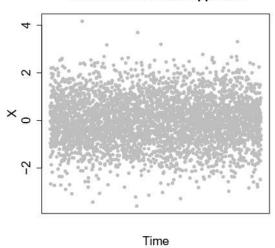
Overview

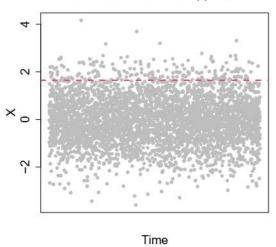
- Univariate extremes
- ► Multivariate extremes
- ► Angular-radial systems
- ► The SPAR model
- ► Simulation study
- Case study
- Discussion

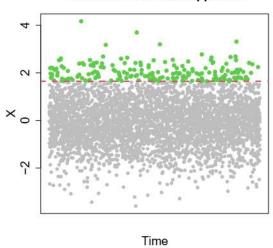
- ▶ Study of univariate extremes is very well-established (Balkema and de Haan, 1974; Davison and Smith, 1990; Coles, 2001).
- ► For modelling, most practitioners employ the *peaks over* threshold approach.
- ▶ A generalised Pareto (GP) distribution is fitted to observations exceeding some threshold.

$$Y_u := (X - u \mid X > u) \sim \mathsf{GP}(\sigma, \xi)$$

$$F_{Y_u}(y) = 1 - \left\{1 + rac{\xi y}{\sigma}
ight\}_+^{-1/\xi}$$







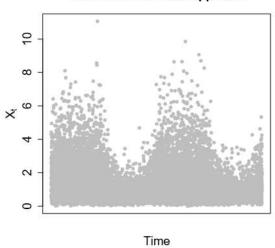
- ► Standard approaches assume that the variable *X* is *stationary* (i.e., not changing in time).
- ▶ However, this is unrealistic in most applications.

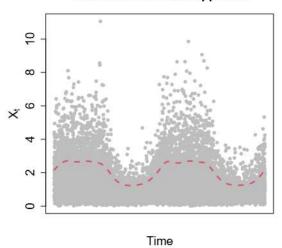
Dresden on a 'normal day' vs Dresden in June 2013

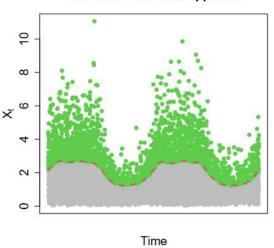
- ▶ In such cases, we must allow for *non-stationarity* in the modelling framework.
- ▶ Given a variable X_t and some covariates Z_t , with t denoting time, one could consider the model

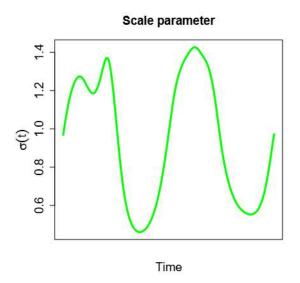
$$(X_t - u(\mathbf{z}_t) \mid X_t > u(\mathbf{z}_t)) \sim \mathsf{GP}(\sigma(\mathbf{z}_t), \xi(\mathbf{z}_t))$$

- ► The threshold and parameters are a **function** of the covariates.
- ▶ Note that other approaches/paradigms are available.





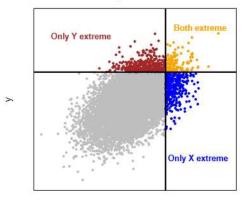




- Literature on non-stationary peaks over threshold analysis is also well established.
- ► Many approaches available: Davison and Smith (1990); Chavez-Demoulin and Davison (2005); Eastoe and Tawn (2009); Youngman (2019).

Consider the question: what is 'extreme' for multiple variables?

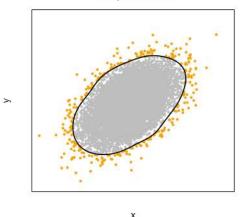
Multiple Variables



- Various definitions of multivariate extremes have been proposed (Barnett, 1976).
- ► However, most classical modelling approaches have just focused on the orange region.
- ► This analysis is very limited and misses important information in the joint tail.

In this work, we define multivariate extremes in a more general manner.

