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Defining multivariate extremes

wind speed
wind speed

wind speed
wind speed

Significant wave height Significant wave height

Gimeno-Sotelo, L., Richards, J., Hazra, A., Mhalla, L., and de Zea Bermudez, P. (2025). A Review of Applications of
Extreme Value Theory to Environmental Risk Assessment. In Environmental Statistics: Innovative Methods and Applications.
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Extrapolation
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Papastathopoulos, |., De Monte, L., Campbell, R., & Rue, H. (2023). Statistical inference for radially-stable generalized
Pareto distributions and return level-sets in geometric extremes. arXiv:2310.06130.
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Angular-radial representations

Let X € RY and

X
R = ||X]| > 0, W:=_—— 891
X
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Murphy-Barltrop, C. J., Majumder, R., & Richards, J. (2024). Deep learning of multivariate extremes via a geometric
representation. arXiv:2406.19936.
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Angular-radial representations
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Angular-radial representations

H,“_Xl
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Angular-radial representations
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Angular-radial representations

De Monte, L., Huser, R., Papastathopoulos, I., & Richards, J. (2025). Generative modelling of multivariate geometric
extremes using normalising flows. arXiv:2505.02957.
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Recent developments

o Limit sets and scaled sample clouds:

o Theory - Balkema and Nolde (2010); Nolde (2014); Nolde and
Wadsworth (2022)

o Inference - Campbell and Wadsworth (2024); Simpson and Tawn
(2024a,b); Wadsworth and Campbell (2024); Murphy-Barltrop et al.
(2024); Majumder et al. (2025)

o Semi-Parametric Angular-Radial model: Mackay and Jonathan
(2023); Mackay et al. (2025a,b); Murphy-Barltrop et al. (2025)

o Radially-stable distributions: Papastathopoulos et al. (2023);
De Monte et al. (2025)

o Angular modelling via generative Al - Lhaut et al. (2025); Wessel
et al. (2025)
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Session outline

o Jenny Wadsworth (Lancaster): Methodologies for angular-radial
models of multivariate extremes

o Emma Simpson (UCL): Application of angular-radial models

o Ed Mackay (Exeter): Deep learning for multivariate extremes

Organisers: Callum Murphy-Barltrop (TU Dresden), Ed Mackay (Exeter),
Jordan Richards (UoE), Phil Jonathan (Lancaster)
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Background: statistics of multivariate extremes

Main premise of extreme value statistics:

Link probabilities of being in more extreme regions to probabilities of being in
less extreme regions

Challenges in R?:
» No unique direction of extrapolation

» Different methodologies useful for different dependence structures

» No established methodology fully general for d > 3



Brief overview of difficulties in multivariate extremes

Main question for finding appropriate multivariate extremes methodology:

[Which variables can be large together?)

That is: for which groups of variables do joint extremes occur with similar
frequency to marginal extremes.
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Brief overview of difficulties in multivariate extremes

Main question for finding appropriate multivariate extremes methodology:

[Which variables can be large together?)

That is: for which groups of variables do joint extremes occur with similar
frequency to marginal extremes.

Can be summarized by a mapping to the faces of a (d — 1) dimensional simplex:

Xo extreme
separately to

(X1, X3)

(X2, X3) extreme
separately to Xj ~

(X1, X2) extreme
separately to X3

X3 extreme

separately to
(X1, X2)

(X1, X3) extreme
separately to separately to Xz
(X2, X3)

X1 extreme

(X1,X2,X3)
extreme
simultaneously

Image credit: Emma Simpson



Brief overview of difficulties in multivariate extremes

Xo extreme
separately to

(X1, X3)

X3 extreme
separately to

(X1, X2)

X1 extreme
separately to
(X2, X3)

» 29 — 1 = 7 possibilities for d = 3, but many can occur in combination

» Qut of 2/ = 128 possibilities for whether a certain combination occurs or
not, there are only 19 that cannot occur, leaving a mere 109...

» No general methodology to date to allow for all these structures

(X2, X3) extreme

(X1, X2) extreme
separately to Xj ~

separately to X3

(X1, X3) extreme
separately to X3

(X1,X2,X3)
extreme
simultaneously




Geometric approach to multivariate extremes

When we view a scatterplot of datapoints in light-tailed margins, can often see a
“shape” in this sample cloud.

