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Motivation

Marine standards recommend approaches to calculate
return levels and exceedance probabilities for extreme
values of marine key variables (such as wind, wave,
surge). However, some approaches date back many
decades. Examples include: the initial distribution method
using a Weibull distribution for marginal models on all
data; modelling directional wave heights using
independent models for each sector; and the Weibull
log-normal model for joint probability [1,2]. While they have
a practical appeal, these approaches do not take into
account recent developments in extreme value theory
(EVT). When extrapolating far into the tail in particular,
empirical models should be informed by EVT.

However, despite multiple studies it is still not obvious how
these modern approaches perform compared to existing
standards in various settings. Therefore we contribute with
a comparison of our in-house developed workflow for
non-stationary, joint Environmental Extremes EnvEx
applying modern EVT methodology [3,4]. Here, we focus
on the fair comparison of the sea state parameter Hs and
joint variables because Hmax and Cmax are downstream
response variables with their quality being contingent on
the correct estimation of the sea state parameters and the
distribution functions for the individual waves and crests.

Conclusion

EnvEx provides a framework for applying non-stationary
extreme value analysis including UQ for our metocean
variables of interest. The impact of variables on return
variables and exceedance probabilities can be investigated
as all dependencies are traceable through the model.

EnvEx is able to predict a meaningful distribution of 100-year
maxima. Models that do not take into account autocorrelation,
I.e. serial correlation and covariate effects, are mis-specified
and develop biases that are most severe for long tailed data.

Depending on the purpose it may be beneficial to consider
the full predictive distribution of 100-year maxima rather than
the return levels to better account for the variability in the
underlying stochastic process.

Plans

- Incorporate subsampling based uncertainty

- Incorporate more models for Hmax and Cmax
- Create publicly available software package

- Benchmark using different datasets and
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\ - Investigate more sensitivity
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Non-stationary and joint modelling strategy in EnvEx

We assume that 1) storm events and their
storm peak values are independent given
storm peak covariates, 2) storm events can
be sufficiently characterized by their
respective storm peak variables and the
storm peak covariates. Additionally, the storm
evolution itself can be described by the
probability density of a multivariate time
series of sea state characteristics throughout
the storm event, other sea state covariates,
and the unknown and variable storm length,
3) the dependence between individual waves
given their sea state is negligible.

Following [3,4] we can now design the
hierarchical model for the distribution of the
maximum individual wave height within any
storm. The hierarchy consists of A) a model
for Hmax within a storm event with random
length T € T consisting of sea states of
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unknown length L, B) the evolution of all multivariate storm events
characterized by all multivariate storm peaks given their covariates, C)
the joint model (Heffernan and Tawn) [5] or non-stationary marginal
modelling of the independent storm peak variables given their
covariates [6], and D) the occurrence of storm peak covariates [7].
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We fit a range of candidate models as commonly applied and let them predict a distribution of 100-year maxima.
Those should group around the true 100-year return value for the storm peaks for the probability: P <Hs§}P > U )
All models are provided with the same 50 years of data to which they are fitted to. The predictions based on these

models are subsequently compared.
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WB3P shape of storm peaks

Boxplots of the percentage deviations from the true omni 100-year return value
for all candidate methods evaluated for different WB3P storm peak shapes, a)
seasonal dependence, b) serial correlation. The boxes represent the interquartile
range (0.25pct - 0.75pct) and the whiskers include 99% (0.005pct - 0.

EnvEx is seasonal in all threshold, point-process, and GP-parameters.
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EnvEx predictions for the joint 100-year maxima of Hs and TmO1 from the
non-stationary marginal models combined with the Heffernan and Tawn
model [5]. Isodensity lines for quantiles q=0.01, 0.05, 0.1 are displayed with
995pct). red lines. True 100-year joint maxima from the artificial dataset are represented
by black dots. ErnvEx is seasonal in all parameters for the threshold,
point-process, and GP models for both response variables Hs and TmO1.
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EnvEx predictions for 100-year Hs maxima from a seasonal-directional marginal model Same joint model as above. Predictions of 100-year maxima for both response
for Hs against the true value represented by the gray line. Seasonal-directional sub variables displayed as marginal distributions and shown against the true value
regions are b) winter and direction from 100-150 degrees and c¢) summer and directions represented by the gray line.

from 200-250 degrees. The blue lines indicate the Spct, SOpct, and the 95pct. The black

line represents the combined density from all bootstrap members.
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Characteristics of exemplary seasonal artificial data used in lieu of Hs. Characteristics of hypothetical Ekofisk
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seasonality in all parameters as well as Ekofisk-like dependency on TmO01. Consisting
WB3P peaks with shape=2 and introduced serial correlation following the power-storm model with lambda=1 and of 10000 years worth of hourly storm data. Dependencies and serial correlation are
seasonality in all parameters. Consisting of 10000 years worth of hourly data. based on NOR A3 at the Ekofisk location [8]. /
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