Multiple Variables



- ▶ Many approaches have considered *geometric representations* for modelling multivariate extremes.
- ▶ Geometric ⇒ multivariate data is split into angular and radial components.
- ➤ See, for instance, Coles and Tawn (1991), de Haan and de Ronde (1998), Wadsworth et al. (2017) and Simpson and Tawn (2024).

- ▶ How do we define 'angular' and 'radial' components?
- ▶ This all depends on how we define 'distance'.
- ▶ The standard approach is to use the *Euclidean norm*.

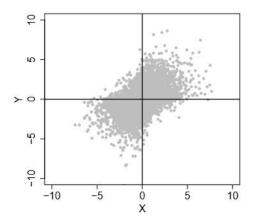
Let (X,Y) denote a continuous random vector. Then

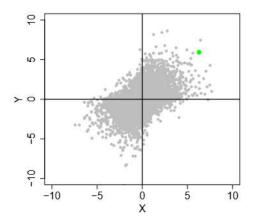
$$R := \sqrt{X^2 + Y^2}$$

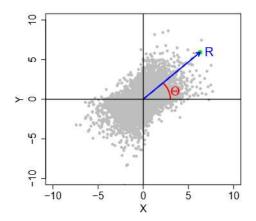
$$\Theta := \operatorname{atan2}(Y, X).$$

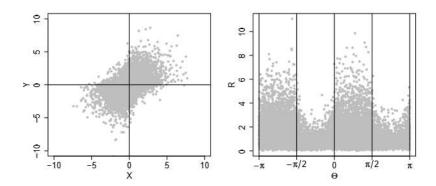
This transformation is one-to-one¹.

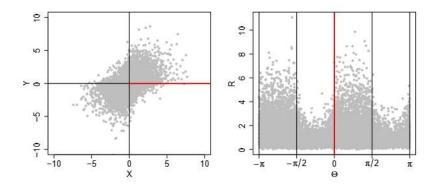
¹Excluding the origin (0,0).











- ▶ Joint extremes can be characterised by the **stochastic** behaviour of (R, Θ) .
- $ightharpoonup \Theta$ gives the 'direction' of the event.
- R gives the 'magnitude'.

- ▶ One can also consider alternative definitions of 'distance'.
- For example, we could set

$$R^* := |X| + |Y|$$

i.e., the L1-norm, with an angular measure defined with respect to this norm.

► However, under our modelling assumptions, the choice of angular-radial system is essentially arbitrary; see Mackay and Jonathan (2023) and Murphy-Barltrop et al. (2024).

The SPAR model

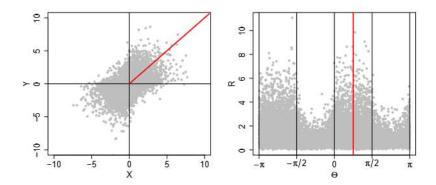
- ► SPAR model = semi-parametric angular-radial model.
- ► This model, proposed in Mackay and Jonathan (2023), assumes the following:

$$(R - u(\theta) \mid \Theta = \theta, R > u(\theta)) \sim \mathsf{GP}(\sigma(\theta), \xi(\theta)),$$

for sufficiently large $u(\theta)$.

Conditional on a fixed angle, the corresponding radial tails follow a GP distribution.

The SPAR model



The SPAR model

Why should this work?

- ▶ We are simply assuming the variable $R \mid (\Theta = \theta)$ is in the **domain of attraction** of an extreme value distribution.
- ► These conditions are very general, and hold for many univariate variables (Balkema and de Haan, 1974; Pickands, 1975).
- ► Furthermore, through rigorous theoretical treatment, Mackay and Jonathan (2023) show conditional radial tails follow a GP distribution for many popular copula examples.

Why should this work?

- Mackay and Jonathan (2023) also show that the SPAR model generalises the frameworks of Coles and Tawn (1991), Ledford and Tawn (1996) and Wadsworth et al. (2017).
- ▶ It is also linked to limit set theory (e.g., Nolde and Wadsworth, 2022).

What's the point?