Xa
\
Xa
|

X4 X4 X4

We can formalize this using the notion of the scaled sample cloud and its
limit set. (Davis et al., 1988; Kinoshita & Resnick, 1991; Balkema et al., 2010)

The shape of the limit set contains a lot of information on the extremal
dependence structure (Nolde & Wadsworth, 2022).



Asymptotic behaviour of scaled sample cloud




Sample clouds and limit sets

The shape of the sample cloud and limit set is impacted by both margins and
dependence. To focus on dependence only, we standardize to exponential
margins, X ;, or Laplace margins X, ;,i=1,...,n.

1.0

Define the scaled sample cloud to be
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Sample clouds and limit sets

The shape of the sample cloud and limit set is impacted by both margins and
dependence. To focus on dependence only, we standardize to exponential
margins, X ;, or Laplace margins X, ;,i=1,...,n.

1.0

Define the scaled sample cloud to be

X XEn
N,,:( LU E’).
log n log n

0.8
|

Xgz/log(n)
0.6

0.4

0.2

0.0
|

Xe1/log(n)

This converges (in probability) onto a limit set G if

. hPr(Z== & — 0 Tor any open set U containin
1. nPr(f; € U9) — 0 for any open set U containing G

log n

2. nPr(:2£ € {x +¢eB}) — oo forall x € G, any € > 0, B Euclidean unit ball

log n

maxi<<n(Xe.i)/ logn P 1, so the coordinatewise supremum of Gis (1,...,1).



The limit set, G

The limit set G is star-shaped: x € G = tx € Gfort € (0, 1).

1.0
1.0

0.5

0.6

0.4
0.0

0.2
-0.5
|

0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -0.5 0.0 0.5 1.0

If for every x € G, the line segment 0 + tx, t € [0, 1), lies in the interior of G,
then G can be characterized by a continuous gauge function, g.

G={x:g(x) <1}

The gauge function g is homogeneous: g(cx) = cg(x), c > 0.



Calculating the gauge function

Suppose that X has d-variate density fx(x). Then the continuous g can be
found through

— log fx(tx)
t

(Balkema and Nolde, 2010; Nolde, 2014).

> 8(x), t — o0.

Bivariate logistic Bivariate Gaussian

max(x, x4y — 2p(x 1/2
glx,y) = Coy) (1 — l) min(x, y) y — 2p(x)

8(x,y) = 5



Limit set shapes and extremal dependence

» In exponential margins, G C [0, 1]¢ with sup(G) = (1,. ..

).

» Points of intersection with the bounding box give directions in which most
extremes lie

» Summarize collections of variables that are simultaneously extreme via

y

these intersection points: geometric extreme directions
(Papastathopoulos & Wadsworth, 2025+)
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Limit set shapes and extremal dependence

» Many existing extremal dependence coefficients and properties link to the
shape of G (Nolde, 2014; Nolde & Wadsworth, 2022)

» Residual tail dependence coefficient (Ledford & Tawn, 1996); conditional
extreme value model coefficients (Heffernan & Tawn, 2004); angular
dependence function (Wadsworth & Tawn, 2013)



Limit set framework

» Provides a comprehensive description of extremal dependence allowing
non-trivial treatment of different extremal dependence scenarios

» Offers connections between existing representations of the
multivariate tail

» Represents a promising approach to statistical inference for complex
dependence structures (and simpler ones!)



Inference on G

Star-shaped set suggests radial-angular decomposition of X:

R=[X],  wW=X/|X]|.
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» The tail of the distribution of R|W is informative about the boundary of G

» The gauge function g(w) arises as a rate parameter in this asymptotic
distribution



Geometric multivariate extremes

Ingredients for tail inference via the geometric limit set framework:

» A radial model for tail of R|W which depends on the gauge function g(w)

» GPD (Simpson & Tawn, 2024; Papastathopoulos et al, 2023)
» Truncated gamma (Wadsworth & Campbell, 2024)

» An angular model for W

Other approaches

Semi-parametric angular-radial (SPAR) model (Mackay & Jonathan, 2023;
Murphy-Barltrop et al, 2024; Mackay et al, 2025)

» Does not (necessarily) assume particular margins or limit set convergence
— but can encompass limit set approach in standard margins

» Focus on angular-radial systems for extrapolation, including estimating
environmental contours and other quantities

» Radial model GPD (not necessarily linked to limit set)

» Angular model also required



Thanks for your attention!
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Thanks for your attention!
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Motivation

Angular-radial representations can be useful in the study of multivariate
extremes.