▶ We have the following relationship between the joint densities:

$$f_{R,\Theta}(r,\theta) = r f_{X,Y}(r\cos(\theta), r\sin(\theta)),$$

where r denotes the Jacobian.

The joint distribution of (X, Y) can be **obtained directly** from the joint distribution of (R, Θ) .

But what's the point?

► Applying Bayes' theorem, we can write

$$f_{R,\Theta}(r,\theta) = f_{\Theta}(\theta) f_{R\mid\Theta=\theta}(r\mid\theta)$$

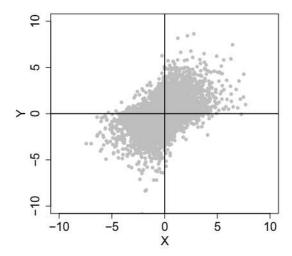
$$\approx (1-\gamma) f_{\Theta}(\theta) f_{GP}(r-u(\theta)\mid\sigma(\theta),\xi(\theta)),$$

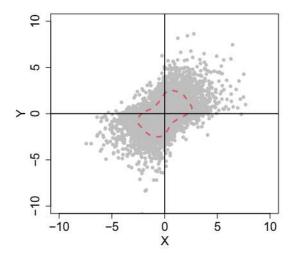
where
$$\gamma = \Pr(R \leq u(\theta) \mid \Theta = \theta)$$
.

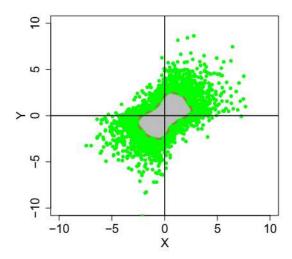
▶ Combined with a model for $f_{\Theta}(\theta)$, we can model the joint tail.

- ► Mackay and Jonathan (2023) provide no means for inference with the SPAR model hence this work.
- We assume semi-parametric **generalised additive model** forms for $u(\theta)$, $\sigma(\theta)$ and $\xi(\theta)$.
- ► This allows us to approximate each function with minimal modelling assumptions.
- \triangleright $u(\theta)$ fitted via quantile regression techniques (Koenker et al., 2017).
- $ightharpoonup \sigma(\theta), \xi(\theta)$ fitted using the EVGAM framework (Youngman, 2019, 2020).

- Finally, we model $f_{\Theta}(\theta)$ non-parametrically using circular density estimation techniques.
- ➤ See Murphy-Barltrop et al. (2024) for further details and discussion.

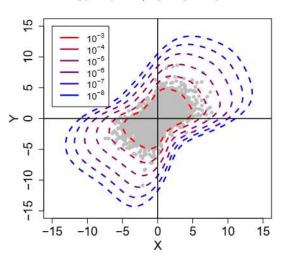




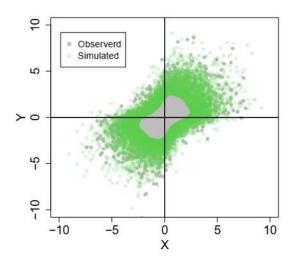


For any small value $\epsilon>0$, isodensity contours are given by

$$\{(x,y):f_{X,Y}(x,y)=\epsilon\}$$

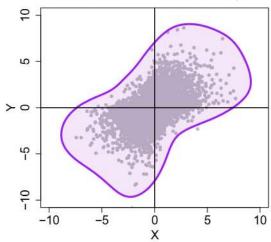


SPAR model simulations

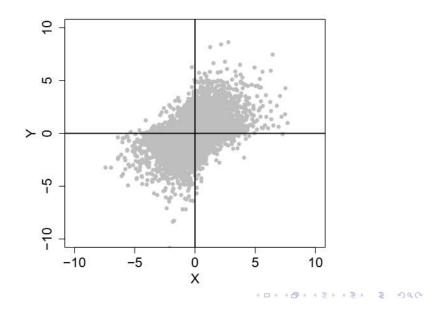


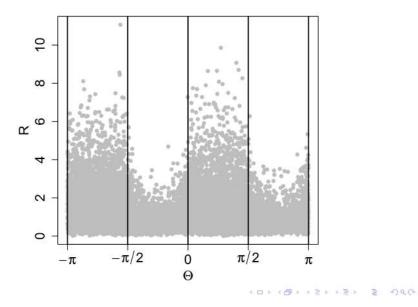
Given a probability $p \in [0,1]$ close to 1, a *return level set* (environmental contour) is defined as a set A_p such that