For a d-dimensional random vector X = (Xy,...,Xy) € RY, we can
consider

R=Xlla,  W=X/|X]s,

i.e., a radial component and a (pseudo-)angular vector.




Motivation

Angular-radial representations can be useful in the study of multivariate
extremes.

For a d-dimensional random vector X = (Xy,...,Xy) € RY, we can
consider

R=Xlla,  W=X/|X]s,

i.e., a radial component and a (pseudo-)angular vector.

We focus on W, taking values on the (d — 1)-sphere, or hypersphere,

St ={xeR: |x|g=1}.




Motivation - radial-angular multivariate extremes

For statistical inference, angular-radial approaches include:

m geometric extremes (e.g., Wadsworth and Campbell, 2024);

= SPAR models (e.g., Mackay and Jonathan, 2023).




Motivation - radial-angular multivariate extremes

For statistical inference, angular-radial approaches include:

m geometric extremes (e.g., Wadsworth and Campbell, 2024);

= SPAR models (e.g., Mackay and Jonathan, 2023).

For joint tail inference, including extrapolation, these require modelling or
simulation of an angular component.




Possible strategies for generating angular data

m Empirical sampling.
m Becomes infeasible in higher dimensions.

m Parametric models.

m May lack the flexibility required for complex structures.




Possible strategies for generating angular data

m Empirical sampling.
m Becomes infeasible in higher dimensions.
m Parametric models.
m May lack the flexibility required for complex structures.

m Generative deep learning approaches?

m Less restrictive than relying on exact observations.
m Can estimate the angular distribution without specifying a density.

Wessel, J. B., Murphy-Barltrop, C. J. R. and Simpson, E. S. (2025).

A comparison of generative deep learning methods for multivariate angular simulation.




Spherical coordinates

Spherical coordinates @ = (©1,...,04_1) can be useful:

@1 — atan?2 (\/Xd2 + Xd—12 + ..o+ X22’X1> :

62 — atan? (\/Xd2 -+ Xd—12 + ..o+ X327X2> :

Og_2 = atan2 (\/Xd2 + Xg_1°, Xd—z) :

©4_1 = atan2 (Xd, Xd—l) ;

where ©1,...04_5 € [0,7] and ©4_1 € (—m, 7]. (Blumenson, 1960)




Deep learning approaches

m Generative adversarial networks (GANs) - Goodfellow et al. (2014)

m Normalizing flows

= Neural spline flows (NFNSFs) - Durkan et al. (2019)

m Masked autoregressive flows (NFMAFs) - Papamakarios et al. (2017)

= Flow matching (FM) - Lipman et al. (2022)




Adaptations for angular variables - GANs

m Composed of a generator and a discriminator.




Adaptations for angular variables - GANs

m Composed of a generator and a discriminator.

m To ensure the spherical coordinates lie in the correct range, we
specify activation functions after the last generator layer as

1
1+ e

04_1 < m-tanhxy_1.

m Note: circular wrapping resulted in some training instabilities.




Adaptations for angular variables - NFs

m Involves a base distribution and a series of transformations.

m For both the NFNSF and NFMAF approaches, we use a
transformation of the form

O; < m-®(x;)fori=1,...,d—2,
‘9d—1 — (Xd—l mod 27‘(‘) — Tr.

m In these cases, the sigmoid has slower convergence at 0 and 1 than
the Gaussian CDF, which led to poor results near the endpoints of

0, 7].

m Circular wrapping for the final component worked well in this case.




Adaptations for angular variables - FM

m For flow matching, we don't need to map onto the angular space,
since flows can be defined directly on the sphere.




Parametric approach - mixture of vMF distributions

m The von Mises-Fisher (VIMF) distribution has density

fomr(w | p, k) = Cd(/ﬁz)e““TW, we S

for some concentration x > 0, mean direction pu € S9-1 and
normalising constant c4(k).

m This is an angular extension of a multivariate Gaussian distribution.




Parametric approach - mixture of vMF distributions

m The von Mises-Fisher (VIMF) distribution has density

fome(w | @, k) = Cd(/ﬁ;)e“”’TW, we S

for some concentration x > 0, mean direction u € S9-1 and
normalising constant cy(k).

m This is an angular extension of a multivariate Gaussian distribution.

m A finite mixture of vMF distributions provides a flexible, parametric
approach to modelling angular data.




Simulation study - overview

To cover a wide range of examples, we consider the following options:
m dimensions d =5, d = 10 and d = 50;
m datasets of size n = 1,000, n = 10,000 and n = 100, 000;

m light and heavy-tailed marginal distributions;

= a range of different dependence (copula) structures.




Simulation study - evaluation strategies

We consider a range of evaluation metrics to assess both marginal and
joint structure.

= Numerical metrics - angular energy score (aES)
m Histograms and QQ-plots for spherical margins

m Scatterplots between pairs of spherical angles

m Orthant probability plots to assess full structure




Simulation study - some key findings

m Difficult to distinguish between methods using numeric scores alone.

m No method should be completely discounted.

m NFNSF, NFMAF and FM all provide good results across a range of
examples.




Metocean data example

Five-dimensional dataset consisting of:
m significant wave height,
® mean wave period,
m mean wave direction,

m hourly mean wind speed at 10 m above sea level,

m wind direction.




Metocean data - some example results
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Metocean data - some example results
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Metocean data - some example
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Conclusions

m The flexibility and scalability offered by generative deep learning
approaches make them suitable candidates for multivariate angular
simulation.
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structures.




Conclusions

m The flexibility and scalability offered by generative deep learning
approaches make them suitable candidates for multivariate angular
simulation.

m [he parametric approach was generally good at capturing marginal
distributions, but struggled with some complex dependence
structures.

m No methods can be completely discounted, and there is no individual
‘best’ approach. So model checks and validation are key...

m ... and it would be useful to have more metrics for evaluation in
angular/spherical contexts!




Thank you!

Based on the paper:

m Wessel, J. B., Murphy-Barltrop, C. J. R. and Simpson, E. S. (2025). A comparison of
generative deep learning methods for multivariate angular simulation. arXiv:2504.21505.

m Accompanying code available from https://github.com/callumbarltrop/DeGeMoH
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angular-radial decomposition of the density function. arXiv:2310.12711.
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density estimation. NeurlPS.
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via a geometric approach. JRSSB.
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Motivating problems

* Environmental loads on offshore wind
turbines dependent on winds, waves, tides
etc.

* Largest response does not necessarily
occur in largest conditions

* Blue regions: extreme at least one variable

* Red regions: not extreme in either variable,
but are “locally extreme”

 Could use various types of existing model to
characterise each region

* Can we capture all “extreme regions” ina
single inference?
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The SPAR model

» Semi-Parametric Angular-Radial (SPAR) model

* Reframes multivariate extremes as an intuitive
extension of univariate theory, with angular
dependence

* Inference is standard univariate peaks-over-
threshold (POT) problem with covariate
dependence

* Many existing methods for multivariate
extremes are special cases of SPAR

* SPAR is more flexible than current methods
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Transformation to angular-radial
coordinates
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eLetX = (X4, ..., X;) € R? have density fx

* Define radial and angular variables:
R = [IX]l,
W = X/R

where ||X||, = \/Xlz + -+ + X% is the Euclidean (L2) norm

* Note that

* R isradial variable
* Wis a pseudo-angle corresponding to a point on the unit hypersphere

* Then (R, W) has density
frw(@,w) =r? 1 fx(rw)
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SPAR model statement

* Write joint density in conditional form:
frw(r, W) = f (W) friw(r|w)
* Assume standard univariate POT model for tail of fzw (r|w)
 Define threshold function u(w) as conditional quantile of R|(W = w) at exceedance probability ¢
* SPAR model for the joint density is
frw(rw) =7 fw(W) fop(r — u(w); E(w), a(w)), r > u(w)

fop(r; &€, 0) is a generalised Pareto density function with shape parameter ¢ and scale parameter o



SPAR representations of
parametric copulas
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* SPAR parameters can be derived analytically for parametric families of copulas
* SPAR can accurately capture distributions with different dependence properties

Student
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* Coloured lines: contours of true density
* Dashed lines: contours of SPAR density at the same levels
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Marginal distributions

* SPAR formulation does not make any assumption about the marginal distributions

* SPAR on exponential / Laplace margins is consistent with limit set theory
» Additional assumption: constant GP shape é(w) = 0

* SPAR can be applied on original marginal scale
* Pros: removes uncertainty with estimating marginal model
* Cons: need to be confident that marginal effects will not mask dependence effects

* For many environmental variables it is reasonable to assume that distributions are bounded, due
to physical limits

* Rules out possibility of e.g. one margin heavy-tailed and another light-tailed



Limit sets

* Definition: Let X, ..., X, be a sequence of IID random
vectors in R? with either standard exponential or
Laplace margins, such that

X, Xn
N - G, n — oo,
logn logn

then we say G is the limit set of the scaled sample
cloud.