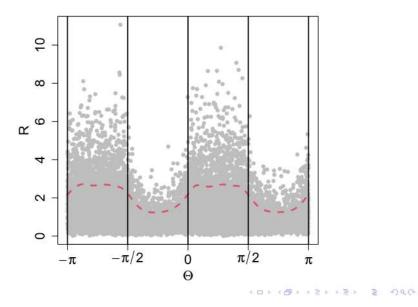
$$\Pr[(X,Y) \in \mathcal{A}_p] = p \ \Rightarrow \ \Pr[(X,Y) \in \mathcal{A}_p^c] = 1 - p.$$

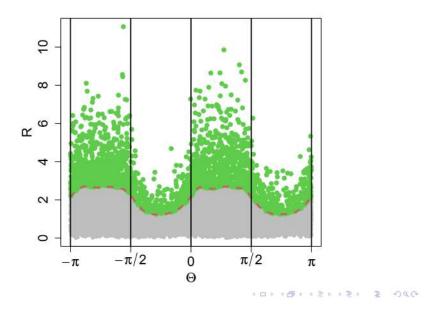


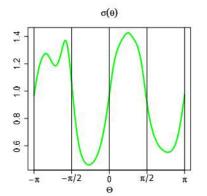
But did you spot the sleight of hand?

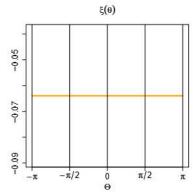










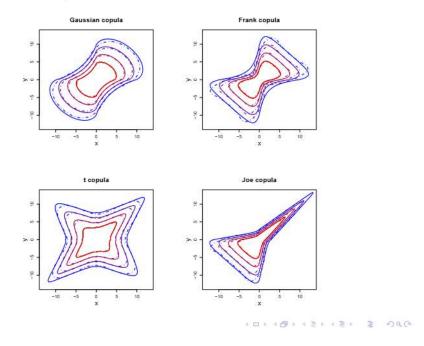


(ロ)(西)(三)(三) (日)

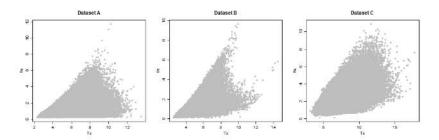
Simulation study

- ► To evaluate the performance of the SPAR model, we tested our framework over a range of popular copula examples.
- We were able to accurately approximate the joint tail distributions.

Simulation study



▶ To demonstrate the utility of the SPAR framework, we consider three bivariate metocean time series made up of zero-up-crossing period, T_z, and significant wave height, H_s, observations.



- ▶ Understanding the joint extremes of metocean variables is important for assessing the reliability of offshore structures, e.g., wind turbines.
- ► Extreme responses can occur with either short- or long-period waves – so it is necessary to characterise the joint distribution in both of these ranges.

- ▶ We fit the SPAR model without marginal transformation, i.e., on the observed scale.
- ▶ Uncertainty quantified using block bootstrapping techniques.
- ▶ Diagnostics indicate reasonable model fits.

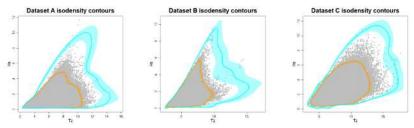


Figure: Isodensity contours at $\epsilon=10^{-3}$ (orange lines) and $\epsilon=10^{-6}$ (cyan lines).

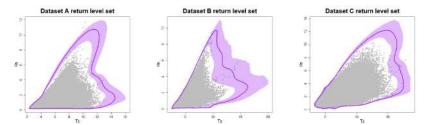


Figure: Estimated 10 year return level sets.

Discussion

- In this work we have introduced a **novel semi-parametric modelling framework** for bivariate extremes.
- ► Can capture the joint extremes of both asymptotically and non-asymptotically dependent data structures.
- Requires very few assumptions and offers a high degree of flexibility.
- We have also proposed a range of diagnostic and uncertainty quantification tools to aid with inference.