» Assumes that extreme value index of the radial
variable is constant at all angles
» All regions of variable space have non-zero probability

e Cannot be true for certain environmental variables,
since physical limits result in regions of variable space
with zero probability

* Allowing the GP shape parameter to vary with angle
gives more flexibility to model these effects
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Inference

* Model:
faw@w) = fw(W) fep(r — u(w); E(w), o(w))

* Need to estimate:
» Angular density: fyy(w)
» Directional statistics
* Threshold function: u(w)
> Quantile regression
* GP shape and scale parameter functions: {(w), o(w)
» Non-stationary POT

* Problems are separable:
» Angular density can be estimated independently of GP threshold and parameter functions

* Many existing methods for these problems

 Key consideration is choosing suitable semi-parametric form for threshold and GP parameter functions



GAM representation of a function as a sum of
15; basis functions

Covariate representations

g(6)
* Various ways of representing covariate functions: e.g.
* Generalised additive models (GAMs), e.g. splines
+ Gaussian processes
* Artificial neural networks (ANNs)

» All provide flexible function approximation Basis

: - functions
* Inall cases, parameters estimated by minimising the same loss functions 0 mi2 m 32 2m

* Tilted loss for quantile regression 0

* Likelihood function for GP parameters

* Neural networks have computational advantages over GAMs in higher
dimensions Hidden Hidden

layer 1 layer 2

Input

* Inference with GAMs:

* Murphy-Barltrop, C. J. R., Mackay, E., and Jonathan, P. (2025). Inference for Ofa‘?;}“
gé\?%glga%e)é’gsemes via a semi-parametric angular-radial model. Extremes, ‘ 7 V

* https://qgithub.com/callumbarltrop/SPAR

* Inference with ANNs:

* Mackay, E., Murphy-Barltrop, C. J., Richards, J., and Jonathan, P. (2025). Deep

learning of joint exfremes of metocean variables using the SPAR model.
arXiv:2412.15808.

» https://qgithub.com/callumbarltrop/DeepSPAR

Schematic of ANN with two hidden layers
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ANN setup

* Two ANNSs:
* ANN for threshold trained first
* ANN for GP parameters trained afterwards

* Activation functions:
» Hidden layer activation functions all set as rectified linear units
* Final layers use exponential transformation to ensure GP scale and threshold are strictly positive

* Network depth (humber of layers) and width (neurons per layer) determine model flexibility
* All layers fully connected
* Architecture ‘optimised’ using a grid search
* Relatively simple architecture selected for both networks: (3 layers, 16 neurons per layer) - 650 parameters

* Minimisation of loss function
 Stochastic gradient descent (ADAM)
* Data split into 80% training, 20% validation
* Early stopping: training terminated when validation loss plateauxs

* Special care needed to deal with GP upper end point



Five-dimensional
application

* 31-year hindcast of hourly values
for a site in Celtic Sea

* Variables
* Wind speed & direction
* Wave height, period & direction

* Transformed to:

» East-North components of winds
and waves

* Logarithm of wave period
* All normalised to have unit variance

» Kernel density method used for
angular model in this example
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Radial model diagnostics

Local tail QQ plots

Marginal lower & upper tail exceedance plots
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Summary

* Existing ‘engineering’ methods for modelling multivariate extremes have strong limitations
* Rely on ad-hoc choices
* Poor fit in practice

* SPAR model

* Provides model for joint density in all ‘extreme regions’

* Requires no strong assumptions about form of margins or dependence structure
* Inference built on existing practices

» Shown to provide good fit to metocean datasets

* Future work
* Detailed comparison with existing inference methods
» Effect of choice of margins
 Effect of choice of origin
* Optimisation of neural network inference
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Questions?

e.mackay@exeter.ac.uk