Discussion

Future work

- ► Further investigating sensitivity to tuning parameter choices (i.e., GAMs, circular density).
- Expanding to the general multivariate setting (ongoing work).
- ► Comparison to other multivariate modelling techniques.

Shameless self-promotion

Murphy-Barltrop, C. J. R., Mackay, E., and Jonathan, P. (2024). Inference for bivariate extremes via a semi-parametric angular-radial model. arXiv preprint, arXiv:2401.07259. Mackay, E., Murphy-Barltrop, C. J. R., and Jonathan, P. (2024). The SPAR model: a new paradigm for multivariate extremes. Application to joint distributions of metocean variables.

OMAE2024/130932.

Thanks for listening

Any questions?

Develop a complicated modelling framework for multivariate extremes

Just use existing univariate modelling techniques

References I

- Balkema, A. A. and de Haan, L. (1974). Residual Life Time at Great Age. *The Annals of Probability*, 2:792–804.
- Barnett, V. (1976). The Ordering of Multivariate Data. *Journal of the Royal Statistical Society. Series A (General)*, 139:318–344.
- Chavez-Demoulin, V. and Davison, A. C. (2005). Generalized additive modelling of sample extremes. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 54:207–222.
- Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer London.
- Coles, S. G. and Tawn, J. A. (1991). Modelling Extreme Multivariate Events. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 53:377–392.
- Davison, A. C. and Smith, R. L. (1990). Models for Exceedances Over High Thresholds. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 52:393–425.

References II

- de Haan, L. and de Ronde, J. (1998). Sea and Wind: Multivariate Extremes at Work. *Extremes*, 1:7–45.
- Eastoe, E. F. and Tawn, J. A. (2009). Modelling non-stationary extremes with application to surface level ozone. *Journal of the Royal Statistical Society. Series C: Applied Statistics*, 58:25–45.
- Koenker, R., Chernozhukov, V., He, X., and Peng, L. (2017). Handbook of Quantile Regression. Chapman and Hall/CRC.
- Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. *Biometrika*, 83:169–187.
- Mackay, E. and Jonathan, P. (2023). Modelling multivariate extremes through angular-radial decomposition of the density function. *arXiv*, 2310.12711.
- Murphy-Barltrop, C. J. R., Mackay, E., and Jonathan, P. (2024). Inference for multivariate extremes via a semi-parametric angular-radial model. *arXiv*, 2401.07259.

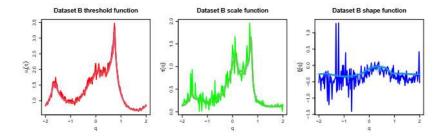
References III

- Nolde, N. and Wadsworth, J. L. (2022). Linking representations for multivariate extremes via a limit set. Advances in Applied Probability, 54:688–717.
- Pickands, J. (1975). Statistical Inference Using Extreme Order Statistics. *The Annals of Statistics*, 3:119–131.
- Simpson, E. S. and Tawn, J. A. (2024). Inference for New Environmental Contours Using Extreme Value Analysis. *Journal of Agricultural, Biological and Environmental Statistics*.
- Wadsworth, J. L., Tawn, J. A., Davison, A. C., and Elton, D. M. (2017). Modelling across extremal dependence classes. *Journal* of the Royal Statistical Society. Series B: Statistical Methodology, 79:149–175.
- Youngman, B. (2020). evgam: Generalised Additive Extreme Value Models. *R Package*.

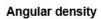
References IV

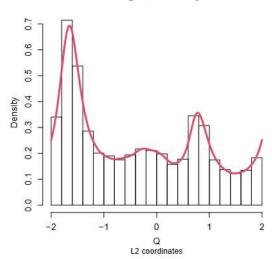
Youngman, B. D. (2019). Generalized Additive Models for Exceedances of High Thresholds With an Application to Return Level Estimation for U.S. Wind Gusts. *Journal of the American Statistical Association*, 114:1865–1879.

Appendix



Appendix





Appendix

